
Are We There Yet? Determining the Adequacy of
Formalized Requirements and Test Suites ?

Anitha Murugesan1, Michael W. Whalen1, Neha Rungta2, Oksana Tkachuk2,
Suzette Person3, Mats P.E. Heimdahl1, Dongjiang You1

1 Department of Computer Science and Engineering,
University of Minnesota, 200 Union Street, Minneapolis, MN 55455,USA

{anitha,whalen,heimdahl,djyou}@cs.umn.edu
2 NASA Ames Research Center

{neha.s.rungta,oksana.tkachuk}@nasa.gov
3 NASA Langley Research Center
suzette.person@nasa.gov

Abstract. Structural coverage metrics have traditionally categorized code as ei-
ther covered or uncovered. Recent work presents a stronger notion of coverage,
checked coverage, which counts only statements whose execution contributes to
an outcome checked by an oracle. While this notion of coverage addresses the
adequacy of the oracle, for Model-Based Development of safety critical systems,
it is still not enough; we are also interested in how much of the oracle is covered,
and whether the values of program variables are masked when the oracle is evalu-
ated. Such information can help system engineers identify missing requirements
as well as missing test cases. In this work, we combine results from checked
coverage with results from requirements coverage to help provide insight to en-
gineers as to whether the requirements or the test suite need to be improved. We
implement a dynamic backward slicing technique and evaluate it on several sys-
tems developed in Simulink. The results of our preliminary study show that even
for systems with comprehensive test suites and good sets of requirements, our
approach can identify cases where more tests or more requirements are needed to
improve coverage numbers.

1 Introduction

Model-Based Development (MBD) refers to the use of domain-specific modeling no-
tations to create models of a desired system early in the development lifecycle. These
models can be executed on the desktop, analyzed for desired behaviors, and then used
to automatically generate code and test cases. Also known as correct-by-construction
development, the emphasis in model-based development is on the engineering effort
invested in the early lifecycle activities of modeling, simulation, and analysis. This re-
duces development costs by finding defects early in the lifecycle, avoiding rework that
is necessary when errors are discovered during integration testing, and by automating
the late life-cycle activities of coding and test case generation. In this way, Model-
Based Development significantly reduces costs while also improving quality. There are
? This work has been partially supported by NSF grants CNS-0931931 and CNS-1035715.

several commercial MBD tools, including Simulink/Stateflow [19], SCADE [10], IBM
Rhapsody [1] and IBM Rational Statemate [2].

An important part of MBD is automated test generation and execution. Tools such
as Reactis [26], the MathWorks Verification and Validation plug-in for Simulink, and
the IBM Rhapsody Automatic Test Generation add-on, as well as other tools, support
automated test generation from models. These tools enable generation of structural cov-
erage tests up to a high degree of rigor, e.g., tests satisfying the MC/DC coverage metric.
In the domain of critical systems – particularly in avionics – demonstrating structural
coverage is required for certification [27].

In principle, automated test generation represents a success for software engineering
research: a mandatory -- and potentially arduous – engineering task has been automated.
However, several studies have raised questions about the effectiveness of automated
test generation towards a specific structural coverage metric (e.g., [12,14,31]), in some
cases finding these tests less effective than randomly generated tests of the same length
in terms of fault-finding capabilities. This often has to do with the observability capabil-
ities of the test oracle, which determines whether the test passes or fails. In many cases,
the code structure that was examined has no measurable effect on the test outcome.

In recent work, a metric proposed by Schuler and Zeller in [29, 30] addresses ob-
servability, but does so in a post-priori way: given a test suite and a set of requirements
specified as assertions, it uses dynamic backward slicing from the requirements (as-
sertions) to determine the set of program statements that affect the evaluation of the
requirement. They call this metric checked statement coverage, because it only con-
siders the statements that are checked (observed). They note that this metric judges
the quality of the test oracle — a program with no assertions will have no coverage.
Therefore, given any test suite, it is possible to increase coverage by adding additional
oracles (requirements) to the suite. Our hypothesis is that this metric can be leveraged
to better assess the quality of an automated testing process in MBD where formalized
requirements serve as oracles for auto-generated tests [28].

In this work, we combine the results of checked coverage with the results of re-
quirements coverage to determine for a given model whether its requirements and test
suite are adequate. While the work in [30] focuses on whether or not the oracles (re-
quirements) are adequate, we are interested in both the adequacy of the test suite and
the requirements encoded as oracles: if checked coverage is low then either the require-
ments or the tests maybe incomplete. Specifically, we add to this notion of coverage by
calculating checked coverage based on dynamic backward slicing as well as MC/DC
masking information. Finally, we map the different forms of code coverage back to the
model, and report the coverage of the requirements, in order to provide information to
the system engineers about sources of incompleteness. Thus, the contributions of the
paper are:

– An approach using checked, unchecked, and requirements coverage information to
assess the adequacy of both test suites and requirements.

– An approach to calculate checked coverage based on backward dynamic slicing
and MC/DC masking information, which leads to more precise checked coverage
results than dynamic backward slicing alone.

Fig. 1: Hierarchical state machine model of the ALARM subsystem.

– A preliminary evaluation of our technique on a set of examples that use Simulink
as part of the MBD approach. In addition to computing coverage for the auto-
generated code, we also map the results back to the models.

Our experience shows that even for case studies with comprehensive test suites and
good sets of requirements, our approach can identify cases where more tests or more
requirements are needed to improve the coverage numbers.

2 Motivation

Consider the control software for an infusion pump, a medical device that is typically
used to infuse liquid drugs into a patient’s body in a controlled fashion. An important
subsystem of the controller is the ALARM subsystem shown in Fig. 1. The model for
the system [22] was developed using MathWorks Simulink/Stateflow tool [19]. The
“ALARM” subsystem is responsible for monitoring hazards (CheckAlarm state ma-
chine) with different levels of severity in the system, and alerting the clinicians (Audio
and Visual state machines) to take the appropriate action when such conditions occur.
We auto-generate the source code from the Simulink model, formalize the requirements
as boolean expressions, and automatically generate the test cases from the model.

To motivate the utility of our proposed approach we use a snippet of auto-generated
code from the Audio state machine in Fig. 1. The code is shown in Fig. 2. It raises an
aural alert when a certain level of hazard is detected and the audio has not been disabled
by the user. Assume the following oracle encodes a requirement of the system:

Hazard >= 3 ∧Disable Audio = 0 =⇒ Audio Command = 1

Suppose we execute a test case, t, that covers program statements one to seven
in Fig. 2 and the values of the variables used in the oracle are: Hazard := 3 and

1: if(localB->ALARM OUT Hazard >= 3){
2: if(localB->Disable Audio > 1){
3: localB->ALARM OUT Audio Command = 0;
4: localB->ALARM OUT Audio Disabled = 1;
5: if(localDW->time minutes > 3){
6: localB->Disable Audio = 0;
7: }
8: }
9: }else . . .

Fig. 2: Code snippet from the ALARM system’s audio notification functionality.

Disable Audio := 2. The corresponding checked coverage for the test does not contain
the program statement at line 4 in Fig. 2; the Audio Disabled variable defined at line 4
does not either directly or transitively impact the values used in the oracle. This example
demonstrates that the checked coverage is lower than the set of covered statements.

The notion of checked coverage, however, does not take into account which parts
of the oracle were covered and whether the values of certain program variables
are masked when the oracle is evaluated. The values for variables Hazard := 3
and Disable Audio := 2 cause the antecedent in the requirement (Hazard >=
3 ∧ Disable Audio = 0) to be false; hence, the consequent of the requirement
(Audio Command = 1) is not evaluated. Even though the program statement at line 3
in Fig. 2 writes to the variable Audio Command used in the oracle, the test, t, does not
evaluate Audio Command in the oracle. We can leverage this information to define
a more precise checked coverage measure by marking line 3 in Fig. 2 as unchecked.
In the next section we present an overview of how we measure requirements coverage
along with checked coverage to improve upon the checked coverage measure.

3 Methodology

There are three inputs to our technique: the model of the system being analyzed, a set
of test cases (manual or auto-generated) that exercise the model, and a set of formal-
ized requirements of the model as shown in Fig. 3. The requirements are transformed
into assertions over program variables. We automatically generate the code from the
model and execute the tests on the auto-generated code. The formalized requirements
are used as a slicing criteria for program execution traces generated by the various tests
as shown in Fig. 3. A dynamic backward slice is used to extract the set of program
statements that operate on variables whose values are checked in the assertions. This
is termed as checked coverage while all other executed statements are categorized as
unchecked coverage. In addition to the code coverage we also measure the coverage
of the requirements. Checked, unchecked, and uncovered code coverage are mapped
back to the model to help the system engineers determine incompleteness in the re-
quirements, tests, or the model.

We present an overview of the algorithm to partition coverage into checked cover-
age versus unchecked coverage in Fig. 4. The algorithm takes as input an auto-generated

generate

execute

dynamic backward

slicing

classify

id
en

tify
a
u
g
m

en
t

Formalized RequirementsModel Test Suite

Sliced Code

Execution Trace

Source Code

Model Blocks

Missing

Requirements

 Unchecked

Coverage

 Checked

Coverage

Uncovered

Coverage

co
m

p
a
re

-

-

trace

Fig. 3: Test Case Coverage Classification Approach Overview

program M , the test suite T for exercising the behaviors of the program, and the set of
assertions that encode the formalized requirements. The sets checked and unchecked
are initialized as empty. We run each test, t, in the test suite T on the program and gen-
erate the set of program statements 〈l0, . . . , ln〉 executed by the test. Next, we generate
a dynamic slice of the trace using each assertion a as the slicing criteria. In the case
that a program statement l is in the dynamic slice then it is added to the checked set;
otherwise it is added to the unchecked set.

Dynamic slicing is used to compute the basic form of checked coverage. A dynamic
slice of an execution trace with respect to an assertion extracts the set of program state-
ments in the trace that may impact the evaluation of the assertion. Standard flow anal-
yses are used to generate the slice based on the assertion. Any program statements that
read or write variables used in the assertion, as well as program statements computed
by transitive closure of the reads and writes, are part of the dynamic slice. Suppose,
boolean variables x and y are used in the assertion; all program statements that read
and write program variables that may be used directly or transitively by x and y are
added to the dynamic slice. This notion of checked coverage does not however take into
account which parts of the assertion are covered and whether certain values are masked
when the assertion is evaluated. In the rest of the section we first present how we mea-
sure the coverage of the assertions and then leverage the information to improve the
precision of the checked coverage.

/ ∗ checked := ∅, unchecked := ∅ ∗ /
procedure initialize(M,T,A)
1: for each t ∈ T ∧ a ∈ A do
2: 〈l0, . . . , ln〉 := execute(P, t)
3: for each i ∈ [0, n] do
4: if li ∈ dynamicBackwardSlice(〈l0, . . . , ln〉, a) then
5: checked := checked ∪ {li}
6: else
7: unchecked := unchecked ∪ {li}
8: unchecked := unchecked \ checked

Fig. 4: An algorithm to partition checked and unchecked coverage.

3.1 Coverage of Requirements

In this work we use the Modified Decision/Condition Coverage (MC/DC) metric to
evaluate the assertion coverage for a given test suite. MC/DC is commonly used to
evaluate the coverage of requirements in safety-critical systems. MC/DC coverage of a
requirement encoded as an assertion requires that each condition in the assertion takes
on all possible outcomes at least once and each condition is shown to independently af-
fect the assertion’s outcome. Note that a condition is a boolean expression that contains
no boolean operators. We use the masking form of MC/DC to determine the indepen-
dence of the conditions in the assertion. A condition is masked if changing its value
does not affect the outcome of the assertion. For example, when evaluating assert
x and y, in the case when x is false, the value of y is masked. We need to satisfy
three possible coverage obligations:

1. x ∧ y
2. x ∧ ¬y
3. ¬x ∧ y

In order to check the MC/DC coverage of the assertion x and y, we replace the
assertion inAwith three new assertions synthesized from the expressions shown above.
If there are test cases in T that can satisfy all three assertions, then we report 100%
MC/DC coverage of the assertion. But if only one is satisfied by the test, then we report
33% coverage of the assertion. We believe that measuring the MC/DC coverage of the
requirements for a given test suite enables us to better characterize the quality of the
test suite with respect to a given set of requirements.

3.2 A More Precise Dynamic Backward Slice

We propose a more precise dynamic backward slice that takes into account which parts
of the assertion are covered and whether certain values of program variables are not
used when the assertion is evaluated. We leverage the masking information within an
assertion for a given test to generate a more precise dynamic backward slice. As stated
earlier, a condition is masked if changing its value cannot affect the outcome of a deci-
sion. So in the assertion, x and y, if the value for x is false, the value of y is masked.

In this more precise version of a dynamic slice we first extract the variables in the as-
sertion that are not masked, then get all of the program statements in the execution trace
that impact them. Therefore, instead of computing the slice based on both x and y, we
generate a slice using x alone. Even though there are values of y being written to in the
execution trace, since they are not being used in the evaluation of the assertion, they are
not added to the checked set. We believe this will reduce the size of the checked set and
provide a more precise characterization of parts of the program that are being checked
in the assertions.

3.3 Mapping Back to the Model

In the final phase of our technique, for a given test suite, we report the following to the
system engineers: (i) the precise checked coverage, (ii) the unchecked coverage, (iii)
the uncovered coverage, and the (iv) coverage of the requirements. Note that we map
the coverage of the code onto the model. We believe that these coverage measures help
us bridge the gap between requirements, tests, and the model as discussed in [28]. The
relationship between the various types of coverage can potentially help to determine
the source of incompleteness in either tests, requirements, or the model. Low coverage
of the requirements and high checked coverage could indicate missing functionality
in the model. Low coverage of the requirements coupled with low checked coverage
could be indicative of missing tests and/or missing requirements. Finally, high cover-
age of requirements along with low checked coverage could be indicative of missing
requirements.

4 Evaluation

In this section we describe the evaluation of our approach on three systems. We first
give a brief overview of the example systems, then we describe the experimental set up
followed by the evaluation of the approach on the systems.

4.1 Case Examples

We consider three different systems: a medical device controller, an avionics system
controller and a general appliance controller. Table 1 shows the specifics of the case
examples considered. Following this section, we refer to each system and its test cases
using the ID from the first column in Table 1. The second column gives the number
of auto-generated source lines of code (LOC); column three presents the number of
requirements available for each test suite; column 4 describes the source of the test
suites. The last column shows the number of tests in each test suite.

The first system considered is the ALARM subsystem discussed in Section 2. The
model of the ALARM subsystem was developed as a multi-level hierarchical state ma-
chine using the Mathworks Simulink/Stateflow tool. The source code of this model was
automatically generated using MathWorks Simulink Coder [20]. The system has 18
formally verified [22] safety critical requirements. For testing the ALARM system, we

ID System # LOC # Reqs Test Suite : Source # Tests
ALM 1 ALARM 1950 18 Set 1 : Manual 16
ALM 2 ALARM 1950 18 Set 2 : jKind 106
DCK 1 DOCKING 2240 3 Set 1 : Reactis 32
DCK 2 DOCKING 2240 3 Set 2 : SDV 69
MCR 1 MICROWAVE 537 11 Set 1 : Reactis 39
MCR 2 MICROWAVE 537 11 Set 2 : Reactis 23

Table 1: Case Example Artifacts Synopsis

ID Statement Condition Requirements
ALM 1 43.65% 31.93% 65.71%
ALM 2 95.05% 95.80% 84.84%
DCK 1 39.43% 35.29% 26.66%
DCK 2 77.37% 78.89% 73.32%
MCR 1 79.07% 93.75% 60.86%
MCR 2 87.21% 100.00% 80.42%

Table 2: Case Example’s Test Case Coverage Metrics

created manual test cases using the requirements as a reference and also generated a
test suite with high structural coverage (MC/DC) using the jKind model checker [13].

The second example we consider is a docking approach system. This system spec-
ifies the mechanism for the docking of a space vehicle. This system was also devel-
oped using Mathworks Simulink/Stateflow tool and its source code was generated us-
ing Simulink Coder. A major issue with this system is that even though it is elaborately
modeled, there are only a few requirements specified. Although we know that this sys-
tem lacks a complete set of requirements, our goal was to analyze the adequacy of the
sparse requirements for the test cases. For the Docking example, we generated a ran-
dom test suite using the Reactis tool and another test suite with high structural coverage
using MathWorks Simulink Design Verifier (SDV) [21] .

The third case example is a microwave’s controller system used in our previous
work [28], that was also modeled as hierarchical state machines using the MathWorks
Stateflow notation. The microwave controller implements the usual functions of a reg-
ular microwave. We generated code for the microwave system using the Gryphon Tool
Suite [34]. The advantage with the microwave model is that it has a comprehensive set
of requirements. The test cases for microwave were generated using Reactis.

4.2 Tools and Experiment Set up

We use a combination of commercially available and free open source tools to imple-
ment our approach. As previously mentioned, the test suites and the source code are
generated using various sources and tools in order to generate a variety of artifacts and
determine the efficacy of the different test suites based on our metrics. However, assess-

ing the test suite generation techniques and tools is not the intent of this experiment.
We used the gcov [17] tool to measure the statement and condition coverage of the test
suites. In order to measure coverage of requirements we generate MC/DC obligations
and replace the assertions with these obligations. The total number of obligations that
are satisfied by the test suite are recorded and reported.

To generate dynamic backward slices, we use the Frama-C tool [7], an open source
tool for analysis of C programs. Although Frama-C is primarily a static analysis tool, it
provides the ability to construct dynamic backward slices by embedding the test vector
into the program and using the -slevel slicing option. The Frama-C slicing plugin
provides an implementation of dependence-based backward slicing. The Frama-C slic-
ing plugin requires the slicing criterion to be expressed using ACSL [4], a formal speci-
fication language used for specifying behavioral properties of C source code. The ACSL
notation allows C like syntax for specifying slicing criteria, which makes it straightfor-
ward to specify requirements as logical statements. For example, the slicing criteria for
the ALARM’s oracle described in Section 2 is translated into an expression for slicing
as shown below:

//@slice pragma expr
(!(Hazard >= 3 and Disable_Audio == 1) || (Audio_Command == 0));

The slice is obtained by executing each test case in the test suite and extracting the
dynamic backward slice based on the slicing criterion (requirements). While execut-
ing the test, the execution trace is also obtained. Once all slices and execution traces
are obtained, the slices are compared with the execution trace to identify the checked
and unchecked covered lines of code. Similarly by comparing the source code and the
execution trace, the uncovered lines of code are obtained.

4.3 Analysis of the Results

Table 2 shows the structural and requirements coverage metrics for the artifacts for a
given test suite. The statement and condition coverage for ALM 1 and DCK 1 and the
requirements coverage for DCK 1 is less than 50%. The rest of the coverage numbers
are over 50%. The statement and condition coverage of ALM 2 is slightly above 95%
and the requirements coverage is 84%. Similarly MCR 2 has statement and condition
coverage of 87% and 100% respectively and requirements coverage of 80%. These are
fairly reasonable values for traditional coverage metrics for this set of artifacts.

Table 3 shows the results obtained using the dynamic slicing based approaches. The
first two columns show the checked and unchecked coverage values using the dynamic
backward slicing technique as proposed by [29, 30], whereas the next two columns
show the checked and unchecked coverage values using the more precise dynamic back-
ward slicing approach presented in this paper. The results demonstrate that, overall, the
checked coverage in Table 3 is lower compared to the set of covered statements shown
in Table 2. Recall that the total number of checked statements plus the unchecked state-
ments gives the covered statements. Table 3 shows that the unchecked coverage ranges
from 2.37% for MCR 1 to 41.47% for DCK 2. Using the more precise dynamic slic-
ing technique proposed in this work the checked coverage decreases even further while

Slicing Precise Slicing
ID Checked Unchecked Checked Unchecked Uncovered

ALM 1 36.50% 8.65% 20.01% 23.64% 56.35%
ALM 2 75.44% 19.61% 54.35% 38.70 % 4.95%
DCK 1 23.91% 15.52% 5.49% 33.96% 60.57%
DCK 2 35.63% 41.47% 16.06% 61.31% 22.63%
MCR 1 76.70% 2.37% 56.25% 22.82% 20.93%
MCR 2 73.86 % 13.35% 65.34% 21.87% 12.79%

Table 3: Coverage Metrics Partitioned based on Slicing

ID Covered Requirements Checked Improve, Add
ALM 1 43.65% 65.71% 20.01% test cases, new reqs
ALM 2 95.05% 84.84% 54.35% new reqs
DCK 1 39.43% 26.66% 5.49% all
DCK 2 77.37% 73.32% 16.06% new reqs
MCR 1 79.07% 60.86% 56.25% test cases
MCR 2 87.21% 80.42% 65.34% new reqs

Table 4: Data Summary

the unchecked coverage increases. The MCR 2 artifact has a reasonably high state-
ment coverage of 87.21% as shown in Table 3. coverage In the MCR 1 example, the
checked coverage using the slicing approach decreases from 76.70% in column one to
56.25% in column three of Table 3 when using precise slicing, because the tests are not
able to exercise most variables in the requirements. The low requirements coverage of
60% as shown in Table 2 provides evidence for the same. In MCR 2, however, when
more variables of the requirements are exercised by the test cases (indicated by require-
ments coverage of 80.42%) the decrease in the checked coverage is smaller—73.86%
to 65.34%.

The results for the examples in this section provide evidence towards our hypothesis
that taking into account the part of the requirements or oracle that are covered (not
masked) by the tests can provide us with a stronger notion of structural coverage with
respect to the requirements.

5 Discussion

We summarize the results of the empirical evaluation and provide some recommenda-
tions for improvement based on the data. Table 4 presents the three coverage metrics
(i) covered, (ii) requirements, and (iii) checked, as well as the recommendations for
which artifacts should be further augmented in order to improve the coverage of the
code and the requirements. For example, ALM 1 has reasonable requirements coverage
of 65.71% but fairly low covered program statements (43.65%) and even lower precise
checked coverage (20.01%). Our recommendation is to first augment the test suite with

tests that exercise additional parts of the code, then try to identify missing requirements,
and finally measure the requirements coverage with the augmented test cases. DCK 1
has fairly low coverage values for all metrics, suggesting that all artifacts need to be
improved. This is not surprising since there are only three requirements for the model.
The ALM 2, DCK 2, MCR 2 examples have reasonable statement and requirements
coverage but low precise checked coverage. This suggests that the set of requirements
may be incomplete. MCR 1 also has reasonable statement coverage but the coverage
of existing requirements needs to be improved prior to identifying the missing require-
ments.

switch (ALARM_Functional_DW.is_IsIdleTimeExceeded)
.....
case ALARM_Functional_IN_No:
else if (ALARM_Functional_B.Current_System_Mode == 1)
ALARM_Functional_DW.idletimer = 0;
ALARM_Functional_DW.idletimer++;

...

Fig. 5: Tracing unchecked lines of source code in the ALARM model

We demonstrate using an example of how the coverage information can be used by
system engineers to detect potential causes of missing requirements. The ALARM sys-
tem had 19.6% unchecked coverage (see Table 3). A snippet of code from the unchecked
lines of code is shown in Figure 5. The variables used in these lines are then traced back
to their source blocks in the model, as shown in Figure 5. Using this information, a
system engineer might want to add a requirement that would check if the system has
been IDLE for more than a certain amount of time.

This overall approach can be iteratively applied until we achieve the desired cover-
age metrics. Although achieving 100% for all the coverage criteria is ideal, it may not
be practical. However, we believe that the metrics presented in the paper help identify
the specific inadequacies in the test suite, that can be analyzed by the stakeholders to
determine if and how they should be addressed. In future work, we would like to assess
the fault finding capability improvement by improving these artifacts.

6 Related Work

Our work is built on the checked-coverage work of Schuler and Zeller [29,30], which is
in turn built upon dynamic slicing techniques [15] which follow from Weiser’s original
slicing work [32]. Checked coverage is in the category of observability testing, in which
a metric tries to ensure that the code structure under test can be observed by the oracle.
Often, the oracle is simply the outputs of the system under test. Observability testing
has been a focus in testing of hardware logic circuits. The observability-based code cov-
erage metric (OCCOM) attaches tags to internal states in a circuit and the propagation
of tags is used to predict the actual propagation of errors (corrupted state) [9, 11]. A
variable is tagged when there is a possible change in the value of the variable due to
a fault. The observability coverage can be used to determine whether erroneous effects
that are activated by the inputs can be observed at the outputs.

For software, dynamic taint analysis, or dynamic information flow analysis, marks
and tracks data in a program at runtime in order to determine observability. This tech-
nique has been used in security as well as software testing and debugging [6, 18]. Taint
propagation occurs in both explicit information flow (i.e., data dependencies) and im-
plicit information flow (control dependencies). Although the way in which markings
are combined varies based on the application, the default behavior is to union them [6].
Thus, dynamic taint analysis is conservative and does not consider masking. More ac-
curate techniques for information flow modeling, such as [35], define path conditions
to prove non-interference, that is, the non-observability of a variable or expression on a
particular output. These information flow-based techniques have been used for testing
in a metric called Observable MC/DC [33]; this work is very similar to checked cov-
erage except that markings are forward propagated from observation points towards
an oracle rather than (in checked coverage) back-propagated from the oracle towards
observation points.

Mutation testing [3, 8, 23] is also concerned with quality of both tests and oracles.
In mutation testing, one creates a set of programs that contain some small modification
(mutation) of the original program and determines whether the discrepancy is detected
(killed) by the test suite / oracle pair. Mutation testing suffers somewhat from the prob-
lem of equivalent mutants, which are program modifications that do not change the
observable behavior of the program.

For requirements testing, much of the work has focused on requirements specified
in temporal logic. In [24, 36], a coverage metric called Unique First Cause Coverage
is defined by expanding the MC/DC test metric to formulas involving temporal logic
operators. Similar work involves vacuity checking of temporal logic formulas [5,16,25].
Intuitively, a model M vacuously satisfies property f if a sub-formula φ of f is not
necessary to prove whether or not f is true. Formally, a formula is vacuous if we can
replace φ by any arbitrary formula ψ in f without affecting the validity of f :

M � f ≡ M � f [φ← ψ]

For requirements specified as synchronous observers, the Simulink test generation tool
Reactis and the Mathworks Verification and Validation plug-in for Simulink support
MC/DC generation and coverage measurement over requirements.

7 Conclusion

There are a variety of mechanisms to generate test cases. The two main techniques for
test case generation are (i) manual and (ii) automated test case generation techniques. In
MBD, system engineers often write tests manually in order to cover the requirements as
well as cover program statements. The system engineers study the requirements and try
to determine the constraints on program inputs and their expected outputs on the model
based on the statements in the requirements. This information is used to then create test
inputs and a test oracle, using various techniques. Some operate on formalized require-
ments, some on the model, while others on the code auto-generated from the model. We
can measure the structural coverage of the code when these tests are executed.

The challenge for automatically generated tests is that there is no oracle. Sometimes
even in manually generated tests, defining a precise oracle for a given test is often a dif-
ficult endeavor. When present, system requirements that are either formalized or can
be formalized serve as ideal candidates to be encoded as oracles. Even if the require-
ments are in a natural language such as English but describe the requirements in terms
of the interface of the model, then we can convert these requirements into some formal
notation.

Recent work presents a stronger notion of coverage of checked coverage, compared
to traditional structural values of simply covered and uncovered [29, 30]. It uses dy-
namic backward slicing to count only statements whose execution contributes to an
outcome checked by an oracle. In this work we add precision to the notion of checked
coverage based on combining MC/DC masking information with dynamic backward
slicing. We believe that this information can help system engineers identify missing
requirements as well as missing test cases. The approach presented here allows us to
connect the dots between test cases, requirements, and the model.

We demonstrated our approach using three case examples and also illustrated how
the metrics can be actually used as a closed loop in identifying missing requirements
and improving testing in a model-based approach. As part of future work, we would like
to evaluate the proposed approach on the requirements and tests of the NASA’s Lunar
Atmosphere and Dust Environment Explorer (LADEE) mission.

8 Acknowledgments

This work was performed as part of an internship at NASA Ames Research Center
funded by the Aviation Safety Program. We would like to thank Gregory Gay at Uni-
versity of Minnesota, for helping us measure requirements coverage of test cases.

References

1. IBM Rational Rhapsody. http://www.ibm.com/developerworks/rational/products/rhapsody/,
2014.

2. IBM Rational Statemate. http://www-03.ibm.com/software/products/en/ratistat, 2014.
3. Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. Establishing theoretical minimal

sets of mutants. In Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, Washington, DC, USA, 2014. IEEE Computer Society.

4. Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy,
Virgile Prevosto, and Inria Saclay Île-de france. ACSL: ANSI/ISO C specification language.
2008.

5. Ilan Beer, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh. Efficient detection of vacuity
in ACTL formulas. In Formal Methods in System Design, pages 141–162, 2001.

6. James Clause, Wanchun Li, and Alessandro Orso. Dytan: a generic dynamic taint analysis
framework. In Proceedings of the 2007 Int’l Symposium on Software Testing and Analysis,
pages 196–206, 2007.

7. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c. In Software Engineering and Formal Methods, pages 233–247.
Springer, 2012.

8. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. Computer, 11(4):34–41, April 1978.

9. Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer. An observability-based code cover-
age metric for functional simulation. In Proceedings of the 1996 IEEE/ACM Int’l Conf. on
Computer-Aided Design, pages 418–425, 1996.

10. Esterel-Technologies. SCADE Suite product description. http://www.esterel-
technologies.com/v2/scadeSuiteForSafetyCriticalSoftwareDevelopment/index.html, 2004.

11. Farzan Fallah, Srinivas Devadas, and Kurt Keutzer. OCCOM-efficient computation of
observability-based code coverage metrics for functional verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 20(8):1003–1015, 2001.

12. Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. Does auto-
mated white-box test generation really help software testers? In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013, pages 291–301,
New York, NY, USA, 2013. ACM.

13. Andrew Gacek. JKind - a Java implementation of the KIND model checker.
https://github.com/agacek.

14. Gregory Gay, Matt Staats, Michael W. Whalen, and Mats P. E. Heimdahl. Moving the goal-
posts: Coverage satisfaction is not enough. In Proceedings of the 7th International Workshop
on Search-Based Software Testing, New York, NY, USA, 2014. ACM.

15. B. Korel and J. Laski. Dynamic program slicing. Information Processing Letters, 29(3):155–
163, 1988.

16. O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking. Journal on
Software Tools for Technology Transfer, 4(2), February 2003.

17. GNUGPL License. Gcov: Gnu coverage tool, https:gcc.gnu.org.
18. W. Masri, A. Podgurski, and D. Leon. Detecting and debugging insecure information flows.

In Proceedings of the 15th Int’l Symposium on Software Reliability Engineering, pages 198–
209, 2004.

19. MathWorks Inc. Simulink. http://www.mathworks.com/products/simulink.
20. MathWorks Inc. Simulink Coder. http://www.mathworks.com/products/simulink-coder/.
21. MathWorks Inc. Simulink Design Verifier. http://www.mathworks.com/products/sldesignverifier.
22. Anitha Murugesan, Michael W. Whalen, Sanjai Rayadurgam, and Mats P.E. Heimdahl. Com-

positional verification of a medical device system. In ACM Int’l Conf. on High Integrity
Language Technology (HILT) 2013. ACM, November 2013.

23. A. Jefferson Offutt and Ronald H. Untch. Mutation testing for the new century. chapter Mu-
tation 2000: Uniting the Orthogonal, pages 34–44. Kluwer Academic Publishers, Norwell,
MA, USA, 2001.

24. Charles Pecheur, Franco Raimondi, and Guillaume Brat. A formal analysis of requirements-
based testing. In Proceedings of the eighteenth international symposium on Software testing
and analysis, pages 47–56. ACM, 2009.

25. M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Proceedings of the 14th
Conf. on Computer Aided Design, pages 485–499. Springer-Verlag, 2002.

26. Reactive systems inc. http://www.reactive-systems.com/index.msp.
27. RTCA/DO-178C. Software considerations in airborne systems and equipment certification.
28. Neha Rungta, Oksana Tkachuk, Suzette Person, Jason Biatek, Michael W. Whalen, Joseph

Castle, and Karen Gundy-Burlet. Helping system engineers bridge the peaks. In Proceed-
ings of the 4th International Workshop on Twin Peaks of Requirements and Architecture,
TwinPeaks 2014, pages 9–13, New York, NY, USA, 2014. ACM.

29. David Schuler and Andreas Zeller. Assessing oracle quality with checked coverage. In Pro-
ceedings of the 2011 Fourth IEEE International Conference on Software Testing, Verification
and Validation, ICST ’11, pages 90–99, Washington, DC, USA, 2011. IEEE Computer So-
ciety.

30. David Schuler and Andreas Zeller. Checked coverage: an indicator for oracle quality. Soft-
ware: Testing, Verification and Reliability, 23(7):531–551, November 2013.

31. Matt Staats, Gregory Gay, Michael W Whalen, and Mats P.E. Heimdahl. On the danger of
coverage directed test case generation. In 15th Int’l Conf. on Fundamental Approaches to
Software Engineering (FASE), April 2012.

32. M. Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352–
357, July 1984.

33. Michael Whalen, Gregory Gay, Dongjiang You, Mats PE Heimdahl, and Matt Staats. Ob-
servable modified condition/decision coverage. In Proceedings of the 2013 Int’l Conf. on
Software Engineering. ACM, May 2013.

34. Michael W. Whalen, Darren D. Cofer, Steven P. Miller, Bruce H. Krogh, and Walter Storm.
Integration of formal analysis into a model-based software development process. In Ste-
fan Leue and Pedro Merino, editors, FMICS, volume 4916 of Lecture Notes in Computer
Science, pages 68–84. Springer, 2007.

35. Michael W. Whalen, David A. Greve, and Lucas G. Wagner. Model Checking Information
Flow. Springer-Verlag, Berlin Germany, March 2010.

36. Michael W. Whalen, Ajitha Rajan, and Mats P.E. Heimdahl. Coverage metrics for
requirements-based testing. In Proceedings of Int’l Symposium on Software Testing and
Analysis, pages 25–36. ACM, July 2006.

