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Abstract—Consider a scenario in which the data owner has
some private or sensitive data and wants a data miner to access
them for studying important patterns without revealing the sen-
sitive information. Privacy-preserving data mining aims to solve
this problem by randomly transforming the data prior to their
release to the data miners. Previous works only considered the
case of linear data perturbations—additive, multiplicative, or a
combination of both––for studying the usefulness of the perturbed
output. In this paper, we discuss nonlinear data distortion using
potentially nonlinear random data transformation and show how
it can be useful for privacy-preserving anomaly detection from
sensitive data sets. We develop bounds on the expected accuracy
of the nonlinear distortion and also quantify privacy by using
standard definitions. The highlight of this approach is to allow
a user to control the amount of privacy by varying the degree
of nonlinearity. We show how our general transformation can be
used for anomaly detection in practice for two specific problem
instances: a linear model and a popular nonlinear model using
the sigmoid function. We also analyze the proposed nonlinear
transformation in full generality and then show that, for specific
cases, it is distance preserving. A main contribution of this paper
is the discussion between the invertibility of a transformation and
privacy preservation and the application of these techniques to
outlier detection. The experiments conducted on real-life data sets
demonstrate the effectiveness of the approach.

Index Terms—Data mining, non-linear, perturbation, privacy-
preserving.

I. INTRODUCTION

PRIVACY preservation is a critical need for a variety of
data-mining applications where there exists a repository

of data which needs to be analyzed without the analyst obtain-
ing the data directly. To solve this problem, researchers have
developed many techniques to mask or anonymize the data in
order to allow for the analysis to occur. In the simplest case,
deidentification (or anonymization) of the data is performed
whereby sensitive information is either obfuscated, redacted,
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or eliminated from the data records while only transmitting
those attributes of the data that are nonsensitive. However,
anonymization techniques can be defeated using the fact that
idiosyncratic data can lead to unexpected reidentification of
data [1]–[3]. Approaches based on anonymization techniques
[4] have been employed in the field by Netflix and various
government agencies such as the Health Insurance Portability
and Accountability Act.1

Another approach that can be taken is to allow sensitive data
to be analyzed where the data are obfuscated through additive
or multiplicative noise. These approaches rely on the fact that
a given data set D can be passed through an operation (or
a set of operations) defined by function T . The mapping is
often chosen to be a linear affine transformation. The output
of the system, T (D), is then transmitted with the hope that
the original data cannot be reconstructed using the image of
T (D) alone. Many researchers have shown that, under certain
situations, these operations can be reverse engineered, thereby
revealing the original data without any information about the
nature of the operations or any additional information [2], [3].
Essentially, each attack strategy attempts to find an inverse
mapping T −1 such that, when applied to T (D), the original
data (within a trivial translation or rotation) can be reidentified,
viz., D ≈ T −1(T (D)).

In this paper, we show a third technique for preserving pri-
vacy using functions which cannot be inverted. Specifically, we
discuss the situation where T is a nonlinear mapping parame-
terized by a set of weights θ. We discuss the situation where the
distribution of the weights is known and also study situations
where the properties of D can be observed. We show a method
to quantify the probability that a mapping T can be inverted
and also show a situation where it cannot be inverted. We refer
to this method of data obfuscation as nonlinear distortion.

We demonstrate our techniques of nonlinear distortion on the
problem of anomaly detection, which is prevalent in a variety
of application domains where privacy must be preserved. We
discuss the application of these techniques to the realm of
aviation safety, where data from multiple air carriers must be
kept private to the airline to protect proprietary information.
In this situation, it is not possible for the data to be disclosed
to the public for analysis or anomaly detection. Moreover,
anomalies often tend to provide unique characteristics, thereby
identifying a specific airline. However, with an appropriate
privacy-preserving data-mining approach, it may be possible
to apply anomaly detection methods to the data after they
have been nonlinearly distorted. For this approach to work,
the nonlinear distortion method must preserve the important

1http://www.hhs.gov/ocr/privacy/index.html
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statistical properties of the data. Thus, if the anomaly detection
method is based on Euclidean or inner-product distance, those
distances must be preserved through the nonlinear distortion. In
this paper, we quantify the degree of distortion injected by the
nonlinear transformation and show how it affects the ability of
the algorithms to detect anomalies using the Euclidean distance
as the measure of an anomaly. In this paper, the topics are
organized as enumerated in the following list.

1) We present a new technique, which we call the data dis-
tortion scheme, for preserving data privacy. The frame-
work uses noninvertible nonlinear functions for mapping
the data to a different space. Mathematically, we show
that this transformation cannot be reverse engineered, and
thereby, the original data cannot be recovered due to the
condition of noninvertibility.

2) We analyze the transformation in its full generality
and show that, for specific cases, the transformation is
distance preserving, thereby proving useful to the data-
mining algorithm. Our results generalize all of the previ-
ous works on perturbation-based data privacy such as in
[2], [3], [5], [6].

3) Finally, we show how our technique is particularly useful
for a specific data-mining technique, viz., the anomaly
detection.

The rest of this paper is organized as follows. Section II
discusses the motivation for this research. Section III presents
the related work. Section IV introduces the notations and dis-
cusses the formal problem definition followed by the nonlinear
distortion technique in Section V. Bounds on the quality of the
distortion are discussed in Section VI while some special cases
of the distortion are presented in Section VII. A discussion of
the privacy of the technique follows in Section VIII. Section IX
demonstrates the performance of the technique on real-world
data for a commercial air carrier. Finally, the paper is concluded
in Section X with future research plans.

II. MOTIVATION AND BACKGROUND

Outlier or anomaly detection [7] refers to the technique of
finding patterns from a data set that is inconsistent or consid-
erably dissimilar from the rest of the data set. Outlier detection
has been studied in the statistics community for a long time
[8], [9]. Data-mining researchers have developed a number of
solutions for outlier detection in various domains: fraud de-
tection, network intrusion detection, climate and ocean-current
change modeling using wireless sensor networks, engineering
systems, etc. Since, in most of these domains, the data are not
sensitive, privacy is not an issue for these applications. For a
more detailed literature on anomaly detection and its different
application areas, interested readers are referred to a recent
survey by Chandola et al. [10].

The problem that we aim to solve in this paper can be infor-
mally stated as follows: consider a number of different airline
companies, each having their own aircrafts’ systems health and
flight operation data commonly referred to as a flight opera-
tional quality assurance (FOQA) archive. In order to analyze
operational characteristics and safety issues from a large set of
data encompassing multiple air carriers, the distributed national

Fig. 1. DNFA architecture showing how the analysts can post query and
get results for further analysis. Image source: www.faa.gov/library/reports/
medical/oamtechreports/2000s/media/200707.pdf.

FOQA archive (DNFA) [11] has been developed jointly by
the National Aeronautics and Space Administration (NASA)
and the Federal Aviation Administration with collaboration
by different air carriers. Fig. 1 shows the architecture. Note
that the connections between different FOQA archives and a
central node use dedicated and secure T1 lines. As shown in
Fig. 1, when an analyst executes a query about the data, it is
disseminated across the FOQA archive of each air carrier. The
computations are done locally at each site, and an anonymized
and deidentified result set of the query is sent back through the
secure lines to the central node. In this architecture, there is
no way of accessing the raw data for a more in-depth analysis
due to its proprietary nature. Additionally, anonymization may
not be an effective method of privacy preservation since it can
be broken with sufficient background information [12], [13].
We aim to develop a privacy-preserving technique which will
enable us to detect distance-based outliers from such global
data sets while preserving their privacy in a strict sense since
outliers often contain uniquely identifiable information linking
a data point to a data repository. We assume that the privacy
requirements of the normal operating points are less because
most of the airlines have similar operational characteristics.

The privacy technique proposed in this paper essentially uses
a random nonlinear map to transform the input data. The map-
ping or the function satisfies two properties: 1) For all points
in the normal operating region, the mapping approximately
preserves the distance between those points in the transformed
space, and 2) it maps all outliers to a finite set of discrete
values. We show that if this transformation is noninvertible,
then it is virtually impossible to break this transformation and
uncover the original data. As a result of this transformation,
most of the outliers will remain such, even after transformation.
Furthermore, note that the privacy of the non-outlier points is
also protected since we apply a combination of additive and
multiplicative perturbations to these points, as done in [3], [5],
[14]. However, as stated before, our main aim is to protect the
privacy of the outliers. There are several other places where our
technique can be applied such as detecting fraud across multiple
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financial institutions and finding unusual patterns in medical
records.

III. RELATED WORK

The research in privacy-preserving data mining spans many
areas: data perturbation techniques [5], [15], cryptographic
(secure multiparty) techniques [16]–[18], and output perturba-
tion techniques [19]. In this paper, we only discuss the data
perturbation techniques since they are most closely related to
this area of research.

Data-perturbation-based privacy-preserving techniques per-
turb data elements or attributes directly by additive noise,
multiplicative noise, or a combination of both. They all rely
on the fundamental property that the randomized data set may
not reveal private data while still allowing data analysis to be
performed on them. We discuss each of the techniques in more
detail in this section.

Given a data set D, Agrawal and Srikant [15] proposed
a technique of generating a perturbed data set D∗ by using
additive noise, i.e., D∗ = D + R, where the entries of R are
independent and identically distributed (i.i.d.) samples from a
zero-mean unit-variance Gaussian distribution. Kargupta et al.
[20] questioned the use of random additive noise and pointed
out that additive noise can be easily filtered out using spectral
filtering techniques causing a privacy breach of the data.

Due to the potential drawback of additive perturbations, sev-
eral types of multiplicative perturbation techniques have been
proposed. Kim and Winkler [14] proposed one such perturba-
tion technique which multiplies a random number generated
from a truncated Gaussian distribution of mean one and small
variance to each data point, i.e., D∗ = D ×R, where the matrix
multiplication is the Hadamard product, which means that it is
carried out elementwise. An appropriate attack strategy would
be to estimate the matrix R given the data. One such attack
technique has been discussed by Liu et al. [2] which uses a
sample of the input and output to derive approximations on the
estimate of the matrix R.

A closely related but different technique uses random data
projection to preserve privacy. In this technique, the data are
projected into a random subspace using either orthogonal matri-
ces (e.g., discrete cosine transform or discrete Fourier transform
as done by Mukherjee et al. [6]) or pseudorandom matrices (as
done by Liu et al. [5] and Teoh and Yuang [21]). It can be shown
that using such transformations, the Euclidean distance among
any pairs of tuples is preserved, and thus, many distance-based
data-mining techniques can be applied. Moreover, the privacy
of the projection scheme can be quantified using the number of
columns of the projection matrix. Fig. 2 shows the distribution
of the error as a function of the output dimension for simulated
data with hyperbolic tangent (tanh) nonlinearity. In the graph,
the input data set D consists of two column vectors x1 and x2,
each with a dimension of 50. The output is generated according
to y1 = f(Rx1) and y2 = f(Rx2), where R is a random
projection matrix (m × 50) with m varying from 5 to 100 and
f refers to the tanh function. In the graph, |xT

1 x1 − yT
1 y1| is

plotted in the y-axis for different values of m. As expected,
increasing m reduces the error due to the projection in a larger
subspace. More about this nonlinearity and its role in privacy
preservation will be discussed in the subsequent sections.

Fig. 2. This graph shows the variation of error in estimating the inner product
between two arbitrary vectors versus the dimension of the output vector. The
output is generated by first randomly projecting the input in the subspace shown
by points on the x-axis and then transforming it by a hyperbolic tangent (tanh)
function. The dimension of the input vectors is 50, as shown by the dotted line.
The y-axis refers to the error. The squares to the left of this line refer to the
dimensionality reduction, and the ones to the right refer to the dimensionality
inflation. Each point in the graph is an average of 100 independent trials.

In a more recent study, Chen et al. [3] proposed a combina-
tion of these techniques: D∗ = A + R×D + N , where A is
a random translation matrix, R is a random rotation matrix,
and N is a noise matrix. This paper further shows how to
break this transformation in practice using a linear regression
technique when the attacker knows a set of input–output pairs.
However, the success of this attack depends on the variance
of the matrices. This paper further defines a privacy measure
known as variance of difference (VoD) which measures the
difference of the covariance matrix between each column of D∗

and D. We discuss this in more detail later.
Data perturbation techniques for categorical attributes have

also been proposed by Warner [22] and Evfimievski et al. [23].
Evfimievski et al. proposed the γ-amplification model [24] to
bound the amount of privacy breach in the categorical data sets.

In this section and the next, we introduce the notations and
discuss in detail about the nonlinear data distortion scheme for
privacy-preserving outlier detection.

IV. NOTATIONS AND PROBLEM DEFINITION

A. Notations

Let x = [x1 x2 · · · xn]T be an n-dimensional input
data vector where each xi ∈ R. Let x∗ = [x∗

1 x∗
2 . . . x∗

p]
T

be the corresponding output generated according to some trans-
formation T : R

n → R
p, where, again, x∗

i ∈ R. In this paper,
we study a very general form of T :

x∗ = T (x) = B + Q × f(A + Wx) (1)

where f : R
m → R

m is a function which2:
1) acts elementwise on its argument;
2) is continuous over the real line R;
3) bounded on all bounded intervals on R;
4) f(x) = O(e|x|

α
) as |x| → ∞ where α ∈ R is a constant

and α < 2.

2These are sufficient but by no means necessary conditions, which are in
place to ensure the existence of the improper integrals that we later derive.
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[B]p×1, [Q]p×m, [A]m×1, and [W]m×n are matrices (with
dimensions shown) whose entries bij , qij , aij , and wij are
each independently drawn from normal distributions with mean
zero and standard deviations σb, σq, σa, and σw, respectively,
e.g., wij ∼ N(0, σw). The normal distribution assumption for
generating random matrices is not new and has been proposed
by several authors [3], [5]. The transformation T was chosen
for three principal reasons: 1) The transformation is flexible
in that one can choosef from a large class of functions;
2) one can set the variances of the Gaussian-distributed matrix
entries to any value and eliminate the bias matrices B and A by
setting σb = 0 and σa = 0, respectively; and 3) intuitively, this
randomized and potentially nonlinear transformation should
perturb data better than the simple projection- or rotation-based
transformation considered so far in the literature and should
thus be less susceptible to attack for wise choices of f and
parameter values. Special cases of T can be instantiated by
choosing specific instances of f , two of which we discuss
in Section VII. E(·) denotes the mean of a random variable,
and σ2(·) denotes its variance. The inner product between two
vectors x and y is denoted by x · y.

B. Problem Definition

In this paper, we analyze the relationship between the in-
put data vectors and their corresponding outputs under the
transformation T . While such a relationship can be studied in
many different ways, we focus on the inner product between
the input and the output. The inner product is an important
primitive which can be used for many advanced data-mining
tasks such as distance computation, clustering, classification,
etc. Specifically, we try to gain insight into the following
problem.

Given two vectors x = [x1 x2 · · · xn]T and y =
[y1 y2 · · · yn]T, let x∗ = T (x) = [x∗

1 x∗
2 · · · x∗

p]
T

and y∗ = T (y) = [y∗
1 y∗

2 · · · y∗
p]

T be the corresponding
output vectors. Since x∗ and y∗ are random transformations of
their parent vectors, we analyze the relationship between x · y
and x∗ · y∗. Our study in this paper focuses on the following:

1) understanding the accuracy of T in preserving distances,
i.e., studying the properties of E[x∗ · y∗];

2) analyzing the privacy-preserving properties of T , i.e.,
under what conditions is T −1(T (D)) �= D in the absence
of auxiliary information.

C. Overview of Approach

In order to illustrate the idea behind our approach, consider
a situation where a single scalar variable x is passed through
a nonlinear function T . Fig. 3 shows the hyperbolic function
as an example of nonlinearity. In this figure, the slope is
parameterized by a single number θ which sets the slope of
the function near the origin. Notice that, for moderate values
of θ the function is invertible. Thus, a value of x outside the
neighborhood of the origin will be mapped to a number close to
−1 or 1, depending on its sign. As the slope becomes steeper,
corresponding to a larger value of θ, the invertibility of the
function diminishes because the range of the function becomes
binary, thus producing a many-to-one mapping. As the function
converges to a step function (with an infinite slope at the origin),

Fig. 3. This figure shows an example of nonlinearity. The hyperbolic tangent
(tanh) function is shown in bold. As the slope of the nonlinearity increases, the
function becomes less invertible. In the limit, as the function’s slope becomes
infinite, it becomes (dotted line) a noninvertible step function. Ψ(x) is an
approximation to tanh(x) that we use to bound the expected distortion due
to this nonlinearity.

Fig. 4. This synthetic data set is used to show the effect of the nonlinear
transformation. (Left) Helical coil represents nominal data, and the two outlying
points represent off-nominal or anomalous data points. The right graph shows
the output after nonlinear transformation as described in (2) using f = tanh.
Notice that the outlying points are far away from the majority of the data,
thus validating the distance-preservation property of this nonlinear distortion
scheme.

the values of x get mapped directly to 0 or 1, depending on the
sign of the variable. In this situation, the function is no longer
invertible because, given an image of the input, it is impossible
to determine the input itself even if the noninvertible function
is known.

Fig. 4 shows a synthetic data set in which the input space
is a helical coil with two outliers. This data set is transformed
via the tanh nonlinear mapping. The output is shown in the
right subplot and indicates that, under this transformation, the
outliers in the input space are still outliers in the output space
of the system.

The following sections derive the quantity E[x∗ · y∗] which
is the expected value of the distance between output vectors
of the system, using Gaussian assumptions about the input
distribution. We compute rigorous bounds on this quantity as
well as the second moment of the output distribution. These
bounds demonstrate that, under certain conditions, the nonlin-
ear mapping is distance preserving for all the data points which
are close to the origin and highly private for all outliers (since
they all get mapped to the same output value). However, as
the system becomes more nonlinear, the bounds increase to
unity. This reduces the probability of inverting the mapping
and increases the privacy of the overall system even for the
points which are non-outliers. The degree to which distances
are preserved decreases as a consequence. It is important to
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note that the example of a single tanh function is given only as
an example. For real-world applications, a full neural network-
based architecture can be used with multiple weights and non-
linearities, thus providing a more complex nonlinear mapping.
Even in this significantly more complex case, however, our
derivation of E[x∗ · y∗] is valid.

V. NONLINEAR DATA DISTORTION

In this section, we present our data distortion method using
a potentially nonlinear transformation. Later, we will analyze
two special cases of this method: 1) the f = tanh function
that corresponds to the nonlinear function used in the neural
networks and 2) f as the identity function. We study the second
case in order to demonstrate that our results lead to those
obtained by other authors that have studied random projections
for privacy preservation. Throughout this paper, we assume
that the outliers are those points which are far away from the
majority of the points. We place the (pseudo) axis such that the
bulk of the points stays close to it, and hence, outliers are far
away from it.

In Section V-A, we introduce the mechanism of this transfor-
mation and then show its distance-preserving properties.

A. Mechanism

Let [D]n×m be a data set owned by Alice in which there
are m instances (columns) each of dimensionality (rows) n.
Alice wants to grant Mark (a data miner) access to this data
set. However, she does not want Mark to look at the raw data.
Therefore, for every vector x ∈ R

n, Alice generates a new tuple
x∗ ∈ R

p according to the following transformation:

x∗ = B + Q × f(A + Wx) (2)

where B, Q, A, and W are all mean zero and constant variance
Gaussian i.i.d. random matrices as defined in Section IV-A.
Fig. 4 shows sample input data and the perturbation achieved
by the transformation f = tanh.

In Section V-B, we discuss how the inner product between
two input vectors is related to their transformed counterpart.

B. Derivation of E[x∗ · y∗]

In this section, we show how E[x∗ · y∗] can be evaluated.
Note that

E[x∗ · y∗] = E
[
x∗

1y
∗
1 + x∗

2y
∗
2 + · · · + x∗

py
∗
p

]
= E [x∗

1y
∗
1] + E [x∗

2y
∗
2] + · · · + E

[
x∗

py
∗
p

]
= pE [x∗

iy
∗
i ] (3)

where i is arbitrary. The last equality follows from the fact that
the entries of each of the matrices are i.i.d. Gaussian variables.
Furthermore, letting wi ∈ R

n denote the ith row of W, we have

x∗
iy

∗
i=

[
bi+

m∑
�=1

qi�f(a�+w� · x)

]
·
[
bi+

m∑
�=1

qi�f(a�+w� ·y)

]
.

In taking the expected value of the aforementioned expres-
sion, one need only to consider those terms that are not linear

in both qi� and bi. All other terms evaluate to zero under the
expected value operator due to the independence of the random
variables concerned and their property of having a mean of
zero. Thus

E [x∗
iy

∗
i ] = E

[
b2
i +

m∑
�=1

q2
i�f(a�+w� ·x)f(a�+w� ·y)

]

= E
[
b2
i

]
+mE

[
q2
i�

]
E [f(a� + w� ·x)f(a�+w� ·y)]

= σ2
b +mσ2

qE [f(ai+wi ·x)f(ai+wi ·y)] (4)

where i and � are interchangeable. Therefore, it suffices to find
E[f(ai + wi · x)f(ai + wi · y)] where i is arbitrary. In the
following paragraphs, we define two vectors x̂ and ŷ which aid
in finding the expected value.

Definition 5.1: Linear Combination of Random Variables:
Let x̂ and ŷ be (n + 1)-dimensional vectors defined as follows:

x̂ = [σwx σa]T = [σwx1 · · · σwxn σa]T (5)

ŷ = [σwy σa]T = [σwy1 · · · σwyn σa]T (6)

where σw and σa are the variances of W and A, respectively,
and x and y are the n-dimensional inputs.

Now, let

X = ai + wi · x (7)

Y = ai + wi · y (8)

be two random variables. The following lemma shows the
distribution of X and Y .

Lemma 5.1: X and Y , as defined earlier, are distributed as

X ∼N
(
0, ‖x̂‖2

)
Y ∼N

(
0, ‖ŷ‖2

)
.

Proof: X and Y are linear combinations of normally dis-
tributed independent random variables; hence, they themselves
are Gaussian random vectors. �

Combining (3), (4), (7), and (8), we can write

E[x∗ · y∗] = p
{
σ2

b + mσ2
qE [f(X)f(Y )]

}
. (9)

The last equation shows that the expected inner product can
be evaluated using the joint probability distribution between X
and Y . Furthermore, since X and Y are Gaussian random vari-
ables, the joint probability distribution is a bivariate Gaussian
distribution gX,Y (x, y):

gX,Y (X,Y )

=
1

2π‖x̂‖‖ŷ‖
√

1−ρ2
X,Y

× exp

⎛
⎝− 1

2
(
1−ρ2

X,Y

) ( x2

‖x̂‖2
+

y2

‖ŷ‖2
− 2ρX,Y xy

‖x̂‖‖ŷ‖

)⎞⎠
(10)

where, for this form to be valid, ‖x̂‖ and ‖ŷ‖ must be nonzero
and ρX,Y , the correlation coefficient of X and Y , must not be
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±1. Unless otherwise stated, hereinafter, we will assume the
following:

1) ‖x̂‖ > 0, and ‖ŷ‖ > 0;
2) ρX,Y �= ±1.

Note that these conditions are equivalent to |x̂ · ŷ| <
‖x̂‖‖ŷ‖. We make these assumptions so that gX,Y has a
consistent explicit bivariate Gaussian expression. When these
assumptions are not satisfied, gX,Y is degenerate, so these as-
sumptions leave us with the most general form of the problem.
ρX,Y can be defined in terms of x̂ and ŷ as

ρX,Y =
x̂ · ŷ

‖x̂‖‖ŷ‖ . (11)

Finally, we can write

E [f(X)f(Y )] =

∞∫
−∞

∞∫
−∞

f(x)f(y)gX,Y (x, y)dxdy.

Note that E[f(X)f(Y )] can be difficult, if not impossible, to
solve explicitly and in full generality, depending on the choice
of f because the antiderivative might be impossible or ex-
tremely difficult to evaluate. However, given f , the previously
mentioned integrals can be approximated numerically [25] for
instances of x and y in such a way that they scale very well
computationally with the input dimension n which enters into
the (trivial) computations of ‖x̂‖, ‖ŷ‖, and x̂ · ŷ alone. Using
E[f(X)f(Y )]approx, one can obtain a numerical approxima-
tion of E[x∗ · y∗] [refer to (9)]. However, the approximation
becomes less accurate the larger the p, m, and σq are. The
conditions we impose on f in Section IV-A ensure the existence
of the improper integrals. We can write

E[x∗ · y∗] = pσ2
b + pmσ2

qE [f(X)f(Y )] . (12)

Next, we state some interesting properties of E[f(X)f(Y )].

C. Properties of E[f(X)f(Y )]

Case 1) If x̂ · ŷ = 0: This implies that X and Y are indepen-
dent (since X and Y are Gaussian vectors). Hence,
E[f(X)f(Y )] = E[f(X)]E[f(Y )].

Case 2) If f is an odd function and x̂ · ŷ > 0 or x̂ · ŷ < 0:
Using the expression for gX,Y (x, y), the following
can be shown.
Lemma 5.2: x̂ · ŷ > 0 ⇒ E[f(X)f(Y )] > 0
Lemma 5.3: x̂ · ŷ < 0 ⇒ E[f(X)f(Y )] < 0

The proofs follow from the symmetry of the
Gaussian distribution.

Since the computation of E[f(X)f(Y )] is difficult in
full generality, in the next section, we develop a bound on
E[f(X)f(Y )] and analyze its properties.

VI. BOUNDS ON E[f(X)f(Y )]

In order to develop a bound on E[f(X)f(Y )], we use the
following lemmas.

Lemma 6.1: |E[f(X)f(Y )]| ≤
√

E[f2(X)]E[f2(Y )].

Proof: For any λ ∈ R,

0 ≤E
[
(λf(X) − f(Y ))2

]
=λ2E

[
f(X)2

]
− 2λE [f(X)f(Y )] + E

[
f(Y )2

]
.

The proof is quadratic in λ, and because it is always nonnega-
tive, it has one root or imaginary roots. Thus, the discriminant

(−2E [f(X)f(Y )])2−4E
[
f(X)2E [f(Y )]

]
+E

[
f(Y )2

]
≤ 0

which, upon rearranging terms and taking the (positive) square
root of both sides, becomes

|E [f(X)f(Y )]| ≤
√

E [f(X)2] E [f(Y )2] .

�
Lemma 6.2 shows the bound on E[f(X)f(Y )].
Lemma 6.2: Let X , Y , x̂, and ŷ be as defined in the previous

sections. It can be shown that

|E [f(X)f(Y )]| ≤

√√√√√
⎛
⎝ ∞∫
−∞

f2(x) · e−x2/(2‖x̂‖2)
√

2π‖x̂‖
dx

⎞
⎠

×

√√√√√
⎛
⎝ ∞∫
−∞

f2(y) · e−y2/(2‖ŷ‖2)
√

2π‖ŷ‖
dy

⎞
⎠.

Proof: This can be easily proved using the definitions of
E[f2(X)], E[f2(Y )], and Lemma 6.1. �

A. Variance Analysis

In practice, given two input vectors, it is difficult to run the
transformation for many independent trials and then take the
average inner products of the output vectors. In this section, we
derive bounds on the variance of the estimated inner product
in order to quantify the error injected for a single run of the
transformation.

Lemma 6.3: Let X and Y be two random variables as
defined earlier. The variance of the inner product between the
output vectors x∗ and y∗ can be written as

σ2
(x∗·y∗) = 2pσ4

b +pmσ2
bσ2

q

(
E
[
f(Y )2

]
+E

[
f(X)2

])
+ pmσ4

q

{
3pE

[
f(X)2f(Y )2

]
−pE [f(X)f(Y )]2

+ (m−1)E
[
f(X)2

]
E
[
f(Y )2

] }
.

Proof: The proof is algebra intensive, so we omit it in this
paper. We plan to put it as a supplementary material. �

The expression for the variance of the inner product between
the two output vectors x∗ and y∗ has several interesting prop-
erties. It is an increasing function of the dimensionality of the
input space and the number of hidden units (m) for a neural
network implementation. These quantities are user-defined and
thus can be changed depending on the application. In many
situations, it may be advantageous to choose p > m, thus
increasing the expected variance in the distribution. Situations
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where m = 1 or p = m may be suited for the applications
where the expected variance needs to be reduced. These param-
eters provide a mechanism to tune the degree of the distortion
in the output signal while maintaining control over the bound
on |E(f(X)f(Y )|. We discuss these tradeoffs more in the next
section.

VII. SPECIAL CASES

In this section, we study two special cases of the general
transformation T , when: 1) f is a sigmoid or tanh function
(a popular choice for nonlinear mapping); and 2) f is an identity
function making the resulting T linear.

A. f = tanh Function

In this section, we analyze the properties of E[x∗ · y∗] when
f is a sigmoid or hyperbolic tangent (tanh) function. Our
choice of f = tanh is not arbitrary; it makes transformation
T resemble that of a two-layer neural network, a tool widely
used in data mining and machine learning for learning nonlinear
relationships from the data. With such a substitution, T takes
the following form.

H(x) = tanh(A + Wx)

x∗ = T (x) = B + QH(x).

However, for the results in this paper to describe such a trained
neural network, one must assume that the weights are indeed
independent and normally distributed with a mean of zero.
The weights are assumed to be normal in much research in
this area, as shown in [26] and [27]. Other researchers have
shown empirically that learning neural networks in high-noise
situations can lead to nearly linear networks [28].

Even with the substitution of f(x) = tanh(x) in (12), the
evaluation of E[tanh(X) tanh(Y )] in closed form is still
intractable due to the absence of antiderivatives. Hence, we
use the bound presented in Lemma 6.2 to gain insight into
E[tanh(X) tanh(Y )]. Let us first evaluate E[tanh2(X)]. By
definition

E
[
tanh2(X)

]
=

∞∫
−∞

tanh2(x) · e−x2/(2‖x̂‖2)
√

2π‖x̂‖
dx.

Unfortunately, an antiderivative does not exist even for this
function. We approximate the tanh function with a linear
function that takes on the values of −1 and 1 far to the left
and right of the origin, respectively, and has a slope of constant
positive value in between. For simplicity, we make this slope
tangent to the slope of the f function at the origin, which means
that the slope of our approximation is 1 over [−1, 1] and zero
otherwise. Let Ψ(X) denote the approximating function

tanh(X)≈Ψ(X)=−1·χ(−∞,−1)+x · χ[−1, 1]+1·χ(1,∞)

where χ is the indicator function. Fig. 3 shows the original tanh
function, the approximation to it, and the step function. It is
easy to see that

Ψ(X)2 = 1 · χ(−∞,−1) + x2 · χ[−1,1] + 1 · χ(1,∞).

By denoting gX(x) as the marginal distribution of X , we get

E
[
tanh2(X)

]
=

∞∫
−∞

tanh2(x) · gX(x)dx <

∞∫
−∞

Ψ(X)2 · gX(x)dx

= 2

−1∫
−∞

gX(x)dx +

1∫
−1

x2 · gX(x)dx

Term 1 = 2

−1∫
−∞

e−x2/(2‖x̂‖2)
√

2π‖x̂‖
dx = 2Φ

(
− 1
‖x̂‖

)

where Φ(·) is the cumulative distribution function of a standard
normal distribution. For evaluating Term 2, we evaluate the
following integral.∫

xe−x2/(2‖x̂‖2)dx = − ‖x̂‖2e−x2/(2‖x̂‖2) + c

Term 2 =
1√

2π‖x̂‖

⎡
⎣ 1∫

−1

x2 · e−x2/(2‖x̂‖2)dx

⎤
⎦

=
−‖x̂‖√

2π

(
e−1/(2‖x̂‖2) + e−1/(2‖x̂‖2)

)
+ ‖x̂‖2

[
Φ
(

1
‖x̂‖

)
− Φ

(
− 1
‖x̂‖

)]

Combine the results

E
[
tanh2(X)

]
<2Φ

(
− 1
‖x̂‖

)
+ ‖x̂‖2

[
Φ
(

1
‖x̂‖

)
−Φ

(
− 1
‖x̂‖

)]

Using a similar argument, it can be shown that

E
[
tanh2(Y )

]
<2Φ

(
− 1
‖ŷ‖

)
+ ‖ŷ‖2

[
Φ
(

1
‖ŷ‖

)
−Φ

(
− 1
‖ŷ‖

)]
.

These results can now be combined to get the
final bound of |E[x∗y∗]| = |E[tanh(X) tanh(Y )]| <
E[tanh2(X)]E[tanh2(Y )] using Lemma 6.2 and the
expressions for E[tanh2(X)] and E[tanh2(Y )].

Fig. 5 shows the bound on |E[tanh(X) tanh(Y )]| with the
variation of ‖x̂‖ and ‖ŷ‖. By taking appropriate limits, it can
be shown that the bound lies between 0 and 1. When both ‖x̂‖
and ‖ŷ‖ are small, i.e., close to the origin, we know that the
expected inner product of their output should be close to 0 as
well. The bound is a good approximation when we are close to
the origin but becomes crude as we move further away from the
origin. This bound gives a quantitative measure of privacy and
is related to the probability of a successful attack given the data
with no additional information. When we operate in a region far
from the origin, the bound tells us that the maximum expected
value of the output distribution is close to 1. This situation is the
generalized version of the intuition described in Section IV-C
and Fig. 3. In that simplified example, the higher the slope, the
less invertible the function, and therefore, the higher the degree
of privacy. Note that, with a finite (but large) slope with enough
samples of inputs and corresponding outputs and under low-
noise conditions, it will be possible to invert the map. However,
the complexity of this inversion increases dramatically with the
use of a full neural network architecture as discussed in this
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Fig. 5. Plot of the bound on |E[tanh(X) tanh(Y )]| versus ‖x̂‖ and ‖ŷ‖.

paper. We therefore take the probability of a successful attack
given the data to be proportional to |E[tanh(X) tanh(Y )]|.

B. Linear Transformation

The second transformation that we study is a linear transfor-
mation. Linear transformations have been widely studied in the
form of random projection and multiplicative perturbation [3],
[5], [20] where the output is linearly dependent on the input

x∗ = T + Rx

where T and R are random translation and rotation matrices.
In order for our transformation T to be linear, we assume
that f is an identity function, i.e., f(x) = x, ∀x ∈ R. Unlike
the previous section, in this section, we show how a closed-
form expression for E[x∗ · y∗] can be developed for such a
transformation.

Using the definition of X and Y , it is easy to show that

E [f(X)f(Y )] = E[XY ] = x̂ · ŷ.

Since x̂ = [σwx σa]T and ŷ = [σwy σa]T

x̂ · ŷ = σ2
w(x · y) + σ2

a

combining these results, we have

E[x∗ · y∗] = pσ2
b + pmσ2

qE[XY ]

= pσ2
b + pmσ2

q (x̂ · ŷ)

= pσ2
b + pmσ2

aσ2
q + pmσ2

qσ2
w(x · y).

This equation shows that for a linear transformation, the inner
product of the output vectors is proportional to the inner product
of the input vectors. In other words, the distances are preserved
on average (up to scaling and translation). This result is in-line
with what some other authors have reported elsewhere [3], [5].

Let us investigate the quality of the bound for this transfor-
mation. Substituting f(X) = X and f(Y ) = Y in Lemma 6.2,
we see that the integrals are E[X2] and E[Y 2], respectively.
Now, since X ∼ N(0, ‖x̂‖2) and Y ∼ N(0, ‖ŷ‖2), E[X2] =
‖x̂‖2 and E[Y 2] = ‖ŷ‖2. Thus

Eest[XY ] ≤ ‖x̂‖‖ŷ‖

where Eest denotes the estimated value of the expectation.
Therefore, we can write the following expression for the bound

E[x∗ · y∗] ≤ pσ2
b + pmσ2

q‖x̂‖‖ŷ‖

where

‖x̂‖ =
√

σ2
w (‖x‖2) + σ2

a

‖ŷ‖ =
√

σ2
w (‖y‖2) + σ2

a.

Note that the true value of E[x∗ · y∗] and the estimated value
differ only in θ, the angle between x̂ and ŷ. Fig. 6 shows a plot
of E[x∗ · y∗] as θ varies. For all the figures, the circles show
the true variation of E[x∗ · y∗] versus θ. The squares represent
the bound. Note that, for all the figures, the bound correctly
represent the inner product only when θ = 0,±2π,±4π, . . ..
The three figures demonstrate the effect on the output for three
values of ‖x̂‖ and ‖ŷ‖. As can be seen, the bound is a good
approximation of the true value when ‖x̂‖ and ‖ŷ‖ are small.

VIII. PRIVACY ANALYSIS AND DISTANCE PRESERVATION

FOR ANOMALY DETECTION

The essence of perturbation-based privacy preservation in
the context of data mining is that if a transformed data set
or query result is provided to a user, it should be difficult or
impossible to reconstruct the original untransformed data set.
While several methods have been used to address this issue, the
notion of function invertibility has not been used in this context
in the past. Essentially, if one produces a set of N operations
O1, O2, . . . , ON and passes a data set through those operations,
the privacy will be preserved if the chain ON (ON−1, . . . , (O1))
is not invertible either functionally due to the randomization of
the output or because of prohibitively high computation cost. In
the past, researchers have analyzed the effects of randomization
as a means of privacy protection and developed several sophis-
ticated schemes to undo the randomization, thereby recovering
either the original data or a distribution. We present a general
methodology explaining why randomization is breakable and
propose a stronger functional privacy guarantee based on the
noninvertibility of functions. Note that the privacy guarantees
of any linear orthogonal transformation (such as in [5] and [6])
hold true for our transformation as well.

Since our privacy model is related to the concept of function
invertibility, we first define an invertible function.

Definition 8.1—Invertible Function: A function f : D → R
is invertible iff 1) it is one-to-one (injective), i.e., ∀(d1, d2) ∈
D, f(d1) = f(d2) ⇒ d1 = d2, and 2) it is onto (surjective), i.e.,
∀r ∈ R, ∃d ∈ D, such that r = f(d).

In order to diminish the probability of inverting a function
and thus attack a privacy-preservation scheme, the function
must be such that there exists a many-to-one mapping from
the domain of the function to the range of the function. In this
situation, given the output, it would be difficult or impossible to
map back to the original data space. In the event that only the
outputs are provided without the inputs, this reverse mapping
would be made more difficult. In the following paragraphs, we
formally define this notion of privacy.

Definition 8.2—Privacy-Preserving Transformation: A
transformation (or a function) T is privacy preserving if, for
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Fig. 6. Variation of the output E[x∗ · y∗] with respect to θ (in radians), the angle between x̂ and ŷ. Circles represent the true output and squares represent the
bound. For all figures, the bound is independent of θ. For a fixed ‖x̂‖ and ‖ŷ‖, the actual output oscillates and equals the bound only at θ = 0,±2π, . . .. As
‖x̂‖ → 0 and ‖ŷ‖ → 0, the actual value approaches the estimated value. The bound is very tight when x̂ and ŷ are close to the origin. (a) ‖x̂‖ = ‖ŷ‖ = 1.
(b) ‖x̂‖ = ‖ŷ‖ = 0.5. (c) ‖x̂‖ = ‖ŷ‖ = 0.25.

any data set D, the composition transformation T −1(T (D))
does not give D back, i.e., T −1(T (D)) �= D.

Therefore, given the output T (D) and T , it is impossible to
get D back.

The idea of using noninvertible functions for privacy preser-
vation is not new; it has been used successfully thus far in
the field of security and cryptography [17], [29]. The hash
functions, such as the secure hash algorithm and the message-
digest algorithm 5, were developed with the basic idea that
no polynomial time algorithm exists for finding the reverse
mapping which will break the encryption. To the best of our
knowledge, this concept has not yet been explored in the con-
text of privacy-preserving data mining. In the past, researchers
have only analyzed the situations in which the transformation
T is either random multiplicative, additive noise, or both.
Mathematically, both of these transformations are invertible
and thus are not privacy preserving. This claim has been
bolstered in recent years by the development of sophisticated
techniques for thwarting these transformations such as in [2]
and [3]. It is fairly straightforward to show that our nonlinear
noninvertible distortion technique is resilient to such attacks. Of
course, privacy comes at a price—higher privacy decreases the
accuracy.

Data privacy usually comes at a price. The utility or useful-
ness of the data is often lost during privacy preservation using
perturbation or distortion schemes. For example, consider the
transformation

f : R → {0, 1}.

By Definition 8.2, this transformation is privacy preserving.
However, since all the data are mapped to a single bit, it is
not directly clear how important the data will be for data-
mining purposes. This tradeoff can be controlled easily in our
framework by changing the slope (θ) of the nonlinear function
used. In the remainder of this section, we discuss how our
data distortion scheme offers data utility in the case of outlier
detection.

In this paper, we have used the definition of outliers as in
[30] and [31]. By definition, distance-based outliers are those
for which:

1) there are fewer than p other points at a distance of d;
2) the distance (or the average distance) to the k nearest

neighbors is the greatest.

Note that the crux of all these computations uses a distance
metric defined on the input space. Specifically, let

dist : R
n × R

n → R, dist∗ : R
p × R

p → R

be a distance measure on the input and output spaces, re-
spectively, which computes the Euclidean distance between
two vectors x and y. Now, three cases can occur after the
transformation (using tanh as the nonlinearity).

1) x and y are not outliers. In this case

dist∗ (T (x), T (y)) ≈ dist(x,y)

assuming that x and y lie close to the origin and the tanh
function is linear in this region. In this case, the distances
are approximately preserved. The privacy protection is
typically based on linear randomization (rotation and
translation) and therefore less. In our scenario, this is ac-
ceptable since the normal operating conditions are similar
for many airline companies, and hence, the lesser privacy
guarantee for these data points may be acceptable.

2) x is an outlier while y is not. In this case

dist∗ (T (x), T (y)) ≈ dist(c,y)

where c is a constant. Note that the distances are not
preserved. However, with a proper choice of threshold,
we can distinguish between c and y. In this case, given
c, it is impossible to find x. This is because the transfor-
mation is noninvertible since x, being an outlier, is far
away from the origin. Thus, the privacy guarantee is high
for all outliers. This is important since outliers may be
specific to an airline company, and mapping all outliers to
a single entity may preserve privacy while still allowing
their detection as long as they are away from the non-
outlier data points.

3) x and y are outliers. In this case

dist∗ (T (x), T (y)) ≈ dist(c, c) ≈ 0

which implies that all outliers approximately get mapped
to the same points. Since we are not interested in distin-
guishing the outliers, this mapping is acceptable. More-
over, this ensures that given c, it is impossible for an
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attacker to figure out if it came from x or y (one-to-many
mapping).

Referring back to Fig. 6, we see that, for a linear transforma-
tion, the quantity E[x∗ · y∗] easily bounds the relative positions
of the original input vectors, particularly, when they are close
to the origin. This implies that, regardless of the nature of the
linear transformation, it will always be possible to reidentify
some important properties of the data set if those vectors
lie close to the origin. However, as they move away from
the origin, the actual variation in the expectation sinusoidally
oscillates under the bound. Because the integral needed to
compute E[x∗ · y∗] is intractable for nonlinear transformations,
we can only analyze the bound given in Fig. 5 and see that
the transformation becomes highly nonlinear and therefore
highly private in the situation where E[x∗ · y∗] is close to
unity.

IX. EXPERIMENTAL RESULTS

In this section, we demonstrate the quality of our non-
linear transformation in preserving the inner product among
the feature vectors. We provide experimental results on a
publicly available high-fidelity aircraft engine simulation data
set [commercial modular aero-propulsion system simulation
(C-MAPSS)] and a proprietary aviation data set (Carrier X).

A. Simulation Environment and Data Set

Our experimental setup uses a distance-based outlier de-
tection algorithm, Orca, developed by Bay and Schwabacher
[32] to test the quality of the distance preservation of our
transformation. Orca assigns an anomaly score (between 0 and
1) to each point in the data set based on its distance to its
nearest neighbors. The higher the distance, the higher the score.
Our data distortion technique preserves distances if the data are
close to the origin and distorts them otherwise. Therefore, a
distance-based outlier detection technique should be able to de-
tect outliers under our potential nonlinear transformation. Orca
is written in C++ with a wrapper written in Matrix Laboratory
(MATLAB). The default value for the distance computation
was chosen as the average distance to five nearest neighbors.
All our simulations were run on a 64-bit 2.33-GHz quad-core
dell precision 690 desktop running Red Hat Enterprise Linux
version 5.4 having 2 GB of physical memory.

In our experiments, we report the detection rate. By detection
rate, we mean the percentage of outliers which are preserved
even after the transformation. We repeat this experiment several
times and report the mean and the standard deviation of the
detection rate.

The first data set is the simulated commercial aircraft engine
data. These data have been generated using the C-MAPSS
[33]. The data set contains 6875 full flight recordings sam-
pled at 1 Hz with 29 engine and flight condition parameters
recorded over a 90-min flight that includes ascent to cruise at
35 000 ft and descent back to the sea level. This data set has
32 640 967 tuples. Interested readers can refer to this data set at
DASHlink.3

3https://dashlink.arc.nasa.gov/data/c-mapss-aircraft-engine-simulator-data/

Fig. 7. Plot of the anomaly scores of (star) original C-MAPSS and (diamond)
transformed data sets using linear transformation as produced by a distance-
based outlier detection technique, Orca [32]. The x-axis shows the indices
of the top 500 anomalies as found by Orca. The diamond markers show the
anomaly scores of the same 500 indices after the transformation.

Fig. 8. Plot of the anomaly scores of (star) original C-MAPSS and (diamond)
transformed data sets using tanh transformation as produced by a distance-
based outlier detection technique, Orca [32]. The x-axis shows the indices
of the top 500 anomalies as found by Orca. The diamond markers show the
anomaly scores of the same 500 indices after the transformation.

Fig. 9. Plot of the anomaly scores of (star) original C-MAPSS and (diamond)
transformed data sets using squared transformation as produced by a distance-
based outlier detection technique, Orca [32]. The x-axis shows the indices
of the top 500 anomalies as found by Orca. The diamond markers show the
anomaly scores of the same 500 indices after the transformation.

The second data set is a real-life commercial aviation data
set of a U.S. regional carrier (Carrier X) consisting of 3573
flights.4 Each flight contains 47 variables. Out of these, 39 are
real-valued (continuous) attributes while the remaining seven
are discrete (binary). In our previous study (not reported in this
paper), we have seen that there are several anomalies in this
data set that are detectable by Orca. We hope to detect a high
percentage of those outliers, even after our nonlinear distortion.
Unlike the C-MAPSS data set which is public, the Carrier X
data set is proprietary, and hence, there is a strong motivation
to protect the data privacy. Note that our technique only distorts
the real-valued attributes. However, the code works even if we
include discrete attributes.

4We cannot release the name of the carrier due to the data-sharing agreement.
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Fig. 10. Plot of the detection rate of C-MAPSS versus different parameters. The reference set is the top 500 outliers assigned by Orca. We refer to detection rate
as the percentage of outliers in that list which are correctly identified after the transformation. The results are an average of 50 independent trials. (a) Detection
rate versus slope. (b) Detection rate versus nonlinearity. (c) Detection rate versus data range.

B. Performance Results

In this section, we show the quality of the outlier detection
before and after the transformation. For all the experiments, we
have preprocessed the data sets by transforming each variable
independently to lie between 0 and 1.

1) C-MAPSS Data Set: Fig. 7 shows the effect of linear
distortion on the outcome of the anomaly scores. For this
experiment, we ran Orca with the default parameters on the
C-MAPSS data set. The output of the algorithm is a set of
anomaly scores for each point. We then sort these points and
select the top 500 among them. The stars in Fig. 7 show the
score output by Orca on the original data set after the anomaly
scores have been normalized between 0 and 1. In order to distort
the data set, we used the following transformation

T (x) = B + Q × (A + Wx).

Using this transformation, we again run Orca on this distorted
data set. The diamond markers in Fig. 7 show the normalized
anomaly scores of the same 500 outliers in the distorted data
set. As can be seen in the figure, there is a high degree of
correlation between the two scores. Since a linear transforma-
tion preserves distances for any outlier point, distances to its k
nearest neighbors are also preserved. This is why we see very
similar anomaly scores for the two experiments. Notice that the
variation in the anomaly scores is higher than that of the original
data due to the random linear projection. These variations
become more emphasized under nonlinear transformations.

Fig. 8 shows the effect of nonlinear distortion on the
C-MAPSS data set using the tanh function. As before, the star
markers represent the outlier scores of the top 500 anomalies
on the original data set. For the distortion, we have used the
following transformation

T (x) = B + Q × tanh(A + Wx).

The diamond markers show the anomaly scores of the same
500 outliers after the distortion. In this case, there are more
deviations in the anomaly scores compared to the linear dis-
tortion case. Notice that, although the transformation provides
a high degree of privacy compared to the linear transforma-
tion, the highest scoring anomalies are still discovered by the
anomaly detection algorithm. This result supports the intuition
and the derivations shown earlier: Nonlinear transformations
can allow anomalies to pass through a privacy-preserving
transformation.

We have also tested a quadratic nonlinearity, i.e., f(x) = x2:
T (x) = B + Q × (A + Wx)2. Fig. 9 shows the effect of this
transformation. In this case as well, there is a good correlation
among the true and transformed outliers. Notice that the overall
variation is lower than that of the tanh transformation. In
this case, the privacy preservation is high compared to the
linear distortion due to the fact that the nonlinear function is
noninvertible.

Our next experiments analyze the variation of the detection
rate and privacy preservation using this data set and the tanh
function. First, we have experimented with an increasing slope
of the transformation (similar to Fig. 3). As shown in Fig. 10(a),
the detection rate is very sensitive to the slope—it drops to
approximately 4% for a slope of 1.43. This is as expected
since, with an increasing slope, more of the data get mapped
to the constant regions, making it extremely difficult for the
outlier detection algorithm to extract the anomalous patterns.
The privacy, using such high-slope transformation, is expected
to be very high.

For this data set, we also show the detection rate when
different types of distortion are used. As shown in Fig. 10(b),
for the linear distortion, the mean detection rate is 91.28% with
a standard deviation of 2.36%. Similar results for the square
distortion are 87.48% and 2.11%, respectively. Finally, using
the tanh function, we get a mean detection rate of 78.72% with
a 5.82% variation. Fig. 10(b) gives a plot of the mean and one
standard deviation estimate of the variation in the detection rate.

Finally, in Fig. 10(c), we give an idea of the amount of
privacy that is preserved as the range of the data is varied. Using
our bound in Lemma 6.2, we see that if the data lie close to the
origin (range of 0–0.1), the privacy is very low. As the range of
the data is increased, the privacy is increased. This explains our
hypothesis that the nearer the data is to the origin, the lower the
data privacy is and vice versa. Therefore, in order to have more
privacy, one might map the data to a large range in which case,
as argued, noninvertibility preserves data privacy.

2) Carrier X Data Set: We applied two types of transforma-
tion on this data set. Fig. 11 shows the outlier detection results
using a linear transformation. As before, the blue stars refer
to the actual top 500 anomalies while the red diamonds refer
to the scores of the same 500 points after the transformation.
We noticed that, on average, the detection rate is 88% with
a standard deviation of 1.3% for this linear transformation.
Similarly, Fig. 12 shows the anomalies detected when tanh
nonlinearity is used. In this case, we have observed a mean
detection rate of 68% with a standard deviation of 1.7%.
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Fig. 11. Plot of the anomaly scores of (star) original Carrier X and (diamond)
transformed data sets using linear transformation as produced by a distance-
based outlier detection technique, Orca [32]. The x-axis shows the indices
of the top 500 anomalies as found by Orca. The diamond markers show the
anomaly scores of the same 500 indices after the transformation.

Fig. 12. Plot of the anomaly scores of (star) original Carrier X and (diamond)
transformed data sets using tanh transformation as produced by a distance-
based outlier detection technique, Orca [32]. The x-axis shows the indices
of the top 500 anomalies as found by Orca. The diamond markers show the
anomaly scores of the same 500 indices after the transformation.

Therefore, for all these experiments, we see that our distor-
tion technique provides a good detection rate for different types
of nonlinearity used.

X. CONCLUSION

We have shown a general method for computing the bounds
on a nonlinear privacy-preserving data-mining technique with
applications to anomaly detection. We have also shown the
connection between the invertibility of a function and privacy
preservation and have computed rigorous bounds on the rela-
tionship between the distances of the input vectors and the ex-
pected distances of the output vectors. These nontrivial bounds
show that privacy preservation increases as the input vectors
move further from the origin. We have also demonstrated that,
for real-world applications such as engine health monitoring,
the nonlinear transformation approach allows anomalies to pass
through the transformation while maintaining a high degree of
privacy. We have given a novel method for quantifying privacy
due to a general nonlinear transformation. We have made all
the source codes of this paper and the supplemental information
available at DASHlink [34].
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