
978-1-4799-5380-6/15/$31.00 ©2015 IEEE

1

Software Testbed for Developing and Evaluating Integrated

Autonomous Systems
James Ong, Emilio Remolina,

Axel Prompt
Stottler Henke Associates, Inc.
1670 S. Amphlett Blvd., suite 310

San Mateo, CA 94402
650-931-2700

ong, remolina, aprompt
@stottlerhenke.com

Peter Robinson, Adam Sweet,
David Nishikawa

NASA Ames Research Center
Moffett Field

Mountain View, CA 94035
650-604-5000

 peter.i.robinson, adam.sweet,
david.nishikawa @nasa.gov

Abstract— To implement fault tolerant autonomy in future
space systems, it will be necessary to integrate planning,

adaptive control, and state estimation subsystems. However,

integrating these subsystems is difficult, time-consuming,

and error-prone. This paper describes Intelliface/ADAPT, a

software testbed that helps researchers develop and test

alternative strategies for integrating planning, execution,

and diagnosis subsystems more quickly and easily. The

testbed’s architecture, graphical data displays, and

implementations of the integrated subsystems support easy

plug and play of alternate components to support research

and development in fault-tolerant control of autonomous

vehicles and operations support systems.

Intelliface/ADAPT controls NASA’s Advanced Diagnostics

and Prognostics Testbed (ADAPT), which comprises

batteries, electrical loads (fans, pumps, and lights), relays,

circuit breakers, invertors, and sensors. During plan

execution, an experimentor can inject faults into the ADAPT

testbed by tripping circuit breakers, changing fan speed

settings, and closing valves to restrict fluid flow. The

diagnostic subsystem, based on NASA’s Hybrid Diagnosis

Engine (HyDE), detects and isolates these faults to determine

the new state of the plant, ADAPT. Intelliface/ADAPT then

updates its model of the ADAPT system’s resources and

determines whether the current plan can be executed using

the reduced resources. If not, the planning subsystem

generates a new plan that reschedules tasks, reconfigures

ADAPT, and reassigns the use of ADAPT resources as

needed to work around the fault. The resource model,

planning domain model, and planning goals are expressed

using NASA’s Action Notation Modeling Language

(ANML). Parts of the ANML model are generated

automatically, and other parts are constructed by hand

using the Planning Model Integrated Development

Environment, a visual Eclipse-based IDE that accelerates

ANML model development. Because native ANML planners

are currently under development and not yet sufficiently

capable, the ANML model is translated into the New

Domain Definition Language (NDDL) and sent to NASA’s

EUROPA planning system for plan generation. The adaptive

controller executes the new plan, using augmented,

hierarchical finite state machines to select and sequence

actions based on the state of the ADAPT system. Real-time

sensor data, commands, and plans are displayed in

information-dense arrays of timelines and graphs that zoom

and scroll in unison. A dynamic schematic display uses color

to show the real-time fault state and utilization of the system

components and resources. An execution manager

coordinates the activities of the other subsystems. The

subsystems are integrated using the Internet

Communications Engine (ICE). an object-oriented toolkit
for building distributed applications.

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. MODELING CHALLENGES 2

3. INTEGRATION CHALLENGES 3

4. INTELLIFACE SOFTWARE TESTBED 3

5. RESULTS .. 10

6. FUTURE WORK ... 10

7. SUMMARY ... 11

REFERENCES ... 11

BIOGRAPHY .. 12

ACKNOWLEDGEMENTS 12

1. INTRODUCTION

Fault tolerant autonomy requires the integration of
planning, adaptive control, and state estimation
subsystems. For example, diagnostic systems analyze
sensor readings, commands, and other data to identify
faulty components and their fault states. When a fault
occurs, the planning subsystem must determine whether
the available resources can execute current plans and, if

they cannot, how the plans should be revised.

We developed Intelliface/ADAPT to support research and
development of fault-tolerant autonomous systems, This
software testbed enables rapid development and testing of
alternative strategies for integrating intelligent planning,
execution, and diagnostic subsystems. The testbed’s
architecture, graphical data displays, and implementations
of the integrated subsystems support easy plug and play
of alternate components to support research and

development in robust control of autonomous systems.

2

Intelliface/ADAPT controls the Advanced Diagnostics
and Prognostics Testbed (ADAPT) [1][2] at NASA Ames
Research Center. ADAPT is an electrical system
comprising batteries, electrical loads (lights, fans, and
pumps), invertors, relays, and circuit breakers, wires, and
sensors. ADAPT was originally developed to support
diagnostics research, for this project (open loop system –
no closed loop control). It supported a series of diagnostic
competitions affiliated with the Diagnosis conference

(DX), in 2009 [3], 2010, 2011, and 2013.

For this project, we hypothesized experiments and tasks
to be planned and performed using ADAPT’s lights, fans,
and pumps, sometimes in parallel and sometimes in
sequence. Intelliface/ADAPT detects and diagnoses faults
manually injected into ADAPT, determines the impact of
the fault on the ADAPT system’s capabilities, determines
whether the impaired capabilities affect the system’s
ability to execute the current plan, and, if necessary,
generates a new plan that can be carried out by the
damaged system.

An automated planning system uses heuristic search to
select, configure, and schedule actions that perform tasks
and achieve or maintain desired state conditions requested
by users. It accepts as input a problem statement and a
planning domain model, both expressed in a planning
domain modeling language such as the New Domain
Definition Language (NDDL) [4] or the Action Notation
Modeling Language (ANML) [5]. The problem statement
specifies the expected state of the world during the
planning period, the tasks to be carried out, desired goal
states to be achieved, and additional requirements such as
deadlines for completing tasks or achieving desired states.
The planning domain model specifies the world
knowledge needed by the planner. Some planning
domain languages, including ANML, encode this world
knowledge as a library of actions, their effects on the
world, and the conditions that must be true in order for the
action to be executable. The planner outputs a plan that
specifies actions to be performed, their timing, and the

resources assigned to support each action.

An adaptive controller executes each action in the plan by
selecting and sending a sequence of commands to the

plant. The adaptive controller can use conditional logic to
modify the selection or timing of commands to adjust
how actions are performed in particular situations.
Adaptive control can also monitor state variables during
execution to confirm the successful achievement of target
state conditions or the completion of planned actions. If
execution problems occur, the adaptive controller can
report these problems to a human operator and/or the
automated execution manager. It shares knowledge of the

system with both the planner and state estimator.

The state estimation system estimates the present state of
the plant using the knowledge of the current and prior
timepoints of the world based on its analysis of sensor
data, commands, and other information. State estimation
systems can provide diagnostic functions that analyze
sensor readings, commands, and other data to identify
faulty components and their fault states. A state
estimation system could provide prognostics that estimate
the type and timing of future failures. It could also
estimate when damaged parts of the plant will be repaired

and can resume operations.

2. MODELING CHALLENGES

Determining how best to model resources for planning is
challenging because the model must include those
resources that are directly used by activities as well as
resources required only indirectly. For example, suppose
that a cooling activity requires the operation of a device
such as a pump. One might model the pump, in
combination with the coolant loop, as a resource that
provides a thermal control capability. However, in order
to operate, the pump requires a power resource. To
access this power source, an uninterrupted electrical path
between the power storage and the pumps is needed. In
addition, command and data handling are necessary to
monitor and control the equipment and to configure the
electrical path. Thus, this cooling activity requires a
pump, coolant loop, power source, electrical distribution,
and command and data handling resources. In Figure 1,
each arrow indicates a dependency between a pair of
resources. For example, the pump relies upon power
distribution in order to operate, and power distribution

relies on power storage in order to have power to deliver.

Pump

Command and Data Handling

Power

Distribution

Power

Storage

Power

Storage

Power

Generation

Power

Generation

Figure 1 – Resources Depend Upon Other Resources in Order to Operate

3

Changes in operating rules, system configuration, usage
patterns, and other assumptions can require revisions to
the resource model. For example, some resources may be
so abundant that it is not necessary to reason about how to
allocate its use. However, if the supply of a resource
decreases or if demand increases, a resource that was once
plentiful (and therefore possibly not even modeled) may
become limited, relative to demand. In this case, it would
be necessary to revise the planning domain model, so the
planner can reason about the availability and ensure that

plans allocate their use effectively.

For example, our planning domain model encodes an
operating rule stating that a battery could be connected to
at most one electrical load bank at a time. This rule
exploits the fact that each battery can normally power all
loads in any one load bank. However, this operating rule
might become invalid if electrical loads were added to a
load bank or if the battery’s capacity degraded, so that all
loads in the load bank, in combination, required more
power than the battery could provide. Or, suppose that
only one battery were operational. It might be necessary
to power some of the loads in one load bank and
additional loads in a second load bank. As long as the
total power requirements can be met by the available
battery, it might be desirable to relax the operating rule
and configure the battery to drive some of the loads in
each of the two load banks. However, this relaxation
would require modeling the power consumption of each
load and the power output of each battery to avoid
overloading the battery. The modelling challenge is to
define the union and intersection of knowledge categories
between the planner, scheduler, adaptive controller and

state estimator.

3. INTEGRATION CHALLENGES

Typically, diagnosis, planning, and execution subsystems
use different models of the system, so integration usually
requires translation between models. For example, the
diagnosis function normally identifies physical (e.g.,
hardware) or logical (e.g., data, software) state of all
components, both nominal and off-nominal. It also
models the connectivity between components and the
modes of operation. By contrast, planning and scheduling
systems use resource models that are only as detailed as is
necessary to support the correct selection, scheduling, and
execution of planned actions and are often grounded in

the hardware/logical components. In practice, planning
resources are usually modeled more abstractly and
coarsely than the components identified by the diagnosis
function.

Developing and maintaining these interfaces by hand is
time-consuming and error-prone. The various subsystems
rely upon their respective knowledge bases and data
models, which encode assumptions about the system’s
configuration, state, and operating procedures, sometimes
in subtle ways. Because the diagnosis, planning, and
execution systems use different models, interfaces among
these subsystems must translate between these models, as
shown in Figure 2. Changes in system state, system
configuration, operating rules, and other assumptions can
require revisions to the models and interfaces.
Implementing these revisions can be labor-intensive and
error-prone. Because assumptions that underlie the
modeling decisions are often subtle and implicit, it is easy
to change the models in ways that violate these unstated

assumptions.

4. INTELLIFACE SOFTWARE TESTBED

Figure 3 shows the exchange of data among
Intelliface/ADAPT software modules. The ICE Network
protocol is used to integrate these modules. The following
scenario demonstrates how Intelliface/ADAPT responds
to a fault.

1. Initially, the User submits to the Execution Manager
a file that specifies experiments to be run.

2. The Execution Manager sends a Plan Request to the
Planner. The request comprises two parts: the
planning goals and a description of the current and
projected resource availabilities based on the current

and projected state of the ADAPT system.

3. The Planner combines the planning request with the
static portions of the planning domain model to
create a planning problem, expressed in ANML.
This planning problem is then sent to an automated
planner. The Planner either returns a plan that
satisfies the request, or it reports a planning failure
because it was unable to generate a valid plan that

satisfied the request.

4. The Execution Manager sends the plan to the

Diagnosis

System

System State Vector(s)

Available

Resources

System State

to Available

Resources

Planner

Figure 2 – Translation Between Diagnostic State Vector and Model of Available Resources

4

Adaptive Controller for execution.

5. The Adaptive Controller executes each planned
action by running a finite state machine (FSM) that
sends commands to the Plant. When the start time of
each planned action is reached, the Adaptive
Controller starts the appropriate augmented finite
state machine to execute the action. The Adaptive
Controller can track states and events and perform
actions in parallel by running multiple FSMs

simultaneously,

6. During the execution of each action, the Adaptive
Controller module monitors the estimated state and
uses branching and looping logic to select or tailor
alternate lower-level actions as appropriate. The
Adaptive Controller module notifies the Execution
Manager if it cannot execute a planned action or if it
detected anomalous conditions during execution. For
ADAPT, execution of an action that closes a relay
might check the value of the relay position sensor to
confirm that the relay indeed closed. Commands are
also sent to the State Estimator. This information
enables the State Estimator to compare sensed and
commanded states, so it can detect and diagnose

problems.

7. The Plant (ADAPT) responds to commands received
by the Adaptive Controller by opening/closing relays
to provide power to pumps, lights, and fans. The
Plant continuously outputs data from current, voltage,
flow rate, and other sensors. There are two
configurations of Intelliface/ADAPT. In one

configuration, the Plant is a simulation of the
ADAPT system, implemented using MatLab® [6]
and Simulink® [7]. In the second configuration,
Intelliface/ADAPT controls the physical ADAPT

testbed at NASA Ames Research Center.

8. The User Interface shows the current plan and sensor
data in Gannt charts, timelines, and time-series
graphs.

9. The User can inject one or more faults into the
Simulink simulation of ADAPT or physically on the

ADAPT hardware testbed.

10. The State Estimator estimates the state of the Plant.
Specifically, the State Estimator embeds a diagnostic
reasoning system that diagnoses faults in the physical
ADAPT testbed based on sensor data and commands.
This system was developed by NASA Ames using

the Hybrid Diagnostic Engine (HyDE) [8][9].

11. The Execution Manager revises the resource model
based on the diagnosed fault(s) and compiles a list of
resources believed to have become unavailable. If
there are planned actions that use or will use any of
the impacted resources, the Execution Manager
requests a new plan that avoids using any of the

unavailable resources.

12. The Planner generates a new plan and sends it to the

Execution Manager.

13. The Execution Manager sends the new plan to

Adaptive Controller for execution.

Adaptive Controller (SimBionic)

Plant (ADAPT)

Execution Manager User Interface

(DataMontage)

Generation

Planner

(ANML, EUROPA, PM/IDE)

State Estimator (HyDE)

plan requests plans

plan execution

requests

sensor data

state estimates

(present, future)

status, history

goals

execution status

updates

Figure 3 – Intelliface/ADAPT Architecture

User

(Injects Failure)

5

14. The User Interface shows the new and old plans in a
Gannt chart, so users can compare them.

15. The ICE Data Distribution Layer integrates the
compoenents of Intelliface.

16. ADAPT A/D layer is controlled through LabVIEW®
software [10].

 Plant (ADAPT)

The Advanced Diagnostics and Prognostics Testbed
(ADAPT) [1][2] is an experimental testbed at NASA
Ames Research Center. ADAPT supports research in
automated diagnosis and advanced user interfaces [11] for
system diagnosis and recovery.

ADAPT is an electrical system comprising:

• 3 batteries (labeled BAT1, BAT2, BAT3) displayed
on the left side of the schematic.

• Relays (IDs start with EY) that open or close to
establish electrical paths between batteries and loads.

• Circuit breakers (IDs starts with CB) that are
designed to trip open when excessive current flows,

in order to protect the other components.

• Electrical wires that connect components. They are
drawn in the schematic as lines and are assumed to

never fail.

• Sensors that sense the state of the other components.

• Electrical loads such as fans, pumps, and lights,
grouped into two load banks (labeled Load Bank 1

Figure 4 – Schematic of ADAPT System

6

and Load Bank 2) on the right side of the schematic.

• 2 Invertors (labeled INV1 and INV2) that convert
24V DC power provided by the batteries to 120V AC

power required by the loads.

Each battery is capable of providing power to all of the
loads in a single load bank. Relays can be set to link
either of the two load banks to any of the three batteries.
Because there are three batteries, it is possible to power
both load banks, even when one of the three batteries is
inoperative. Thus, redundant batteries and electrical paths
enable the electrical system to be configured so that loads

can be powered even when faults occur.

Additional relays control whether power is supplied to
individual loads within each load bank. For example, as
shown in Figure 4, relay EY170, circled in red, controls
whether power is supplied to lights LGT400, LGT401,
and LGT402, assuming that power is supplied to Load
Bank 1. Thus, to provide power from battery 1 to these
lights, relays EY141 (oval, green dotted outline), EY160
(oval, blue dashed outline), and EY170 (oval, red solid
outline) must all be closed and operational (not in a fault

state).

NASA developed the ADAPT test bed to support research
in automated diagnosis. From a diagnosis perspective, the
devices were simply loads that needed to be powered by
the electrical distribution system, and how the devices
were used to support tasks was not important. However,
in order to use ADAPT as a testbed for automated
planning, we needed to invent hypothetical activities that
use these devices, as well as constraints on those
activities. Thus, we hypothesized experiments, each
composed of tasks that used the various types of fans,
lights, and pumps in ADAPT. We assumed that load
bank 1 would power devices in room 1, and load bank 2
would power devices in room 2. We invented activities
that use loads in each of the two load banks. For example,
the activity Dim Lighting uses at least 50W of light, and
Bright Lighting uses at least 100W. Minimum Cooling
uses the small fan, Medium Cooling uses the large fan,
and Maximum Cooling uses both fans. Some activities
must be performed in room 1, some must be performed in
room 2, and some can be performed in either room. Each

Crew Task includes one or more activities.

For example, Crew Task A requires simultaneous
execution of Minimum Cooling and Dim Lighting, and
Crew Task B requires simultaneous execution of
Maximum Cooling and Bright Lighting. Experiments are
the largest unit of work and are each composed of an
ordered sequence of crew tasks and activities. A typical
planning goal might specify the performance of several

experiments.

User Interface

The User Interface enables users to send planning goals
and tasks to the Execution Manager. The User Interface

also displays the current plan in a Gannt chart (Figure 5).

 The Gannt Chart display enables users to compare the
previous plan with the current plan after re-planning has
been requested. Each horizontal bar shows the times
when a particular type of action, as specified by an
ANML action definition, is scheduled for execution.
Violet bars represent high-level actions, which
decompose into lower level actions, and light-blue bars
represent lowest-level actions that have no subactions.
The bar colored red represents an action that can no
longer be executed because some of its required resources
are no longer available. Its hierarchical timeline feature
enables users to click on triangular buttons to open or
close timelines. Opening a timeline displays additional
lower-level timelines immediately below that show when

lower-level subactions are scheduled.

In the Color-Coded Schematic Display (Figure 6), blue
rectangles or polygons show resources in use, and red
rectangles or polygons show resources that are
inoperative, according to the State Estimator. Yellow
regions show several resources identified by the State
Estimator in an ambiguous diagnosis as possibly
inoperative. The red circle highlights a component that
has faulted. In this example, relay EY 141 has faulted.
Because the connection resource between battery 1 (upper
left) and load bank 1 (upper right) is inoperative, load

bank 1 is powered by battery 2.

Figure 5 – Intelliface/ADAPT Gannt Chart

 The Graphical Data Display (Figure 7) shows sensor data
and command in an interactive array of graphs and
timelines. You can zoom and scroll within the graphs and
timelines in unison. This display is implemented using
Stottler Henke’s DataMontage™ data visualization

system [12].

Figure 6 – Intelliface/ADAPT Color-Coded Schematic

Highlights Resource Boundaries and Their

System Resource

Models to ANML ANML

Static Models

actions

constraints

fluents

Planning Model IDE

Figure 8 – Intelliface/ADAPT Planning Subsystem

7

) shows sensor data
interactive array of graphs and

n the graphs and
timelines in unison. This display is implemented using

e™ data visualization

Planner

The Action Notation Modeling Language (ANML)
a planning domain modeling language developed at
NASA Ames Research Center. ANML models can
specify fluents that represent the state of
terms of discrete or continuous time
functions. For example, the following
varying function that represents

robot:

fluent Location atLocation(Robot r);

ANML actions assign values to fluents to specify
on world, and they specify required
that refer to these fluents. For example, the following
action specifies the condition that

Figure 7 – Intelliface/ADAPT Graph and Timeline

Display
Coded Schematic

heir Statuses

ANML Plan

Requests

ANML to NDDL

Plans

ANML

Static Models

actions

constraints

fluents
State to ANML

EUROPA Timelines

to Plans

EUROPA

Plan Requests

goals (ANML)

estimated system state

Planning

problems

Intelliface/ADAPT Planning Subsystem

The Action Notation Modeling Language (ANML) [5] is
a planning domain modeling language developed at
NASA Ames Research Center. ANML models can

epresent the state of the world in
discrete or continuous time-varying variables and

For example, the following declares a time-
represents the location of each

fluent Location atLocation(Robot r);

ANML actions assign values to fluents to specify effects
required Boolean conditions
For example, the following

the condition that the battery level must

Intelliface/ADAPT Graph and Timeline

EUROPA Timelines

EUROPA

be > 0 when the action begins to execute.
the action’s execution, an effect is that the battery level is

set to 100.

action recharge(Robot robot) {

 [start] batteryLevel(robot) > 0;
 [end] batteryLevel(robot) := 100;

}

ANML actions have quantitative durations and can
optionally decompose into subactions. For example, the
following action decomposes into two subactions,

calibrate and getImage, which are executed sequentially:

action takeImage(Robot robot, Location

location) {

 duration := 10;
 [all] contains

 ordered(

 calibrateCamera(robot),

 getImage(robot, location));

}

Because ANML is an expressive, high-level planning
language, if was easier to generate ANML models, both
manually and automatically, compared to lower
languages such as the New Domain Definition Language
(NDDL), used by NASA’s EUROPA planner. However,
no planner currently exists that accepts a sufficiently large

Figure 9 –Planning Model Integrated De

8

when the action begins to execute. At the end of
the action’s execution, an effect is that the battery level is

ANML actions have quantitative durations and can
For example, the

following action decomposes into two subactions,

cuted sequentially:

action takeImage(Robot robot, Location

level planning
easier to generate ANML models, both

manually and automatically, compared to lower-level
languages such as the New Domain Definition Language
(NDDL), used by NASA’s EUROPA planner. However,
no planner currently exists that accepts a sufficiently large

subset of ANML as input, so we prototype
NDDL translator, so NDDL models

inputs to the EUROPA planning system.

 We developed an initial ANML model by hand that
specified the static model, comprising actions, constraints,
and fluent declarations, as well as the plan request,
comprising planning goals, resource availabilities, and the
estimated state. We then revised the ANML model so that
some parts of the model could be generated automatically.
Thus, the revised ANML model serve

for two automated code generators

The System Resource Model to
accepts as input a resource model stored in a
Microsoft Excel spreadsheet. This resource model
provides a declarative description of
resource instances, dependencies among resources, and
mutual exclusion constraints that prevent two resources
from being used at the same time
Model is assumed to change only occasionally, so it is
used to create the static portion of the ANML model.
code generator translates the model into ANML

statements.

The State to ANML code generator translates a list of
failed components and their fault modes into ANML

Planning Model Integrated Development Environment Main Window

set of ANML as input, so we prototyped an ANML to
NDDL models could be provided as

planning system.

We developed an initial ANML model by hand that
specified the static model, comprising actions, constraints,

ent declarations, as well as the plan request,
comprising planning goals, resource availabilities, and the
estimated state. We then revised the ANML model so that
some parts of the model could be generated automatically.
Thus, the revised ANML model served as target output

generators.

to ANML code generator
resource model stored in a multi-sheet

. This resource model
provides a declarative description of the resource types,

dependencies among resources, and
mutual exclusion constraints that prevent two resources
rom being used at the same time. The System Resource
Model is assumed to change only occasionally, so it is

atic portion of the ANML model. The
code generator translates the model into ANML

ANML code generator translates a list of
failed components and their fault modes into ANML

velopment Environment Main Window

9

statements that specify the reduced availability of
ADAPT resources. In the current version of
Intelliface/ADAPT, every functional (non-sensor)
component is associated with a resource, and a resource is
assumed to be unavailable if any of its components have

faulted.

The output of the EUROPA software is a collection of
data structures, called timelines, that encode EUROPA’s
model of the planning problem and its solution. The
EUROPA Timelines to Plans module translates the
planning solution encoded in these timelines into a format
that is understood by the Adaptive Controller.

Portions of the ANML model that cannot be generated
automatically are currently created by hand. The
Planning Domain Integrated Development Environment
(PM/IDE) [13] is an Eclipse plug-in and collection of
model visualization tools that accelerates the development

of ANML models.

Adaptive Controller

An adaptive controller executes each action in the plan by
selecting and sending a sequence of commands to the
plant. The adaptive controller can use conditional logic to
modify the selection or sequencing of commands in
response to the state of the system or of the world to
adjust how actions are performed in particular situations.
Adaptive control can also monitor execution to confirm
successful achievement of target state conditions or
completion of planned actions. If problems occur during
execution, the adaptive controller can report these
problems to a human operator and/or automated execution
manager.

The Adaptive Controller is based on Stottler Henke’s
SimBionic® intelligent agent toolkit [14]. SimBionic can
run multiple hierarchical finite state machines in parallel
to execute concurrent planning actions. The graphical
SimBionic editor, shown in Figure 10, enables developers
to quickly specify each finite state machine. Rectangle
nodes can be configured to call Javascript functions or
Java methods to perform actions or assign values to
Simbionic variables. Ovals specify conditions that
determine whether to transition from a rectangle node. If
none of a node’s conditions are true at a clock tick, no
transition occurs, and the conditions are reevaluated at the
next clock tick.

State Estimator

The State Estimation module estimates the present and
future state of the plant and the world based on its
analysis of sensor data, commands, and other information.
State estimation systems can include diagnostic systems
that analyze sensor readings, commands, and other data to
identify faulty components and their fault states.

Diagnostic output can be thought of as a vector in which

each element in the vector specifies the state (nominal or
off-nominal) of each component in the system.
Diagnostic systems identify faulty subsystems and
components in enough detail to enable other processes
(which map state to function) to determine the system’s
reduced functionality and performance, so risks to the
crew, vehicle/habitat, or mission can be identified and
plans can be revised as necessary. In addition, diagnoses
must be sufficiently specific to support restoration of
system functions, although diagnoses are often ambiguous
due to under-instrumented hardware. For example, a
specific diagnosis that identifies a replacable unit is more
helpful for repair than a diagnosis that identifies the

subsystem containing the unit.

The State Estimator’s diagnostic function is provided by a
NASA-developed diagnostic reasoning system that was
implemented using NASA’s Hybrid Diagnostic Engine
(HyDE) [8][9]. HyDE is a model-based diagnosis engine
that uses candidate generation and consistency checking
to diagnose faults in stochastic hybrid systems. A HyDE
model of a system consists of many connected component

models.

An example of a HyDE component model used on
ADAPT is shown in Figure 11. This is a screenshot of the
graphical HyDE modeling tool, and this example is of a
relay component, which shows many of the elements in a
HyDE component model. The defined modes are
represented as circles, and may include nominal and fault
modes. Each mode will have constraints on the
component model variables (in the figure, the input
voltage, the output voltage, and the relay position, shown
as orange squares with a V). The mode’s constraints are
only active in that mode and define the component
behavior in that mode. All allowable transitions between
the modes are defined and shown as arrows between the
circles. The transitions may have guards enabled by
commands to the component (in the figure, the green box
with a squiggle in it), by values of the component’s
variables, or they may be unguarded. The unguarded

Figure 10 – SimBionic Editor

10

transitions are treated as failure transitions by HyDE.
HyDE will perform a diagnosis when it detects that the
constraints in the current mode of any component are no
longer consistent, and it will search for failure transitions
in all components which lead to failure modes in which
the constraints are currently consistent. A longer
description of HyDE and the HyDE diagnostic system

used on ADAPT is given in [9].

5. RESULTS

We implemented two configurations of
Intelliface/ADAPT. The first configuration monitors and
controls a Matlab/Simulink simulation of the ADAPT
testbed, developed by NASA. Faults are injected using the
Matlab/Simulink user interface. The second
configuration monitors and controls the ADAPT hardware
testbed in the ADAPT Lab at NASA Ames Research
Center. Replacing the ADAPT simulation with the
ADAPT hardware testbed was easy because both systems
used the ICE toolkit and common interfaces. The testbed
implements test scenarios in which the system diagnoses
and replans in response to injected failures of fans, lights,

and pumps as described in section 4.

6. FUTURE WORK

The following list describes ways in which

Intelliface/ADAPT could be enhanced:

• Preserve Work Already Performed - When a fault
occurs, part of an experiment may have already been
completed. The current implementation of
Intelliface/ADAPT re-executes each experiment from
the beginning. An enhanced version of
Intelliface/ADAPT could preserve work already

performed. However, this type of enhancement
would require Intelliface/ADAPT to know whether
partially-completed experiments can be safely
resumed after a delay.

• Minimize Changes to the Plan - When a fault occurs,
Intelliface/ADAPT currently generates a new plan
from scratch. When re-planning, it is sometimes

preferable to minimize changes to the previous plan.

• Handle Complex Mappings between Faults and

Resource Changes - Intelliface/ADAPT currently
associates each electrical component with one
resource. Each resource is assumed to be either fully
operational or completely non-functional. If a
component enters any of its fault modes, its
associated resource is assumed to be malfunctioning
and incapable of being used in any way. Also, each
resource is assumed to be used exclusively for one
task, or it is assumed to be sharable among any
number of tasks. Although these were reasonable
assumptions for ADAPT, for other plants, a
component failure might reduce the quality or
quantity of a type of resource rather than make the
resource completely unavailable. Supporting this
capability would require the autonomous system to
reason using more complex mappings between
component faults and changes in resource quantity

and quality.

• Handle Ambiguous Diagnoses - If the State Estimator
returns more than one possible, competing diagnosis,
Intelliface/ADAPT currently makes the pessimistic,
simplifying assumption that all of the components
associated with any of the possible diagnoses have
faulted. This assumption may be too conservative
because there might exist a plan that can be executed
if either of two resources is unavailable, whereas
there might not be any plan that can be executed if
both resources are unavailable. It also assumes that
fault signatures are additive and not mutually

exclusive.

• Auto-Generate Diagnostic Models – Intelliface
currently generates portions of the planning domain
model from an application-neutral model of the
system’s resources. An enhanced version of
Inteliface/ADAPT might auto-generate parts of other
models used by Intelliface/ADAPT, such as the State
Estimator’s diagnostic model, based on machine-
readable descriptions of the plant. This will require a
common domain core that can be shared among most
of the tools. Achieving this will allow for a reduction
in locations where all the domain knowledge is
formalized. This will in turn reduce the time for
Intelliface to reconfigure all of its components when

a new hardware/software configuration is defined.

Figure 11 – Screen Capture of the HyDE Relay

Component Model Used on ADAPT. Note the Use of

Finite States for Both Nominal and Off-Nominal

State Definition.

11

• Plan and Execute Diagnostic Actions -
Intelliface/ADAPT uses HyDE to diagnose faults by
analyzing sensor data and commands that are
reported continuously by ADAPT. When this
diagnostic method is unable to identify the faults
unambiguously, it might be possible to plan and
execute diagnostic actions that experimentally
determine the fault. Since some of these actions
might compete with mission tasks for resources or
attention by the crew, it may be necessary to plan
diagnostic actions in a way that minimizes

interference with those tasks.

• Plan Using Prognostics - The Intelliface/ADAPT
state estimation system could be enhanced in the
future to provide prognostics that estimate the type
and timing of future failures. A state estimation
system could also estimate when repairs will
complete, enabling a subsystem to resume operations.
This information could be used by the Planner to plan

future actions more effectively.

7. SUMMARY

Intelliface/ADAPT is integrated with NASA’s Advanced
Diagnostics and Prognostics Testbed (ADAPT). It detects
and diagnoses faults injected into ADAPT, determines the
impact of each fault on the ADAPT system resources,
determines whether the reduced resources affect the
system’s ability to execute the current plan, and, if
necessary, generates a new plan that can be carried out by
the damaged system. Intelliface/ADAPT integrates
several NASA-developed technologies including the
Action Notation Modeling Language (ANML), EUROPA
planning system, and a HyDE-based system that

diagnoses problems in ADAPT.

The architecture, data displays, and baseline
implementation provided by the Intelliface/ADAPT
testbed enable development, demonstration, and
evaluation of new strategies for integrating intelligent

subsystems to create fault-tolerant autonomous systems.

REFERENCES

[1] Advanced Diagnostics and Prognostics Testbeds
(ADAPT) Web site:

 http://ti.arc.nasa.gov/tech/dash/diagnostics-and-
prognostics/adapt-diagnostics/

[2] S. Poll, A. Patterson-Hine, J. Camisa, D. Garcia, D.
Hall, C. Lee, O. Mengshoel, C. Neukom, D. Nishikawa,
J. Ossenfort, A. Sweet, S. Yentus, I. Roychoudhury, M.
Daigle, G. Biswas, and X. Koutsoukos. Advanced
Diagnostics and Prognostics Testbed. 18th International
Workshop on Principles of Diagnosis, pp. 178-185,

May 2007.

[3] Kurtoglu, T., Narasimhan, S., Poll, S., Garcia, D.,
Kuhn, L., de Kleer, J., Gemund, A., & Feldman, A.
(2009). First international diagnosis competition-

DXC’09. Proc. DX’09, 383-396.

[4] EUROPA Web site: http://code.google.com/p/europa-

pso/wiki/WhatIsEuropa.

[5] Smith, D., J. Frank, W. Cushing, “The ANML

Language”. ICAPS-08 Poster Session.

[6] The MathWorks, Inc. (2014) MATLAB User's Guide

(R2014b). 3 Apple Hill Drive, Natick, MA.

[7] The MathWorks, Inc. (2014) SIMULINK User’s Guide.

3 Apple Hill Drive, Natick, MA.

[8] HyDE Web site:
 http://ti.arc.nasa.gov/tech/dash/diagnostics-and-

prognostics/hyde-diagnostics/

[9] Sweet, A. (2008) Testing HyDE on ADAPT, NASA

technical memo 2008-214570, Jan 2008.

[10] National Instruments. Labview [Computer software].

Austin, TX.

[11] Spirkovska, L., et al, (2011) Advanced Caution and
Warning System, Final Report - 2011. NASA Technical

Report NASA/TM-2013-216510.

[12] DataMontage Web site:

 http://www.stottlerhenke.com/datamontage/

[13] Ong, J., E. Remolina, D. E. Smith, M. S. Boddy
(2013) A Visual Integrated Development Environment
for Automated Planning Domain Models. AIAA Space
2013 Conference. San Diego, CA, Sept. 10-23, 2013.

 [14] Fu, D., R. Houlette, J. Ludwig (2007) An AI
Modeling Tool for Designers and Developers. 2007
IEEE Aerospace Conference Proceedings. Big Sky,

Montana, March 4-9, 2007.

12

BIOGRAPHY

James Ong received an MBA from

Boston University, an MS in

computer science (artificial

intelligence) from Yale University, an

MS in electrical engineering and

computer science from UC Berkeley,

and a BS in electrical engineering

from the Massachusetts Institute of

Technology. At Stottler Henke, he

leads the development of tools that support automated

planning, autonomous systems, and robotics research at

NASA. He also leads the development of mission

planning, decision/task support, and training applications

and tools for the Department of Defense.

Emilio Remolina received an M.A.

in Mathematics from Universidad de

Los Andes, Colombia and a Ph.D. in

Computer Science (artificial

intelligence) from the University of

Texas at Austin. For NASA, he led

the development of integrated

development environments for

NASA’s PLEXIL and ANML

planning languages, and he contributed to the

development of the Intelliface software testbed. He leads

the development of the Visual Planning Execution and

Review (ViPER) tool for military planning, and he has led

the development of simulation-based intelligent tutoring

systems for the Department of Defense.

.
Axel Prompt is a Software Engineer

at Stottler Henke. He received a B.S.

in Electrical Engineering and

Computer Science from UC Berkeley

in 2012. He contributed to the

development of the Intelliface

software testbed and an integrated

development environment for NASA’s

ANML planning language.

Peter Robinson received a B.A. in

Computer Science from U.C. Santa

Cruz in 1987 He wrote the NASA

SBIR subtopic integrating diagnosis

and planning. He also was the

Contract Officer’s Representative

(COR) for the Intelliface Phase I and

Phase II projects.

Adam Sweet is a research engineer in

the Diagnostics and Prognostics

group at NASA Ames Research

Center. He graduated with an MS in

Mechanical Engineering from UC

Berkeley in 1999, and has worked at

Ames ever since. His project

experience encompasses robotics,

hybrid system simulation, model-

based diagnosis, and flight software development for

nanosatellites.

David Nishikawa is a Computer
Engineer in the Intelligent Systems
Division (Code TI) at NASA Ames
Research Center, and was the primary
software designer for the ADAPT
system. He is a graduate of CSUH
(now East Bay) and has been at
NASA for over 30 years. He began
his career in flight research support,

worked in the National Full Scale Aerodynamics
Complex (NFAC), and now supports the Diagnostic and
Prognostics group.

ACKNOWLEDGEMENTS

Intelliface was developed with funding from NASA under
contract NNX12CA06C. Development of PM/IDE and
the ANML to NDDL code generator was funded by
NASA under contract NNX11CC18C. Development of
DataMontage was funded in part by the Department of
Defense under contract DAMD17-02-C-0030 and by
NASA under contracts NNX09CA07C and

NNX13CA04C.

