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Abstract— To implement fault tolerant autonomy in future 
space systems, it will be necessary to integrate planning, 

adaptive control, and state estimation subsystems. However, 

integrating these subsystems is difficult, time-consuming, 

and error-prone. This paper describes Intelliface/ADAPT, a 

software testbed that helps researchers develop and test 

alternative strategies for integrating planning, execution, 

and diagnosis subsystems more quickly and easily. The 

testbed’s architecture, graphical data displays, and 

implementations of the integrated subsystems support easy 

plug and play of alternate components to support research 

and development in fault-tolerant control of autonomous 

vehicles and operations support systems. 

Intelliface/ADAPT controls NASA’s Advanced Diagnostics 

and Prognostics Testbed (ADAPT), which comprises 

batteries, electrical loads (fans, pumps, and lights), relays, 

circuit breakers, invertors, and sensors. During plan 

execution, an experimentor can inject faults into the ADAPT 

testbed by tripping circuit breakers, changing fan speed 

settings, and closing valves to restrict fluid flow. The 

diagnostic subsystem, based on NASA’s Hybrid Diagnosis 

Engine (HyDE), detects and isolates these faults to determine 

the new state of the plant, ADAPT.  Intelliface/ADAPT then 

updates its model of the ADAPT system’s resources and 

determines whether the current plan can be executed using 

the reduced resources. If not, the planning subsystem 

generates a new plan that reschedules tasks, reconfigures 

ADAPT, and reassigns the use of ADAPT resources as 

needed to work around the fault. The resource model, 

planning domain model, and planning goals are expressed 

using NASA’s Action Notation Modeling Language 

(ANML). Parts of the ANML model are generated 

automatically, and other parts are constructed by hand 

using the Planning Model Integrated Development 

Environment, a visual Eclipse-based IDE that accelerates 

ANML model development.  Because native ANML planners 

are currently under development and not yet sufficiently 

capable, the ANML model is translated into the New 

Domain Definition Language (NDDL) and sent to NASA’s 

EUROPA planning system for plan generation. The adaptive 

controller executes the new plan, using augmented, 

hierarchical finite state machines to select and sequence 

actions based on the state of the ADAPT system. Real-time 

sensor data, commands, and plans are displayed in 

information-dense arrays of timelines and graphs that zoom 

and scroll in unison. A dynamic schematic display uses color  

to show the real-time fault state and utilization of the system 

components and resources. An execution manager 

coordinates the activities of the other subsystems.  The 

subsystems are integrated using the Internet 

Communications Engine (ICE). an object-oriented toolkit 
for building distributed applications.  
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1. INTRODUCTION 

Fault tolerant autonomy requires the integration of 
planning, adaptive control, and state estimation 
subsystems. For example, diagnostic systems analyze 
sensor readings, commands, and other data to identify 
faulty components and their fault states. When a fault 
occurs, the planning subsystem must determine whether 
the available resources can execute current plans and, if 

they cannot, how the plans should be revised. 

We developed Intelliface/ADAPT to support research and 
development of fault-tolerant autonomous systems, This 
software testbed enables rapid development and testing of 
alternative strategies for integrating intelligent planning, 
execution, and diagnostic subsystems. The testbed’s 
architecture, graphical data displays, and implementations 
of the integrated subsystems support easy plug and play 
of alternate components to support research and 

development in robust control of autonomous systems. 
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Intelliface/ADAPT controls the Advanced Diagnostics 
and Prognostics Testbed (ADAPT) [1][2] at NASA Ames 
Research Center. ADAPT is an electrical system 
comprising batteries, electrical loads (lights, fans, and 
pumps), invertors, relays, and circuit breakers, wires, and 
sensors. ADAPT was originally developed to support 
diagnostics research, for this project (open loop system – 
no closed loop control). It supported a series of diagnostic 
competitions affiliated with the Diagnosis conference 

(DX), in 2009 [3], 2010, 2011, and 2013. 

For this project, we hypothesized experiments and tasks 
to be planned and performed using ADAPT’s lights, fans, 
and pumps, sometimes in parallel and sometimes in 
sequence. Intelliface/ADAPT detects and diagnoses faults  
manually injected into ADAPT, determines the impact of 
the fault on the ADAPT system’s capabilities, determines 
whether the impaired capabilities affect the system’s 
ability to execute the current plan, and, if necessary, 
generates a new plan that can be carried out by the 
damaged system. 

An automated planning system uses heuristic search to 
select, configure, and schedule actions that perform tasks 
and achieve or maintain desired state conditions requested 
by users. It accepts as input a problem statement and a 
planning domain model, both expressed in a planning 
domain modeling language such as the New Domain 
Definition Language (NDDL) [4] or the Action Notation 
Modeling Language (ANML) [5]. The problem statement 
specifies the expected state of the world during the 
planning period, the tasks to be carried out, desired goal 
states to be achieved, and additional requirements such as 
deadlines for completing tasks or achieving desired states. 
The planning domain model specifies the world 
knowledge needed by the planner.  Some planning 
domain languages, including ANML, encode this world 
knowledge as a library of actions, their effects on the 
world, and the conditions that must be true in order for the 
action to be executable. The planner outputs a plan that 
specifies actions to be performed, their timing, and the 

resources assigned to support each action.  

An adaptive controller executes each action in the plan by 
selecting and sending a sequence of commands to the 

plant. The adaptive controller can use conditional logic to 
modify the selection or timing of commands to adjust 
how actions are performed in particular situations. 
Adaptive control can also monitor state variables during 
execution to confirm the successful achievement of target 
state conditions or the completion of planned actions. If 
execution problems occur, the adaptive controller can 
report these problems to a human operator and/or the 
automated execution manager. It shares knowledge of the 

system with both the planner and state estimator. 

The state estimation system estimates the present state of 
the plant using the knowledge of the current and prior 
timepoints of  the world based on its analysis of sensor 
data, commands, and other information. State estimation 
systems can provide diagnostic functions that  analyze 
sensor readings, commands, and other data to identify 
faulty components and their fault states. A state 
estimation system could provide prognostics that estimate 
the type and timing of future failures. It could also 
estimate when damaged parts of the plant will be repaired 

and can resume operations. 

2. MODELING CHALLENGES  

Determining how best to model resources for planning is 
challenging because the model must include those 
resources that are directly used by activities as well as 
resources required only indirectly.  For example, suppose 
that a cooling activity requires the operation of a device 
such as a pump.  One might model the pump, in 
combination with the coolant loop, as a resource that 
provides a thermal control capability.  However, in order 
to operate, the pump requires a power resource.  To 
access this power source, an uninterrupted electrical path 
between the power storage and the pumps is needed. In 
addition, command and data handling are necessary to 
monitor and control the equipment and to configure the 
electrical path. Thus, this cooling activity requires a 
pump, coolant loop, power source, electrical distribution, 
and command and data handling resources.  In Figure 1, 
each arrow indicates a dependency between a pair of 
resources.  For example, the pump relies upon power 
distribution in order to operate, and power distribution 

relies on power storage in order to have power to deliver. 

Pump 

Command and Data Handling 

Power 

Distribution 

Power 

Storage 

Power 

Storage 

Power 

Generation 

Power 

Generation 

Figure 1 – Resources Depend Upon Other Resources in Order to Operate 
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Changes in operating rules, system configuration, usage 
patterns, and other assumptions can require revisions to 
the resource model. For example, some resources may be 
so abundant that it is not necessary to reason about how to 
allocate its use. However, if the supply of a resource 
decreases or if demand increases, a resource that was once 
plentiful (and therefore possibly not even modeled) may 
become limited, relative to demand.  In this case, it would 
be necessary to revise the planning domain model, so the 
planner can reason about the availability and ensure that 

plans allocate their use effectively.   

For example, our planning domain model encodes an 
operating rule stating that a battery could be connected to 
at most one electrical load bank at a time.  This rule 
exploits the fact that each battery can normally power all 
loads in any one load bank.  However, this operating rule 
might become invalid if electrical loads were added to a 
load bank or if the battery’s capacity degraded, so that all 
loads in the load bank, in combination, required more 
power than the battery could provide.  Or, suppose that 
only one battery were operational.  It might be necessary 
to power some of the loads in one load bank and 
additional loads in a second load bank.  As long as the 
total power requirements can be met by the available 
battery, it might be desirable to relax the operating rule 
and configure the battery to drive some of the loads in 
each of the two load banks.  However, this relaxation 
would require modeling the power consumption of each 
load and the power output of each battery to avoid 
overloading the battery. The modelling challenge is to 
define the union and intersection of knowledge categories 
between the planner, scheduler, adaptive controller and 

state estimator. 

3. INTEGRATION CHALLENGES 

Typically, diagnosis, planning, and execution subsystems 
use different models of the system, so integration usually 
requires translation between models. For example, the 
diagnosis function normally identifies physical (e.g., 
hardware) or logical (e.g., data, software) state of all 
components, both nominal and off-nominal. It also 
models the connectivity between components and the 
modes of operation. By contrast, planning and scheduling 
systems use resource models that are only as detailed as is 
necessary to support the correct selection, scheduling, and 
execution of planned actions and are often grounded in 

the hardware/logical components. In practice, planning 
resources are usually modeled more abstractly and 
coarsely than the components identified by the diagnosis 
function.   

Developing and maintaining these interfaces by hand is 
time-consuming and error-prone.  The various subsystems 
rely upon their respective knowledge bases and data 
models, which encode assumptions about the system’s 
configuration, state, and operating procedures, sometimes 
in subtle ways. Because the diagnosis, planning, and 
execution systems use different models, interfaces among 
these subsystems must translate between these models, as 
shown in Figure 2. Changes in system state, system 
configuration, operating rules, and other assumptions can 
require revisions to the models and interfaces.  
Implementing these revisions can be labor-intensive and 
error-prone. Because assumptions that underlie the 
modeling decisions are often subtle and implicit, it is easy 
to change the models in ways that violate these unstated 

assumptions. 

4. INTELLIFACE SOFTWARE TESTBED 

Figure 3 shows the exchange of data among 
Intelliface/ADAPT software modules. The ICE Network 
protocol is used to integrate these modules. The following 
scenario demonstrates how Intelliface/ADAPT responds 
to a fault. 

1. Initially, the User submits to the Execution Manager 
a file that specifies experiments to be run.    

2. The Execution Manager sends a Plan Request to the 
Planner.  The request comprises two parts: the 
planning goals and a description of the current and 
projected resource availabilities based on the current 

and projected state of the ADAPT system.  

3. The Planner combines the planning request with the 
static portions of the planning domain model to 
create a planning problem, expressed in ANML.  
This planning problem is then sent to an automated 
planner. The Planner either returns a plan that 
satisfies the request, or it reports a planning failure 
because it was unable to generate a valid plan that 

satisfied the request. 

4. The Execution Manager sends the plan to the 

Diagnosis 

System 
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Figure 2 – Translation Between Diagnostic State Vector and Model of Available Resources 
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Adaptive Controller for execution. 

5. The Adaptive Controller executes each planned 
action by running a finite state machine (FSM) that 
sends commands to the Plant. When the start time of 
each planned action is reached, the Adaptive 
Controller starts the appropriate augmented finite 
state machine to execute the action. The Adaptive 
Controller can track states and events and perform 
actions in parallel by running multiple FSMs 

simultaneously,  

6.  During the execution of each action, the Adaptive 
Controller module monitors the estimated state and 
uses branching and looping logic to select or tailor 
alternate lower-level actions as appropriate.  The 
Adaptive Controller module notifies the Execution 
Manager if it cannot execute a planned action or if it 
detected anomalous conditions during execution.  For 
ADAPT, execution of an action that closes a relay 
might check the value of the relay position sensor to 
confirm that the relay indeed closed.  Commands are 
also sent to the State Estimator. This information 
enables the State Estimator to compare sensed and 
commanded states, so it can detect and diagnose 

problems. 

7. The Plant (ADAPT) responds to commands received 
by the Adaptive Controller by opening/closing relays 
to provide power to pumps, lights, and fans.  The 
Plant continuously outputs data from current, voltage, 
flow rate, and other sensors. There are two 
configurations of Intelliface/ADAPT.  In one 

configuration, the Plant is a simulation of the 
ADAPT system, implemented using MatLab® [6] 
and Simulink® [7]. In the second configuration, 
Intelliface/ADAPT controls the physical ADAPT 

testbed at NASA Ames Research Center. 

8. The User Interface shows the current plan and sensor 
data in Gannt charts, timelines, and time-series 
graphs. 

9. The User can inject one or more faults into the 
Simulink simulation of ADAPT or physically on the 

ADAPT hardware testbed. 

10. The State Estimator estimates the state of the Plant. 
Specifically, the State Estimator embeds a diagnostic 
reasoning system that diagnoses faults in the physical 
ADAPT testbed based on sensor data and commands. 
This system was developed by NASA Ames using 

the Hybrid Diagnostic Engine (HyDE) [8][9]. 

11. The Execution Manager revises the resource model 
based on the diagnosed fault(s) and compiles a list of 
resources believed to have become unavailable.  If 
there are planned actions that use or will use any of 
the impacted resources, the Execution Manager 
requests a new plan that avoids using any of the 

unavailable resources. 

12. The Planner generates a new plan and sends it to the 

Execution Manager. 

13. The Execution Manager sends the new plan to 

Adaptive Controller for execution. 

Adaptive Controller (SimBionic) 
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Execution Manager        User Interface 
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Figure 3 – Intelliface/ADAPT Architecture  
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14. The User Interface shows the new and old plans in a 
Gannt chart, so users can compare them. 

15. The ICE Data Distribution Layer integrates the 
compoenents of Intelliface. 

16. ADAPT A/D layer is controlled through LabVIEW® 
software [10]. 

 Plant (ADAPT) 

The Advanced Diagnostics and Prognostics Testbed 
(ADAPT) [1][2] is an experimental testbed at NASA 
Ames Research Center. ADAPT supports research in 
automated diagnosis and advanced user interfaces [11] for 
system diagnosis and recovery. 

ADAPT is an electrical system comprising: 

• 3 batteries (labeled BAT1, BAT2, BAT3) displayed 
on the left side of the schematic. 

• Relays (IDs start with EY) that open or close to 
establish electrical paths between batteries and loads. 

• Circuit breakers (IDs starts with CB) that are 
designed to trip open when excessive current flows, 

in order to protect the other components. 

• Electrical wires that connect components.  They are 
drawn in the schematic as lines and are assumed to 

never fail.  

• Sensors that sense the state of the other components. 

• Electrical loads such as fans, pumps, and lights, 
grouped into two load banks (labeled Load Bank 1 

Figure 4 – Schematic of ADAPT System 
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and Load Bank 2) on the right side of the schematic.  

• 2 Invertors (labeled INV1 and INV2) that convert 
24V DC power provided by the batteries to 120V AC 

power required by the loads. 

Each battery is capable of providing power to all of the 
loads in a single load bank.  Relays can be set to link 
either of the two load banks to any of the three batteries.  
Because there are three batteries, it is possible to power 
both load banks, even when one of the three batteries is 
inoperative.  Thus, redundant batteries and electrical paths 
enable the electrical system to be configured so that loads 

can be powered even when faults occur.  

Additional relays control whether power is supplied to 
individual loads within each load bank.  For example, as 
shown in Figure 4, relay EY170, circled in red, controls 
whether power is supplied to lights LGT400, LGT401, 
and LGT402, assuming that power is supplied to Load 
Bank 1.  Thus, to provide power from battery 1 to these 
lights, relays EY141 (oval, green dotted outline), EY160 
(oval, blue dashed outline), and EY170 (oval, red solid 
outline) must all be closed and operational (not in a fault 

state). 

NASA developed the ADAPT test bed to support research 
in automated diagnosis. From a diagnosis perspective, the 
devices were simply loads that needed to be powered by 
the electrical distribution system, and how the devices 
were used to support tasks was not important. However, 
in order to use ADAPT as a testbed for automated 
planning, we needed to invent hypothetical activities that 
use these devices, as well as constraints on those 
activities.  Thus, we hypothesized experiments, each 
composed of tasks that used the various types of fans, 
lights, and pumps in ADAPT.  We assumed that load 
bank 1 would power devices in room 1, and load bank 2 
would power devices in room 2. We invented activities 
that use loads in each of the two load banks. For example, 
the activity Dim Lighting uses at least 50W of light, and 
Bright Lighting uses at least 100W.  Minimum Cooling 
uses the small fan, Medium Cooling uses the large fan, 
and Maximum Cooling uses both fans. Some activities 
must be performed in room 1, some must be performed in 
room 2, and some can be performed in either room. Each 

Crew Task includes one or more activities.  

For example, Crew Task A requires simultaneous 
execution of Minimum Cooling and Dim Lighting, and 
Crew Task B requires simultaneous execution of 
Maximum Cooling and Bright Lighting. Experiments are 
the largest unit of work and are each composed of an 
ordered sequence of crew tasks and activities.  A typical 
planning goal might specify the performance of several 

experiments. 

User Interface 

The User Interface enables users to send planning goals 
and tasks to the Execution Manager.  The User Interface 

also displays the current plan in a Gannt chart (Figure 5).  

 The Gannt Chart display enables users to compare the 
previous plan with the current plan after re-planning has 
been requested.  Each horizontal bar shows the times 
when a particular type of action, as specified by an 
ANML action definition, is scheduled for execution.  
Violet bars represent high-level actions, which 
decompose into lower level actions, and light-blue bars 
represent lowest-level actions that have no subactions.  
The bar colored red represents an action that can no 
longer be executed because some of its required resources 
are no longer available.  Its hierarchical timeline feature 
enables users to click on triangular buttons to open or 
close timelines. Opening a timeline displays additional 
lower-level timelines immediately below that show when 

lower-level subactions are scheduled.  

In the Color-Coded Schematic Display (Figure 6), blue 
rectangles or polygons show resources in use, and red 
rectangles or polygons show resources that are 
inoperative,  according to the State Estimator. Yellow 
regions show several resources identified by the State 
Estimator in an  ambiguous diagnosis as possibly 
inoperative.  The red circle highlights a component that 
has faulted.  In this example, relay EY 141 has faulted. 
Because the connection resource between battery 1 (upper 
left) and load bank 1 (upper right) is inoperative, load 

bank 1 is powered by battery 2.   

 

Figure 5 – Intelliface/ADAPT Gannt Chart 



 
 

 

 The Graphical Data Display (Figure 7) shows sensor data 
and command in an interactive array of graphs and 
timelines. You can zoom and scroll within the graphs and 
timelines in unison.  This display is implemented using 
Stottler Henke’s DataMontage™ data visualization 

system  [12]. 

 

Figure 6 – Intelliface/ADAPT Color-Coded Schematic
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Figure 8 – Intelliface/ADAPT Planning Subsystem
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) shows sensor data 
interactive array of graphs and 

n the graphs and 
timelines in unison.  This display is implemented using 

e™ data visualization 

Planner  

The Action Notation Modeling Language (ANML)
a planning domain modeling language developed at 
NASA Ames Research Center.  ANML models can 
specify fluents that represent the state of 
terms of discrete or continuous time
functions. For example, the following 
varying function that represents

robot: 

fluent Location atLocation(Robot r);

ANML actions assign values to fluents to specify
on world, and they specify required
that refer to these fluents.  For example, the following 
action specifies the condition that

Figure 7 – Intelliface/ADAPT Graph and Timeline
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The Action Notation Modeling Language (ANML) [5] is 
a planning domain modeling language developed at 
NASA Ames Research Center.  ANML models can 

epresent the state of the world in 
discrete or continuous time-varying variables and 

For example, the following declares a time-
represents the location of each 

fluent Location atLocation(Robot r); 

ANML actions assign values to fluents to specify effects 
required Boolean conditions 
For example, the following 

the condition that the battery level must 

Intelliface/ADAPT Graph and Timeline

 

EUROPA Timelines 

EUROPA  



 
 

 

be > 0 when the action begins to execute. 
the action’s execution, an effect is that the battery level is 

set to 100. 

action recharge(Robot robot) { 

  [start] batteryLevel(robot) > 0; 
  [end] batteryLevel(robot) := 100; 

} 

ANML actions have quantitative durations and can 
optionally decompose into subactions.  For example, the 
following action decomposes into two subactions, 

calibrate and getImage, which are executed sequentially:

action takeImage(Robot robot, Location 

location) { 

  duration := 10; 
  [all] contains 

    ordered( 

      calibrateCamera(robot), 

      getImage(robot, location)); 

} 

Because ANML is an expressive, high-level planning 
language, if was easier to generate ANML models, both 
manually and automatically, compared to lower
languages such as the New Domain Definition Language 
(NDDL), used by NASA’s EUROPA planner. However, 
no planner currently exists that accepts a sufficiently large 

Figure 9 –Planning Model Integrated De
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when the action begins to execute. At the end of 
the action’s execution, an effect is that the battery level is 

 

ANML actions have quantitative durations and can 
For example, the 

following action decomposes into two subactions, 

cuted sequentially: 

action takeImage(Robot robot, Location 

level planning 
easier to generate ANML models, both 

manually and automatically, compared to lower-level 
languages such as the New Domain Definition Language 
(NDDL), used by NASA’s EUROPA planner. However, 
no planner currently exists that accepts a sufficiently large 

subset of ANML as input, so we prototype
NDDL translator, so NDDL models

inputs to the EUROPA planning system.

 We developed an initial ANML model by hand that 
specified the static model, comprising actions, constraints, 
and fluent declarations, as well as the plan request, 
comprising planning goals, resource availabilities, and the 
estimated state. We then revised the ANML model so that 
some parts of the model could be generated automatically.  
Thus, the revised ANML model serve

for two automated code generators

The System Resource Model to
accepts as input a resource model stored in a
Microsoft Excel spreadsheet. This resource model 
provides a declarative description of
resource instances, dependencies among resources, and
mutual exclusion constraints that prevent two resources 
from being used at the same time
Model is assumed to change only occasionally, so it is 
used to create the static portion of the ANML model.
code generator translates the model into ANML 

statements. 

The State to ANML code generator translates a list of 
failed components and their fault modes into ANML 

Planning Model Integrated Development Environment Main Window

set of ANML as input, so we prototyped an ANML to 
NDDL models could be provided as 

planning system. 

We developed an initial ANML model by hand that 
specified the static model, comprising actions, constraints, 

ent declarations, as well as the plan request, 
comprising planning goals, resource availabilities, and the 
estimated state. We then revised the ANML model so that 
some parts of the model could be generated automatically.  
Thus, the revised ANML model served as target output 

generators.  

to ANML code generator 
resource model stored in a multi-sheet 

. This resource model 
provides a declarative description of the resource types, 

dependencies among resources, and 
mutual exclusion constraints that prevent two resources 
rom being used at the same time. The System Resource 
Model is assumed to change only occasionally, so it is 

atic portion of the ANML model. The 
code generator translates the model into ANML 

ANML code generator translates a list of 
failed components and their fault modes into ANML 

velopment Environment Main Window 
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statements that specify the reduced availability of 
ADAPT resources.  In the current version of 
Intelliface/ADAPT, every functional (non-sensor) 
component is associated with a resource, and a resource is 
assumed to be unavailable if any of its components have 

faulted.   

The output of the EUROPA software is a collection of 
data structures, called timelines, that encode EUROPA’s 
model of the planning problem and its solution.  The 
EUROPA Timelines to Plans module translates the 
planning solution encoded in these timelines into a format 
that is understood by the Adaptive Controller. 

Portions of the ANML model that cannot be generated 
automatically are currently created by hand.  The 
Planning Domain Integrated Development Environment 
(PM/IDE) [13] is an Eclipse plug-in and collection of 
model visualization tools that accelerates the development 

of ANML models.  

Adaptive Controller  

An adaptive controller executes each action in the plan by 
selecting and sending a sequence of commands to the 
plant. The adaptive controller can use conditional logic to 
modify the selection or sequencing of commands in 
response to the state of the system or of the world to 
adjust how actions are performed in particular situations. 
Adaptive control can also monitor execution to confirm 
successful achievement of target state conditions or 
completion of planned actions. If problems occur during 
execution, the adaptive controller can report these 
problems to a human operator and/or automated execution 
manager.  

The Adaptive Controller is based on Stottler Henke’s 
SimBionic® intelligent agent toolkit [14].  SimBionic can 
run multiple hierarchical finite state machines in parallel 
to execute concurrent planning actions. The graphical 
SimBionic editor, shown in Figure 10, enables developers 
to quickly specify each finite state machine. Rectangle 
nodes can be configured to call Javascript functions or 
Java methods to perform actions or assign values to 
Simbionic variables. Ovals specify conditions that 
determine whether to transition from a rectangle node. If 
none of a node’s conditions are true at a clock tick, no 
transition occurs, and the conditions are reevaluated at the 
next clock tick.  

State Estimator  

The State Estimation module estimates the present and 
future state of the plant and the world based on its 
analysis of sensor data, commands, and other information. 
State estimation systems can include diagnostic systems 
that analyze sensor readings, commands, and other data to 
identify faulty components and their fault states. 

Diagnostic output can be thought of as a vector in which  

each element in the vector specifies the state (nominal or 
off-nominal) of  each component in the system. 
Diagnostic systems identify faulty subsystems and 
components in enough detail to enable other processes 
(which map state to function) to determine the system’s 
reduced functionality and performance, so risks to the 
crew, vehicle/habitat, or mission can be identified and 
plans can be revised as necessary. In addition, diagnoses 
must be sufficiently specific to support restoration of 
system functions, although diagnoses are often ambiguous 
due to under-instrumented hardware. For example, a 
specific diagnosis that identifies a replacable unit is more 
helpful for repair than a diagnosis that identifies the 

subsystem containing the unit.  

The State Estimator’s diagnostic function is provided by a 
NASA-developed diagnostic reasoning system that was 
implemented using NASA’s Hybrid Diagnostic Engine 
(HyDE) [8][9]. HyDE is a model-based diagnosis engine 
that uses candidate generation and consistency checking 
to diagnose faults in stochastic hybrid systems. A HyDE 
model of a system consists of many connected component 

models. 

An example of a HyDE component model used on 
ADAPT is shown in Figure 11. This is a screenshot of the 
graphical HyDE modeling tool, and this example is of a 
relay component, which shows many of the elements in a 
HyDE component model. The defined modes are 
represented as circles, and may include nominal and fault 
modes. Each mode will have constraints on the 
component model variables (in the figure, the input 
voltage, the output voltage, and the relay position, shown 
as orange squares with a V). The mode’s constraints are 
only active in that mode and define the component 
behavior in that mode. All allowable transitions between 
the modes are defined and shown as arrows between the 
circles. The transitions may have guards enabled by 
commands to the component (in the figure, the green box 
with a squiggle in it), by values of the component’s 
variables, or they may be unguarded. The unguarded 

Figure 10 – SimBionic Editor 
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transitions are treated as failure transitions by HyDE. 
HyDE will perform a diagnosis when it detects that the 
constraints in the current mode of any component are no 
longer consistent, and  it will search for failure transitions 
in all components which lead to failure modes in which 
the constraints are currently consistent. A longer 
description of HyDE and the HyDE diagnostic system 

used on ADAPT is given in [9]. 

 

 

5. RESULTS 

We implemented two configurations of 
Intelliface/ADAPT.  The first configuration monitors and 
controls a Matlab/Simulink simulation of the ADAPT 
testbed, developed by NASA. Faults are injected using the 
Matlab/Simulink user interface.  The second 
configuration monitors and controls the ADAPT hardware 
testbed in the ADAPT Lab at NASA Ames Research 
Center. Replacing the ADAPT simulation with the 
ADAPT hardware testbed was easy because both systems 
used the ICE toolkit and common interfaces. The testbed 
implements test scenarios in which the system diagnoses 
and replans in response to injected failures of fans, lights, 

and pumps as described in section 4. 

6. FUTURE WORK  

The following list describes ways in which 

Intelliface/ADAPT could be enhanced: 

• Preserve Work Already Performed - When a fault 
occurs, part of an experiment may have already been 
completed. The current implementation of 
Intelliface/ADAPT re-executes each experiment from 
the beginning.  An enhanced version of 
Intelliface/ADAPT could preserve work already 

performed. However, this type of enhancement 
would require Intelliface/ADAPT to know whether 
partially-completed experiments can be safely 
resumed after a delay. 

• Minimize Changes to the Plan - When a fault occurs, 
Intelliface/ADAPT currently generates a new plan 
from scratch. When re-planning, it is sometimes 

preferable to minimize changes to the previous plan.   

• Handle Complex Mappings between Faults and 

Resource Changes - Intelliface/ADAPT currently 
associates each electrical component with one 
resource.  Each resource is assumed to be either fully 
operational or completely non-functional.  If a 
component enters any of its fault modes, its 
associated resource is assumed to be malfunctioning 
and incapable of being used in any way.  Also, each 
resource is assumed to be used exclusively for one 
task, or it is assumed to be sharable among any 
number of tasks.  Although these were reasonable 
assumptions for ADAPT, for other plants, a 
component failure might reduce the quality or 
quantity of a type of resource rather than make the 
resource completely unavailable.  Supporting this 
capability would require the autonomous system to 
reason using more complex mappings between 
component faults and changes in resource quantity 

and quality. 

• Handle Ambiguous Diagnoses - If the State Estimator 
returns more than one possible, competing diagnosis, 
Intelliface/ADAPT currently makes the pessimistic, 
simplifying assumption that all of the components 
associated with any of the possible diagnoses have 
faulted. This assumption may be too conservative 
because there might exist a plan that can be executed 
if either of two resources is unavailable, whereas 
there might not be any plan that can be executed if 
both resources are unavailable. It also assumes that 
fault signatures are additive and not mutually 

exclusive. 

• Auto-Generate Diagnostic Models –  Intelliface 
currently generates portions of the planning domain 
model from an application-neutral model of the 
system’s resources. An enhanced version of 
Inteliface/ADAPT might auto-generate parts of other 
models used by Intelliface/ADAPT, such as the State 
Estimator’s diagnostic model, based on machine-
readable descriptions of the plant. This will require a 
common domain core that can be shared among most 
of the tools. Achieving this will allow for a reduction 
in locations where all the domain knowledge is 
formalized. This will in turn reduce the time for 
Intelliface to reconfigure all of its components when 

a new hardware/software configuration is defined. 

Figure 11 – Screen Capture of the HyDE Relay 

Component Model Used on ADAPT. Note the Use of 

Finite States for Both Nominal and Off-Nominal 

State Definition. 
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• Plan and Execute Diagnostic Actions - 
Intelliface/ADAPT uses HyDE to diagnose faults by 
analyzing sensor data and commands that are 
reported continuously by ADAPT.  When this 
diagnostic method is unable to identify the faults 
unambiguously, it might be possible to plan and 
execute diagnostic actions that experimentally 
determine the fault. Since some of these actions 
might compete with mission tasks for resources or 
attention by the crew, it may be necessary to plan 
diagnostic actions in a way that minimizes 

interference with those tasks.   

• Plan Using Prognostics - The Intelliface/ADAPT 
state estimation system could be enhanced in the 
future to provide prognostics that estimate the type 
and timing of future failures. A state estimation 
system could also estimate when repairs will 
complete, enabling a subsystem to resume operations. 
This information could be used by the Planner to plan 

future actions more effectively. 

7. SUMMARY  

Intelliface/ADAPT is integrated with NASA’s Advanced 
Diagnostics and Prognostics Testbed (ADAPT). It detects 
and diagnoses faults injected into ADAPT, determines the 
impact of each fault on the ADAPT system resources, 
determines whether the reduced resources affect the 
system’s ability to execute the current plan, and, if 
necessary, generates a new plan that can be carried out by 
the damaged system.  Intelliface/ADAPT integrates 
several NASA-developed technologies including the 
Action Notation Modeling Language (ANML), EUROPA 
planning system, and a HyDE-based system  that 

diagnoses problems in ADAPT. 

The architecture, data displays, and baseline 
implementation provided by the Intelliface/ADAPT 
testbed enable development, demonstration, and 
evaluation of new strategies for integrating intelligent 

subsystems to create fault-tolerant autonomous systems. 
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