
Towards a Formal Basis for Modular Safety Cases

Ewen Denney and Ganesh Pai

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA.

{ewen.denney,ganesh.pai}@nasa.gov

Abstract. Safety assurance using argument-based safety cases is an accepted
best-practice in many safety-critical sectors. Goal Structuring Notation (GSN),
which is widely used for presenting safety arguments graphically, provides a
notion of modular arguments to support the goal of incremental certification.
Despite the efforts at standardization, GSN remains an informal notation whereas
the GSN standard contains appreciable ambiguity especially concerning modu-
lar extensions. This, in turn, presents challenges when developing tools and me-
thods to intelligently manipulate modular GSN arguments. This paper develops
the elements of a theory of modular safety cases, leveraging our previous work
on formalizing GSN arguments. Using example argument structures we highlight
some ambiguities arising through the existing guidance, present the intuition un-
derlying the theory, clarify syntax, and address modular arguments, contracts,
well-formedness and well-scopedness of modules. Based on this theory, we have
a preliminary implementation of modular arguments in our toolset, AdvoCATE.

Keywords: Safety Cases, Argument Structures, Modularity

1 Introduction

Modular safety arguments are desirable for a number of reasons: first, they can be useful
to manage safety case size, and also to improve comprehensibility, by providing an abs-
tract, architectural view of the argument that clarifies the relevant relationships between
various argument components. Second, modularity is useful to minimize and contain the
impact of required changes to a safety case, and, consequently, maintain the assurance
provided [1]. Thirdly, they can support distributed and concurrent development of the
different argument modules [2]. The vision is that a modular organization will facilitate
module replacement during an incremental certification process [3], so that an argument
module can be exchanged for another that meets the same safety properties whilst also
protecting intellectual property, e.g., by exposing only the public details of arguments as
appropriate. To support this vision, the Goal Structuring Notation (GSN) [4], a widely-
used graphical notation for presenting safety arguments, provides a notion of modular
arguments. Still, there has been limited experience with using modular safety cases (to
our knowledge). We believe that this is due to, in part, insufficient tools and techniques
supporting both a practical and correct use of the modular safety case concept.

Indeed, in a cost-benefit study of modular safety case development [5], the lack
of adequate tool support was one of the concerns identified amongst the risks of us-
ing modular arguments. Additionally, although there have been various efforts at both

2 E. Denney and G. Pai

formalizing the GSN, e.g., [6], [7], and standardization [4], [8], the GSN Standard [4]
leaves many questions open (see Section 3 for details). This, in turn, presents challenges
for tool development (e.g., to build well-formed modular arguments), with existing tools
that implement modular GSN varying in how they handle modules. This paper is a first
attempt at closing that gap. Our goal is to provide a formal basis for an implementa-
tion that will provide, to the extent possible, automation in creating and manipulating
modular arguments. Another aim of this paper is to clarify the GSN Standard, i.e., to
make explicit numerous constraints that were hitherto implicit rather than a critique, or
radical replacement, of the existing notation. Specifically, our paper makes the follow-
ing contributions: i) a formal definition of modular arguments and contracts, clarifying
their permissible interconnections; ii) extending modules with a notion of hierarchy,
giving a rigorous definition for containment and scope, and using these to formulate a
notion of well-formedness; and iii) foundations for implementing modular organization
in tools supporting GSN, e.g., our toolset, AdvoCATE [9], or others such as ASCE1.

2 Modular Extensions to Goal Structuring Notation

We use intra-module GSN (Fig. 1) in an argument (within a specific module) to refer
to other modules, and/or invoke specific elements in other modules (using, respectively,
so-called module reference, and away nodes). An away goal (context, or solution) in one
module essentially repeats a public goal (context, or evidence item) present in another
module, indicated by a ‘ ’ annotation placed at the top right of the node (e.g., Fig. 1,
goal node G1). Thus, other modules can access (i.e., reference) a public node of a given
type using the corresponding type of away node. Each away node additionally contains
a reference to the module containing the public node (e.g., Fig. 1, away goal node AG1).
As shown, we can link to away goals using both the Is Supported By (Ý) and In Context
Of (_) relations. The former implies claim refinement (i.e., by a public claim in the
referenced module). The latter is a substitution for a justification node, but where more
justification is required than can be provided by a justification node alone, and where
the additional justification is provided in a different module.

GSN also provides a concept of contract module, containing a definition and/or jus-
tification of the relationship between two or more modules, in particular how a claim
in one (or more) module(s) support(s) the argument in the other(s) [4]. As originally
conceived, (argument) contracts were meant to represent relations between goals, con-
text and evidence of modules participating in a composition, and were documented
using contract tables. Currently, the GSN standard provides little guidance to specify
the contents of a contract. However, to integrate and view a contract within a common
framework, the use of GSN itself has been proposed to specify contracts within con-
tract modules [10], [11], which is the convention we will follow here. Thus, we use
intra-module GSN to specify a contract, although away goals have a slightly different
interpretation: as the link to the modules accessing the contract (see Fig. 3 for an ex-
ample), in addition to a contextual use, i.e., to provide justification in the contract as
appropriate.

1 Assurance and Safety Case Environment, available at: http://www.adelard.com/asce/

Towards a Formal Basis for Modular Safety Cases 3

Fig. 1. Intra-module GSN

C2

C1

C4

C3

SS2 SS1

SS3

IN1

IN2

OUT1 OUT2 OUT3

S

SW2

SW1

SW3

F2 F1

B

Fig. 2. Motivating example system.

When an argument is supported in an, as yet, unspecified module but the contract of
support is available in a contract module, we show the reference to that contract using
a contract module reference node (e.g., Fig. 1, node MC1). When the contract itself
is unspecified, we use the ‘to be supported by contract’ () annotation (e.g., Fig. 1,
goal node G2). This annotation is analogous to, and mutually exclusive with, the ‘to be
developed’ (tbd) annotation (3) in non-modular GSN.

Effectively, we use inter-module GSN to specify a module view that shows modules
and their relationships. We can link modules to a) other modules, using the Ý and/or
_ links, and b) contract modules, using the Ý link. The contract module explicates
the support relationship between the modules to which it is linked. In this paper, we
primarily focus on intra-module GSN, deferring inter-module GSN to future work.

3 Motivating Example

We present an example to illustrate some of the ambiguities that arise when using the
currently available guidance on modular structuring of GSN arguments [4]. Consider a
system S comprising subsystems SS1, SS2, and SS3 communicating over a bus B, and
providing the functions F1 and F2 by processing inputs IN1 and IN2 (Fig. 2). Subsys-
tems SS1 and SS2 contain the components (C1, C2), and (C3, C4) respectively. The
software operating on system S uses software components SW1, SW2, and SW3, de-
ployed such they require the subsystem components (C1, C3), (C2, C4), and (C3, C4)
respectively. The hazard analysis for system S indicates that there are three hazards H1,
H2, and H3, to be managed for assuring system safety. In particular, it is determined
that the function F1 and subsystem SS3 contribute to hazard H1. The system S can
represent, for example, an idealized and abstract integrated modular avionics (IMA)
system, where different software applications of varying safety-criticality operate on a
number of COTS computing modules connected by a real-time computer network.

Fig. 3 shows a possible modular organization of argument structure fragments ad-
dressing different assurance concerns for system S, together with the module hierarchy,
and module contents. As shown, the module system-argument contains (a fragment of)
a hazard mitigation argument (labeled SHMA) asserting the mitigation of the identi-
fied hazards. Here, we develop the claim of mitigating hazard H1 (goal node G2) into a

4 E. Denney and G. Pai

Argument Module system-argument

Argument Module SW2

Argument Module SW

Contract Module MC1

Argument Module C2

Module hierarchy and contents
-  Argument module: system-argument

•  System hazard mitigation argument: SHMA
•  Argument module: M1

-  Argument module: C2
•  Component C2 contribution argument: C2CA

-  Contract module: MC1
•  Component to subsystem contribution argument: CSCA

-  Argument module: SW
•  Software fitness argument: SFA
•  Argument module: SW1
•  Argument module: SW3

-  Argument module: SW2
•  Software component SW2 fitness argument: SW2FA

Argument Module
M1

Argument
Module SW3

System hazard
mitigation argument:
SHMA

Software fitness
argument: SFA

SW2 fitness
argument : SW2FA

C2 contribution
argument (C2CA)

Argument
Module SW1

Component to Subsystem
Contribution Argument : CSCA

Fig. 3. Possible modularization of (fragments of) argument structures addressing dif-
ferent assurance concerns for the system S of Fig. 2. Note that module boundaries,
cross-module linking, and containment, are only illustrative and not part of GSN.

claim that the contribution of the system function F1 to hazard H1 is acceptable (goal
node G5). To support that claim, we assert that i) the software that provides function
F1, i.e., those portions of the software components SW1 and SW2 operating on SS1, is
acceptable and operates as required, and ii) the contribution of subsystem SS1 (to the
function F1) is acceptable. In Fig. 3, we have shown those sub-claims as away goals
(nodes G9 and G10), and as a public goal (node G8) that refer, respectively, to the
supporting argument modules SW1, SW2 and the contract module MC1. The latter, in
particular, is the interface to the argument modules providing assurance that the fail-
ure behavior of the components of SS1 is acceptable, e.g., module C2. The argument
module SW contains a software fitness argument (labeled SFA), which asserts that the
software components of the system behave as required.

Towards a Formal Basis for Modular Safety Cases 5

This argument is itself modular, with references to other modules that contain argu-
ments assuring the fitness of the individual software components: namely, SW1 and
SW3 (shown as sub-modules contained within SW), and SW2 (shown as a sibling of
SW). Assuring software fitness may be required independently of assuring hazard mi-
tigation, although, as shown in Fig. 3, the latter depends on elements of the former. In
particular, in argument SHMA, the away goal node G10 in the module system-argument
invokes the public goal (i.e., node G3) in module SW2.

Whilst creating such modular arguments, we found the GSN standard and the lit-
erature on practical usage of modular arguments, e.g., [10], [11] to be unclear on the
characteristics of well-formed modular arguments, and a number of specific questions
arose: (1) Is it permissible to include the module SW2 within the module SW, similar
to modules SW1 and SW3? In general, what is the scope of public argument elements?
(2) Can elements of the module SW, e.g., SFA, refer to elements of the module system-
argument, e.g., SHMA, thus resulting in cyclic links between the two modules, and
potentially in the overall argument? In general, what constraints apply across module
boundaries? (3) If properties of the components of subsystem SS1 are known, can the
hazard mitigation argument SHMA in the module system-argument additionally de-
velop the claim in goal node G8? In general, can a claim be supported by multiple con-
tracts, or can a claim be supported by both a contract and a local argument? (4) What
are the valid elements of a contract argument represented using GSN, e.g., as proposed
in [10]? In general, is a contract argument subject to the same constraints as any other
(modular/non-modular and non-contract) argument structure? (5) What are the valid
properties of the nodes specified with modular GSN, e.g., can away goals be undevel-
oped (i.e., annotated with 3), as shown in Fig. 3? (6) Supposing module SW contained
module SW2, but the latter offered no public goals (like module SW1), is it meaningful
to construct and invoke a single contract (referencing the module SW), from multiple
goal nodes of the hazard mitigation argument (containing different claims about the
software)? In general, is it permissible for multiple claims in one (or more) module(s)
to invoke a common contract? Towards addressing these issues, next (Section 4) we
give rigorous definitions for modular GSN extensions, in particular intra-module GSN.

4 Formalization

First, we recall the (non-modular) definition of argument structure [6], [7] (Definition 1),
which we will extend to formalize the notion of a single modular argument structure,
i.e., an individual diagram, to account for intra-module GSN (Definition 2). Then, we
define contracts (Definition 3). Subsequently, we will extend the formalization to inter-
connected collections of modules, clarifying containment (Definition 4), and scope
(Definition 5). Thereafter, we will define the characteristics of a well-formed module
hierarchy (Definition 6). Note that Definitions 2, 5 and 6 work together: Definition 2
gives structure on individual modules; Definition 5 gives the permissible and required
connections between arguments, and Definition 6 gives additional constraints that must
hold between linked arguments.

Definition 1 (Argument Structure). An argument structure S is a tuple 〈N, l,→〉
comprising: a set of nodes N ; a family of labeling functions lX , where X ∈ {t, d,m, s},

6 E. Denney and G. Pai

giving the node fields type, description, metadata (i.e., attributes), and status; and →
is the connector relation between nodes. Let {g, s, e, a, j, c} be the node types goal,
strategy, evidence, assumption, justification, and context respectively. Then, lt : N →
{g, s, e, a, j, c} gives node types, ld : N → string gives node descriptions, lm : N →
P(A) (where A is an attribute set) gives node instance attributes, and ls : N →
P({tbd}) gives node development status. We define the transitive closure,→∗: 〈N,N〉,
in the usual way, and require the connector relation to form a finite forest with the
operation root(→, r) checking if the node r is a root of the forest. Furthermore, the
following structural conditions must be met:
1. root(→, r)⇒ lt(r) = g, i.e., each root of the argument structure is a goal;
2. n→ m⇒ lt(n) ∈ {s, g}, i.e., connectors only leave strategies or goals;
3. (n→ m) ∧ [lt(n) = g]⇒ lt(m) ∈ {s, e, a, j, c}, i.e., goals do not connect to other

goals;
4. (n → m) ∧ [lt(n) = s] ⇒ lt(m) ∈ {g, a, j, c}, i.e., strategies do not connect to

other strategies or evidence;
5. tbd ∈ ls(n)⇒ lt(n) ∈ {g, s}, i.e., only goals and strategies can be undeveloped.

Definition 1 gives a strict notion of argument—i.e., a tree, rather than a directed
acyclic graph (DAG)—where separate goals cannot share evidence, and goals require
intermediate strategies. Both these conditions, which are often violated in practice, can
be captured by a more relaxed definition (not given here). Now, let mr , and cr , be
two additional node types, denoting module reference and contract module reference
respectively, in addition to the node types given in Definition 1.

Definition 2 (Modular Argument Structure). A modular argument structure, (or mod-
ule, for short), M , is a tuple 〈N, l, t, d,→〉, where N and→ are as in Definition 1; d
is a module description string. Again, as in Definition 1, l is the same family of func-
tions where lt : N → {s, g, e, a, j, c,mr , cr} gives node types; ld : N → string gives
node descriptions; and lm : N → P(A) gives node instance attributes. ls : N →
P({tbd , tbsbc, public, away , contextual}) gives node status, i.e., whether a node is,
respectively, ‘to be developed’, ‘to be supported by contract’, declared public, referenc-
ing an away node, or ‘used in context’. t is a family of functions that gives the target
of the nodes referencing other modules: for module reference, x, tr(x) gives the target
module, and for an away node, ta(x) gives the pair of module and public node. Let
Im and In be sets of identifiers (IDs) distinct from N , representing modules (and con-
tracts; see Definition 3) and nodes external to M . Then, we have the maps ta : {n ∈
N | away ∈ ls(n)} → Im × In , and tr : {n ∈ N | lt(n) ∈ {mr , cr}} → Im.
We require individual modular argument structures to form forests. Additionally, the
following structural conditions2 must be met:
1. The conditions in items 1, 2, 4, and 5 of Definition 1 hold;
2. Only goal, evidence, and context nodes can be marked as public or away nodes:

public, away ∈ ls(n)⇒ lt(n) ∈ {g, e, c};
3. Only goals are marked as to be supported by contract: tbsbc ∈ ls(n)⇒ lt(n) = g;
4. Nodes cannot be both public and away: @n ∈ N . {public, away} ⊆ ls(n);

2 To save space, we consider free variables to be implicitly universally quantified.

Towards a Formal Basis for Modular Safety Cases 7

5. Nodes with status tbd and tbsbc are mutually exclusive: @n ∈ N . {tbsbc, tbd} ⊆
ls(n);

6. Goals with status away or tbsbc, and (contract) module references have no outgoing
links: away ∈ ls(n) or tbsbc ∈ ls(n) or lt(n) ∈ {mr , cr} ⇒ @m ∈ N .n→ m;

7. contextual ∈ ls(n)⇒ ([away ∈ ls(n)∧ lt(n) = g]∨ lt(n) = mr)∧∃m ∈ N.m→
n, i.e., contextual nodes are away goals or module references, and are link targets;

8. n → m ∧ lt(n) = lt(m) = g ⇒ contextual ∈ ls(m), i.e., goal-to-goal links are
contextual;

9. Goals supported by contract module references must be public, with no other out-
links: n→ m∧ lt(n) = g∧ lt(m) = cr ⇒ (public ∈ ls(n)∧n→ m′ ⇒ m = m′).

The standard permits away goals and module references to be linked to by both Ý
and _ relations, whereas contract module references can only be linked to using the
Ý relation (e.g., see Fig. 3). Since our definition contains a single connector relation
→ where we derive the link type from the types of source/target nodes, we introduce
an additional status ‘contextual’ to represent the situation when goals or module refer-
ences are used contextually. As in Definition 1, we require individual modular argument
structures to form forests. However, whereas a non-modular argument is expected to be
a tree eventually (with a single top-level claim), a completed modular argument can
naturally consist of several trees (see Fig. 3). Also, note that all nodes have unique
IDs, including away goals and the public goals that they reference. The forest condition
rules out cycles in the non-modular equivalent of modular arguments (see Fig. 5) and
multiple parents (i.e., DAGs). This, and the condition of item 8, reflect the strict notion
of argument in Definition 1. Later (Definition 5), we will give a condition to constrain
inter-module cycles. The standard implies that module references cannot have status
tbd , since an undeveloped goal and a goal supported by a module reference are alter-
native ways of stating that “support (for the claim) is (yet) to be provided”. However,
from an implementation standpoint, it seems reasonable to have a user preference that
a tbd status on module references be derived from the corresponding module body; we
therefore do not prevent tbd status on nodes of type mr .

As mentioned earlier, we consider contracts to be represented also using GSN. The
simplest form of a contract specified using GSN contains i) an away goal referencing
a public goal in the consumer (or source) module—i.e., the module that invokes the
contract—which is ii) developed using an appropriate strategy into iii) one or more
module references to, or away goals that reference public goals in, the provider (or tar-
get) module(s)—i.e., the module(s) that are the target of the contract (e.g., see contract
module MC1, in Fig. 3, for an example). In a contract, we term the away goals referring
to consumer modules as the in–nodes, whereas the out–nodes of the contract are the
away goals, contexts, solutions and module references that refer to provider modules.

Formally, if lt(n) = g, away ∈ ls(n),¬leaf(→, n), and ∀n′ . [leaf(→, n′) ⇒
n →∗ n′], then the node n is an in–node, in(n). Similarly, it is an out–node, out(n),
if leaf(→, n) and (lt(n) = mr ∨ away ∈ ls(n)). We give the target module of a
node x as tmod(x) = M , if lt(x) ∈ {g, c, e}, away ∈ ls(x), and ta(x) = 〈M, 〉, or
lt(x) = mr and tr(x) = M . Here, note that the notions of in– and out–node are defined
on a single module diagram, and do not depend on the connections to other modules
(which we characterize later in Definition 5, when we define module scope).

8 E. Denney and G. Pai

Next, we formalize contracts.

Definition 3 (Contractual Argument Structure). A contractual argument structure
(contract, for short) C, is a tuple 〈N, l, d, t,→〉 that satisfies the same conditions as
Definition 2, with the exception of condition (6) for away goals. That is, away goals are
allowed to have outgoing links. The following additional conditions hold:
1. There exists at least one in–node (i.e., a non-leaf away node above all leaf nodes):
∃n ∈ N . in(n);

2. leaf(n) ⇒ lt(n) 6∈ {s, cr} ∧ [lt(n) = g ⇒ away ∈ ls(n)], i.e., each leaf node is
either an away goal, a module reference, an evidence node, or a contextual element
(context, assumption, or justification node). Hence, out–nodes will either be away
nodes (goals, contexts, evidence), or module references;

3. There exists at least one out–node: ∃n ∈ N . out(n);
4. Nodes cannot be public: public 6∈ ls(n);
5. All away nodes are either in– or out–nodes: away ∈ ls(n)⇒ in(n) ∨ out(n).

From Definition 3, we observe the following: first, since contracts do not satisfy
item 6 of Definition 2, formally they are not modules. Informally, though, we can think
of them as a special kind of module, and will write ‘(non-)contract module’ when the
difference needs emphasis. Next, item 2 permits local, i.e., non-away, evidence3, and
not all branches need have out–node leaves; hence we also require the condition of
item 3. It is a matter of interpretation that non-leaf away nodes can be only in–nodes.
This, combined with item 2 implies that in–nodes must be above out–nodes and, in par-
ticular, that a node cannot be both an in–node and an out–node. Additionally, since the
intended role of a contract is to provide an interface between the assertions of provider
modules and the guarantee(s) required by consumer modules, it seems reasonable to
constrain the way in which the contract is accessed. Thus, by prohibiting public nodes,
i.e., item 4, we preclude access to those elements of the contract, that are not in–nodes.
For the same reason, in–nodes are necessarily above all out–nodes. So also, the latter
must be necessarily leaves since the premises of a contract are developed externally by
provider modules, rather than internally to a contract. However, note that item 5 does
not restrict an out–node from being used contextually. Fig. 4 illustrates some of the
variety in contractual argument structures, arising from the conditions of Definition 3.

Our definition does not excessively constrain the type of GSN structures that may
be used to specify a contract. Thus, we allow additional internal nodes, e.g., we do
not require the root to be an away goal, although children of out–nodes are prohibited
(Fig. 4a). We also permit contracts to contain multiple in–nodes, e.g., a chain of in–
nodes (Fig. 4c), so that the away goals are still linked to consumer modules (also see
Definition 5). Fig. 4 additionally shows some of the permissible links to/from module
contracts, which we will clarify when we formalize module scope (Definition 5).

Given a set of modular/contractual argument structures, intuitively, we can logically
collect and organize them according to (domain-)specific concerns, which gives rise to
containers for the collections (e.g., SW and SW2 in Fig. 3) and a hierarchy (e.g., see
Fig. 3, bottom right).

3 The rationale is to directly resolve auxiliary subgoals internal to the contract, without needing
to create an additional, external module.

Towards a Formal Basis for Modular Safety Cases 9

M0

MC1

M2 M1

(a) Consumer module M0 invoking a non-root
in–node in contract module MC1, linking to a
non-root public goal in provider module M1.

M0

M2

M1

MC1

M3

(b) Common (root in–node in) contract module
MC1 invoked from multiple consumer modules
M0 and M1.

M2

M0

M1

MC1

(c) Different argument legs in consumer mod-
ule M0 (different claims) invoking different in–
nodes of the same contract module MC1.

M2

M0

M1

MC1

(d) Different argument legs in consumer mod-
ule M0 (different claims) invoking common
root in–node in same contract module MC1.

Fig. 4. Examples of constraints on contract modules showing internal/external links.

Definition 4 (Module Hierarchy). A module hierarchy,H, is a tuple 〈Im, Ia, Ic,A, C,
Ma,Mc, <〉, comprising distinct sets of module container IDs, Im; modular argument
IDs, Ia; contractual argument IDs, Ic; modular arguments,A; contractual arguments,
C; and mappingsMa : Ia → A, andMc : Ic → C, along with a forest 〈I, <〉, where
I = Ia ∪ Ic ∪ Im, such that i ∈ Ia ∪ Ic ⇒ leaf(<, i), and root(<, i)⇒ i ∈ Im.

The forest represents the containment relation between modules, for which there
need be no single top-level module. For convenience, we will abuse notation and write
M = 〈N, . . .〉 when we meanMa(M) = 〈N, . . .〉, and n ∈M rather than n ∈ N .

10 E. Denney and G. Pai

M0

M2

M1

(a) Permitted cyclic links not inducing a loop

M1

MC1

M2

(b) Illegal modularization
inducing a loop

Fig. 5. Examples of constraints on cyclic links between modules.

A module hierarchy represents a snapshot of a possibly incomplete collection of
safety arguments under development and, thus, although arguments must be leaves (and
within a container), we do not require all leaves to be arguments. That is, during de-
velopment, we allow a module leaf (with no argument within). We also allow a tree
with a single node, i.e., an empty module. Since Definition 4 allows forests, we allow
multiple arguments in a single module, and multiple argument fragments (with distinct
roots) in a single argument. We will use module to refer to both modular arguments and
contracts, as well as their containers, when the distinction is not significant. Next, we
formalize what it means for the links given by away nodes and module/contract module
references to exist in the appropriate location in a module hierarchy. First, write x 99K y
when x and y are in separate modules and there is a reference link from x to y, i.e., x is
an away node pointing to public node y. We extend 99K from nodes to modules so that
M1 99K M2 when there exist nodes m1 ∈ M1 and m2 ∈ M2 such that m1 99K m2 or
tmod(m1) = M2 (which we can write as m1 99K M2). We write x � y when there
exists a z such that x 99K z →∗ y.

Definition 5 (Well-scoped Module Hierarchy). A module hierarchy,H = 〈Im, Ia, Ic,
A, C,Ma,Mc, <〉, is well-scoped if the following conditions hold:
1. For every away node in every non-contract module there is a corresponding public

node in a separate non-contract module: ∀n1 ∈ M1 . away ∈ ls(n1) ⇒ ∃M2 ∈
Ia,m2 ∈M2 . public ∈ ls(m2) ∧ tr(n1) = 〈M2,m2〉;

2. For every module (contract module) reference, the corresponding appropriate type
of module (contract module) exists, and is distinct from any of its container modules:
n ∈ M, lt(n) = mr ∧ tr(n) = M ′ ⇒ M ′ ∈ Im ∧M � M ′; and n ∈ M, lt(n) =
cr ∧ tr(n) = M ′ ⇒M ′ ∈ Ic ∧M �M ′;

3. If a goal node is supported by a contract module reference to a contract C, then the
goal is a public node, and it corresponds to a non-leaf away node (i.e., an in–node)

Towards a Formal Basis for Modular Safety Cases 11

in C: lt(n) = g ∧ lt(c) = cr ∧ n → c, tr(c) = C ⇒ public ∈ ls(n) ∧ ∃k ∈
C . away ∈ ls(k) ∧ ta(n) = 〈C, k〉;

4. Anti-cycle condition: If n1 →∗1 m1 in argument module M1 and n2 �∗ n1 and
m1 �∗ m2, then m2 6→∗2 n2 in argument module M2;

5. Scope: Inter-module links respect the module hierarchy, i.e., if M1 99K M2 then
either M1 and M2 are siblings or M2 is a child of M1: ∃M3 ∈ Ia .M1,M2 < M3

or M2 < M1;
Additionally, for every contract, C, the following conditions hold:
6. Out–nodes link to separate argument trees (which can be in the same module4), i.e.,

out(n) ∧ out(n′) ∧ ta(n) = 〈M, g〉 ∧ ta(n
′) = 〈M ′, g′〉 ⇒ @m.m →∗ g, g′; and

ta(n) = 〈M, 〉 ∧ tr(n
′) = M ′ ∧ tr(n

′′) = M ′′ ⇒ (M 6= M ′ ∧M ′ 6= M ′′);
7. In– and out–nodes link to different modules: in(x)∧out(y)⇒ tmod(x) 6= tmod(y);
8. At least one in–node is linked to a source: ∃n ∈ C . in(n) ∧ ∃m ∈ Ma . public ∈

ls(m) ∧ n 99K m;
9. All out–nodes are linked to targets. Thus, if a leaf is an away node5 then there exists

a linked public node in the corresponding module6: ∀n ∈ C . away ∈ ls(n) ⇒
∃m ∈Ma . public ∈ ls(m) ∧ n 99K m.

From Definition 5, our notion of scope (item 5) is that modules should only access
those nodes of their siblings declared to be public, but not their siblings’ children mod-
ules nor their own grandchildren7 based on the principle that to access a public node of
a child module, the parent must itself use and then redeclare that node. Well-scoping
forces the external sets of IDs in Definition 2 (i.e., Im and In) to be drawn appropri-
ately from within the module hierarchy. Although we permit cycles between modules
(Fig. 5a), we need to prevent cycles in the underlying ‘unfolded’ argument; thus, it is
not sufficient to state the anti-cycle condition (item 4) for pairs of modules, i.e., we
must consider arbitrary length chains. (Fig. 5b illustrates the underlying rationale).

Note that items 6–9 apply to contracts; thus, although item 1 seems to cover item 9,
the former applies to non-contract modules. The intuition underlying the latter is that a
contract may provide support to multiple consumer modules, e.g., via reuse. Thus, we
permit an in–node to be invoked by multiple consumer modules (Fig. 4b), as well as
by multiple claims in the same consumer module (Fig. 4d). This is useful in a scenario
where a common contract provides support for multiple arguments, or for a claim that
appears in related argument legs. Consequently, we require all out–nodes to be linked to
provider modules, but not all in–nodes need be linked. Also, item 1 precludes referring
to public nodes in a contract, by definition (Definition 3, item 4).

Items 8 and 9 prohibit nested contracts or references to other contracts, primarily
to simplify formalization. In general, away nodes never point into a contract; rather,
the in– and out–nodes (goals) of a contract refer out to the corresponding public goals

4 Recall that (modular) argument structures are forests.
5 Module references are handled by item 2 of Definition 5.
6 Note that the public goal node need not be the root of module M (Fig. 4a).
7 A possible relaxation of this condition would be that modules can access child modules of sib-

lings, i.e., inH, the module containing the target of an away node is ≤ the module containing
the source node. Another possible relaxation is to allow a module access to its grandchildren.
However, these alternatives limit the benefits of encapsulation.

12 E. Denney and G. Pai

of the provider and consumer modules respectively. However, note that for contracts
(Fig. 4) the Ý link between an away in–node of a contract and its referenced public leaf
goal in the provider module points in the opposite direction.

Finally, we can define when a hierarchy is well-formed.

Definition 6 (Well-formed Hierarchy). A well-scoped module hierarchy,H, is a well-
formed hierarchy if:
1. The properties of away–public node pairs are related, i.e., type and description are

equal, status is equal for tbd and tbsbc (which can only apply to goals), while meta-
data of the away node are a superset of those of the public nodes: for each mod-
ule/contract module M = 〈N, l, t, d,→〉 ∈ M ∪ C ∈ H, M ′ = 〈N ′, l′, t′, d′,→′〉,
n ∈ N , and ta(n) = 〈M ′, n′〉—i.e., n is an away node, n′ is a public node—(and
M , M ′ do not violate Definition 5), we have lt(n) = l′t(n

′), ld(n) = l′d(n
′), lm(n) ⊆

l′m(n′), ls(n) ∩ {tbd , tbsbc} = l′s(n
′) ∩ {tbd , tbsbc}, and n′ ∈M ′,M 6= M ′;

2. Module/contract module reference descriptions equal those of the provider mod-
ule/contract module (due to well-scoping, Definition 5, the diagram types are cor-
rect): if tr(n) = M = 〈N, l, t, d,→〉 then ld(n) = d, and lt(n) = mr ⇒ M ∈ Ia
and lt(n) = cr ⇒M ∈ Ic.

Formally, away nodes also have a description, metadata, and tbd status, but not in-
dependently of the public goal node. Specifically, the description, and tbd /tbsbc status
are the same as that of the public goal node. Moreover, the away node inherits the meta-
data of the public node, although we allow it to have additional attributes. Similarly, the
description of a module/contract module reference is the same as that of the target mod-
ule/contract module. The rationale for allowing additional metadata for away, module
reference and contract module reference nodes, is that they are private to a module. A
module user may augment such nodes with additional semantic information, local to
the containing module, and specific to a user perspective and/or the context of usage,
beyond what has been added to the target node (e.g., the intended use of the module, or
other intellectual property). Alternatively, since the target of an away node is public, a
reasonable assumption is that its metadata is also public and, therefore, inherited.

5 Discussion

Based on our formalization for modular arguments we now have a rigorous basis to
distinguish modularity from hierarchy [12] in safety arguments. Informally, however,
hierarchy can be considered as a vertical abstraction of structure, whereas modularity is
useful when a horizontal abstraction is required (although it can be applied in both di-
mensions). We can now respond to the questions posed in Section 3 (in the same order):
(1) In general, Definition 5, item 5, clarifies the scope of public nodes in a modular ar-
gument. In particular, in Fig. 3, we disallow module SW from containing module SW2,
as it violates scope. Accordingly, module SW1 also ought not to be contained in module
SW. If such containment is required, the away goals of the argument SHMA, in module
system-argument, should be replaced with equivalent public goals that either reference
a contract offered by module SW, or are marked with status tbsbc; (2) Definition 5 also
provides the constraints on links across module boundaries. In particular, the anti-cycle

Towards a Formal Basis for Modular Safety Cases 13

condition (item 4) allows cycles in modules but prohibits them in the underlying argu-
ments. Thus, elements of the argument SFA in module SW can reference elements of
the argument SHMA in module system-argument, subject to the constraints imposed by
our formal definitions; (3) Definition 2, item 9 prohibits claim support though multiple
contracts, since the presence of a contract module reference from a public goal pre-
cludes any other out links. However, we note that this condition indicates a conflict in
the GSN standard guidance, which does not prohibit goals (in non-modular arguments)
to be both supported directly by evidence, and also by other intermediate goals; (4) In
general, contracts are subject to most of the same constraints as modular arguments
(Definition 2), but must meet the specific constraints given by Definition 3; (5) Defi-
nition 6 clarifies the valid properties of modular GSN nodes. In particular, item 1 of
Definition 6 permits away goals to have a tbd (3) status; (6) Finally, our formalization
permits multiple claims in one module (or multiple modules) to invoke a common con-
tract (Definition 3, Fig. 4), although the invocation of multiple contracts is prohibited
(Definition 2).

6 Concluding Remarks

We have given the elements of a theory for formalizing modular safety arguments that
provides a rigorous basis for tool implementation, and our focus has been mainly intra-
module GSN. The current implementation of modules in our toolset, AdvoCATE [9],
is preliminary and not all checks have yet been implemented. By formally defining
modular arguments, contracts, scope, and well-formedness, we have clarified and made
explicit many structural assumptions that were not previously described in the litera-
ture. We have also developed a theory of modular patterns (omitted here due to space
limitations), which presents numerous design choices and subtleties. Though a lack
of space has precluded our giving a correctness theorem, intuitively, all references are
well-defined in a well-scoped and well-formed module hierarchy. To formalize this, we
can interpret modules as non-modular arguments via a notion of unfolding, capturing
the intuition behind inter-module links as denoting an underlying monolithic argument.

Many of the conditions that required formalization are quite intricate and the pro-
scriptions of the standard often seem ad hoc. A more abstract approach to contracts,
extended with a formal assume/guarantee language would be useful [13]. Various re-
strictions made through our formalization could be relaxed, e.g., nesting contracts and
references to other contracts seems to be reasonable. Our formalization is partly based
on the guidance for modularity in the GSN standard [4] which, itself, is based upon the
work in [2] and [14]. However, in general, the standard only provides limited guidance
on the interconnections between modular arguments, contracts, the related constraints,
and issues of scope. Moreover, it does not address hierarchy in (modular/non-modular)
arguments. Earlier research on modular software safety arguments [11], [15] has ad-
dressed scope and containment, albeit only informally, and is compatible with our for-
malizations (Section 4). Contemporary work on formalizing GSN modules [16] has not
considered issues of well-formedness and scope, nor have (to our knowledge) notation
agnostic meta-models of safety argumentation [8].

14 E. Denney and G. Pai

As future work, we will extend the theory to account for module views, i.e., inter-
module GSN, and their relationship to the underlying modules. We also intend to look at
additional aspects, e.g., how context shared by collaborating modules will be managed,
and the relationship to modularization concepts in other modeling languages such as
Unified Modeling Language (UML), etc. Elsewhere, we developed a notion of argument
query [7] for individual argument structures. Extending this to modules would require
a notion of multi-diagram view, which is another avenue for future work.

Acknowledgement. We thank Jane Fenn (BAE Systems), Ibrahim Habli, and Richard
Hawkins (University of York) for earlier discussions on modular GSN. We also thank
the anonymous reviewers for their helpful comments. This work was supported by the
SASO project of the NASA ARMD Airspace Operations and Safety Program.

References
1. Despotou, G., Kelly, T.: Investigating the Use of Argument Modularity to Optimise Through-

Life System Safety Assurance. In: 3rd IET Intl. Conf. System Safety. (Oct. 2008) pp. 1–6
2. Kelly, T.: Managing Complex Safety Cases. In: Current Issues in Safety-Critical Systems.

Springer London (2003) pp. 99–115
3. Fenn, J., Hawkins, R., Williams, P., Kelly, T., Banner, M., Oakshott, Y.: The Who, Where,

How, Why And When of Modular and Incremental Certification. In: 2nd IET Intl. Conf.
System Safety. (Oct. 2007) pp. 135–140

4. Goal Structuring Notation Working Group: GSN Community Standard v1 (Nov. 2011)
5. Kelly, T., Bates, S.: The Costs, Benefits, and Risks Associated With Pattern-Based and

Modular Safety Case Development. In: Proc. UK MoD Equipment Safety Assurance Symp.
(Oct. 2005)

6. Denney, E., Pai, G.: A Formal Basis for Safety Case Patterns. In: Computer Safety, Relia-
bility and Security (SAFECOMP 2013). LNCS 8153. (2013) pp. 21–32

7. Denney, E., Naylor, D., Pai, G.: Querying Safety Cases. In: Computer Safety, Reliability
and Security (SAFECOMP 2014), LNCS 8666. (Sep. 2014) pp. 294–309

8. Object Management Group: Structured Assurance Case Metamodel (SACM) version 1.0.
Formal/2013-02-01 (Feb. 2013)

9. Denney, E., Pai, G., Pohl, J.: AdvoCATE: An Assurance Case Automation Toolset. In:
SAFECOMP 2012 Workshops. LNCS 7613. (Sep. 2012) pp. 8–21

10. Fenn, J., Hawkins, R., Williams, P., Kelly, T.: Safety Case Composition Using Contracts -
Refinements based on Feedback from an Industrial Case Study. In: Proc. 15th Safety Critical
Systems Symp. (SSS’ 07). (Feb. 2007)

11. Industrial Avionics Working Group: Modular Software Safety Case Process GSN – MSSC
203 Issue 1 (Nov. 2012)

12. Denney, E., Pai, G., Whiteside, I.: Formal Foundations for Hierarchical Safety Cases. In:
Proc. 16th Intl. Symp. High Assurance Sys. Eng. (HASE 2015). (Jan. 2015)

13. Warg, F., Vedder, B., Skoglund, M., Söderberg, A.: SafetyADD: A tool for safety-contract
based design. In: Proc. 25th Intl. Symp. Soft. Rel. Eng. Workshops (ISSREW 2014). (2014)

14. Kelly, T.: Concepts and Principles of Compositional Safety Case Construction. Technical
Report COMSA/2001/1/1, University of York (2001)

15. Industrial Avionics Working Group: Modular Software Safety Case Process Description –
MSSC 201 Issue 1 (Nov. 2012)

16. Matsuno, Y.: A Design and Implementation of an Assurance Case Language. In: 44th Intl.
Conf. Dep. Sys. Networks (DSN 2014). (June 2014) 630–641

	Towards a Formal Basis for Modular Safety Cases

