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Abstract—This paper presents NEUROSPF, a tool for the
symbolic analysis of neural networks. Given a trained neural
network model, the tool extracts the architecture and model
parameters and translates them into a Java representation that
is amenable for analysis using the Symbolic PathFinder symbolic
execution tool. Notably, NEUROSPF encodes specialized peer
classes for parsing the model’s parameters, thereby enabling
efficient analysis. With NEUROSPF the user has the flexibility to
specify either the inputs or the network internal parameters as
symbolic, promoting the application of program analysis and
testing approaches from software engineering to the field of
machine learning. For instance, NEUROSPF can be used for
coverage-based testing and test generation, finding adversarial
examples and also constraint-based repair of neural networks,
thus improving the reliability of neural networks and of the appli-
cations that use them. Video URL: https://youtu.be/seal8fG78LI

I. INTRODUCTION

Deep Neural Networks (DNNs) have gained immense pop-
ularity in recent years and have been used in a variety of
applications including banking, health-care, image and speech
recognition, and perception in self-driving cars. With this
widespread use of DNNs also come serious safety and security
concerns. As a result, several techniques for testing [1], [2],
[3] and verification [4], [5], [6] of neural networks have been
developed recently, the majority of which have built dedicated
tools.

In this work, we take a different approach, and we present
NEUROSPF, which builds on a mature, widely used, program
analysis tool, namely, Symbolic Path Finder (SPF) [7], to
support analysis of neural networks, while leveraging the
techniques that are already incorporated in SPF.

SPF [7] combines symbolic execution [8] with model check-
ing for automated test case generation and error detection
in Java byte-code programs. It supports both classical as
well as concolic execution, it measures coverage and it is
integrated with different constraint solvers, implementing also
incremental analysis and solving – all these features could be
useful for the analysis of neural networks as well. NEUROSPF
extends SPF to support analysis of neural network models
efficiently. To this end, NEUROSPF first translates a trained
neural network model specified in Keras into Java and uses
specialized peer classes to enable efficient parsing of the
model’s parameters. Furthermore, NEUROSPF enables users to
make both the network inputs (e.g., input pixels for an image

classifier) and the network parameters (weights and biases)
symbolic, via special annotations. This flexibility opens up
the possibility for several interesting applications.

For instance, NEUROSPF can be used for testing and test
input generation with respect to coverage criteria that are
relevant for neural networks [1], [9], [10], [11], [12]. This can
be achieved by solving the relevant constraints collected by
NEUROSPF. NEUROSPF can also be used for analyzing the
robustness and for generating adversarial examples in neural
networks, as studied in [13], [14], [15], which all propose
specialized symbolic execution techniques for adversarial test-
ing. Furthermore, the symbolic analysis in NEUROSPF can
enable the automatic inference of neural network properties as
advocated in [16]. These properties are network preconditions
built based on the constraints collected with a symbolic
analysis of the network. We also envision that NEUROSPF
can enable automated repair for neural networks, by leveraging
existing constraint-based repair techniques from the software
engineering community [17], [18], [19], [20] and adapting
them to the specifics of neural networks. We summarize our
contributions as follows.

• We present NEUROSPF, a tool which facilitates the sym-
bolic analysis of neural networks; NEUROSPF can handle
feed-forward neural networks with dense, convolutional,
and pooling layers, with ReLU activations and Softmax
functions.

• To achieve efficient analysis, NEUROSPF encodes spe-
cialized peer classes for parsing and storing the model’s
parameters.

• We evaluate NEUROSPF on three neural networks
(MNIST low quality, MNIST high quality, and CIFAR-
10), showcasing NEUROSPF’s ability of handling com-
plex neural network models and highlighting the impor-
tance of using the peer classes.

• We also provide a detailed demonstration on how to use
NEUROSPF, illustrating robustness analysis for a neural
network model trained on the MNIST dataset.

The envisioned users for NEUROSPF include researchers
and software engineers interested in applying symbolic exe-
cution for testing and debugging neural network models. The
challenge we propose to address stems from the need to better
understand and debug neural networks which are essentially
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black boxes. The methodology it implies for its users is
described in detail in Section III. The results of preliminary
validation are described in Section IV. We further plan for
in-depth studies on the use of NEUROSPF in the applications
that we outlined: testing, attack generation, property inference
and automated repair for neural networks.

II. BACKGROUND

A. Neural Networks

Neural networks (NNs) [21] are machine learning algo-
rithms that can be trained to perform different tasks such as
classification and regression. NNs consist of multiple layers,
starting from the input layer, followed by one or more hidden
layers (such as convolutional, dense, activation, and pooling),
and a final decision layer. Each layer consists of a number
of computational units, called neurons. Each neuron applies
an activation function on a weighted sum of its inputs;
N(X) = σ(

∑
i wi · Ni(X) + b) where Ni denotes the value

of the ith neuron in the previous layer of the network and the
coefficients wi and the constant b are referred to as weights
and bias, respectively; σ represents the activation function. For
instance, the ReLU (rectified linear unit) activation function
returns its input as is if it is positive, and returns 0 otherwise,
i.e., σ(X) = max(0, X). The final decision layer (also known
as logits) typically uses a specialized function (e.g., max
or softmax) to determine the decision or the output of the
network.

B. Symbolic Execution and Symbolic PathFinder

In symbolic execution [8] a program is executed with
symbolic (i.e., unspecified) inputs rather than concrete inputs.
The goal is to generate mathematical constraints from the
conditions in the program, which can be solved to generate
test inputs. Symbolic PathFinder (SPF) [7] builds on top of
Java PathFinder model checker to enable symbolic execu-
tion of Java bytecode programs. SPF implements a custom
JVM to symbolically execute bytecode instructions and uses
several off-the-shelf solvers to solve the collected symbolic
constraints. SPF can perform both standard (exhaustive) sym-
bolic execution and concolic execution, by collecting symbolic
constraints along concrete executions. Both can be leveraged
for neural network analysis [13], [14], [15].

III. TOOL DESCRIPTION

1) Methodology: Figure 1 shows the overall framework
of NEUROSPF. Users need to input the Keras model into
the NEUROSPF. The translator component will generate:
(1) a JSON file that provides critical information about the
network model such as the dimensions of the weights and
biases, number and types of layers, (2) Weights and Bias
files that contain the values of the weights and biases for
all layers, (3) Config file (SPF-DNN.jpf) which contains
configuration settings for SPF i.e., minimum and maximum
range of symbolic variables, type of constraint solver to be
used etc. and (4) the Java code representation of Keras model.

The JSON file along with weights and bias files are the in-
puts to the Parser component. The parser reads the dimensions
of each layer from the JSON file and loads the weights and
biases from the respective files via specialized Peer classes.
Once the files have been read via Peer classes, SPF is executed.
The Java code along with the Config file form the input to SPF.
The user has the option to edit the Config file according to
their requirements.

The analysis can be further configured via user annotations
which specify which inputs or parameters to be considered
symbolic. The output of the tool consists of the analysis
results computed by SPF (e.g., assert violations, coverage
information, time and memory statistics, etc.).

2) Translation to Java: Figure 2 shows the Java represen-
tation of an activation layer with ReLUs. Layer 7 is an array
with size 128. The for loop traverses through the output of
previous layer i.e., layer 6. If the output is > 0, then the
neuron is activated by setting it to the output value of the
corresponding neuron of previous layer otherwise the value is
set to 0.

The translator creates an InternalData class that contains
arrays to store the weights and biases of neural network layers.
InternalData also provides a function to read weights/biases
using I/O libraries. This is helpful if the user wants to use the
standalone Java code to run the neural network model with-
out symbolic execution. Otherwise, SymbolicDriver reads the
weights/bias files using specialized Peer classes for efficient
symbolic execution. A JSON file is also generated. It encodes
information about the architecture of the model.

As mentioned, the translator also generates a Config file
(SPF-DNN.jpf) to specify configuration settings for SPF. Fig-
ure 3 shows a sample Config file. Line 1 specifies the target
class to be executed using SPF. Lines 2 and 3 specify the
classpath and sourcepath respectively. Lines 4 and 5 specify
the minimum and maximum range of symbolic variables i.e.,
0 and 255 respectively. Line 6 specifies the type of constraint
solver to be used, i.e., Z3 [22].

3) Parser and Peer Classes: There are three inputs to the
Parser component i.e., the JSON file (which contains the
description of the architecture of the neural network), weights
and biases files for the neural network. The parser reads
the JSON file and loads data from weights and biases files.
NEUROSPF reads these files via Peer classes in SPF. This
is a mechanism for executing Java code in the native VM
instead of SPF’s custom VM, which is much more efficient
than to read files directly, as I/O operations significantly slow
down the symbolic execution in SPF (see the next section for
a comparison between NEUROSPF and plain (Vanilla) SPF).

DNNLayer is an abstract class and there are concrete classes
for each type of layers. For example, ActivationLayer, Convo-
lutionLayer and DenseLayer are all included in NEUROSPF.
There are specific member variables and methods for these
layers depending on their functionality. This information is
filled by parsing the JSON file. Specific layers for other neural
network types can be added as needed. NEUROSPF currently



Fig. 1. Overview of NEUROSPF

1 double[] layer7=new double[128];
2 for(int i=0; i<128; i++)
3 if(layer6[i]>0) layer7[i]=layer6[i];
4 else layer7[i]=0;

Fig. 2. DNNt.java - Activation Layer (ReLU)

1 target=neurospf.SymbolicDriver
2 classpath=${jpf-symbc}/build/examples/
3 sourcepath=${jpf-symbc}/src/examples/
4 symbolic.min_double=0.0
5 symbolic.max_double=255.0
6 symbolic.dp=z3

Fig. 3. Config File (SPF-DNN.jpf)

supports Keras models but we plan to add support for other
machine learning libraries in the future.

4) Symbolic Driver: The symbolic driver provides the main
entry point for running the neural network. Figure 4 shows an
example SymbolicDriver created for an image classifier. Line
3 creates an object of InternalData class. Line 4 reads the
neural network architecture from the dnn.json file. Lines 5 -
8 read the bias files and stores them into 1D arrays. Lines 9
- 12 read the weights files and stores them to arrays of (2D
for dense layer and 4D for convolutional layer) InternalData
class. Line 13 creates an object of DNNt class and pass the
object of InternalData to its constructor. Line 14 executes the
run method of DNNt class.

IV. EVALUATION

In this section, we present the application of NEUROSPF
in the popular field of adversary generation for neural net-
work models. Specifically, we demonstrate how NEUROSPF
can be used to generate adversarial examples for a neural
network model trained on MNIST dataset (henceforth named
MNIST-LowQuality). Later in this section we also measure
the run-time overhead incurred by the Java translation on
neural networks trained for image classification (using MNIST
and CIFAR-10 data sets). We also compare the performance
(execution time) of Vanilla SPF (SPF without the peer classes)
and NEUROSPF.

1 Method to load image in image[28][28] array
2 ...
3 InternalData internaldata = new InternalData();
4 DNNGeneralize.readDataFromFiles(path+"params\\",

path+"dnn.json");
5 internaldata.biases0 = (double[]) DNNGeneralize.

get_data("biases0");
6 internaldata.biases2 = (double[]) DNNGeneralize.

get_data("biases2");
7 internaldata.biases6 = (double[]) DNNGeneralize.

get_data("biases6");
8 internaldata.biases8 = (double[]) DNNGeneralize.

get_data("biases8");
9 internaldata.weights0 = (double[][][][])

DNNGeneralize.get_data("weights0");
10 internaldata.weights2 = (double[][][][])

DNNGeneralize.get_data("weights2");
11 internaldata.weights6 = (double[][]) DNNGeneralize

.get_data("weights6");
12 internaldata.weights8 = (double[][]) DNNGeneralize

.get_data("weights8");
13 DNNt model=new DNNt(internaldata);
14 int label = model.run(image);

Fig. 4. SymbolicDriver.java

A. Robustness Analysis

We executed MNIST-LowQuality model using NEUROSPF
using a randomly selected input image. The image consisted
of 784 pixels. The image is represented using a 2D array of
size [28][28]. For illustration purposes, we made one pixel
(15,15) symbolic and added an assertion that triggers an error
when the output class is not '8'. Figure 5 shows the sample
annotations for making one pixel symbolic. NEUROSPF took
54 seconds to generate a counterexample, i.e., an adversarial
image that led the neural network to change its output to
label '9' from label '8'. Figure 6 shows the adversarial input
found. This simple example demonstrates how the symbolic
analysis of NEUROSPF can be used to assess the neural
network model’s robustness to adversarial perturbations and to
generate adversarial examples. A similar analysis is described
in [14], which uses a dedicated symbolic execution tool to
find adversarial examples, by modifying a small set of pixels
(in some cases one or two). These pixels are discovered with
an importance analysis which can potentially be leveraged in



1 image[15][15][0]=Debug.addSymbolicDouble(image
[15][15][0],"sym_15_15");

2 ....
3 if(label!=8) {
4 Debug.getSolvedPC();
5 Debug.getSymbolicRealValue(a[15][15][0]);
6 assert(false);
7 }

Fig. 5. SymbolicDriver.java - Code for Adversarial Generation

'8' '9'
Fig. 6. Label '8' → '9', by changing pixel([15][15]) value from 0 to 218

NEUROSPF as well.

B. Measuring Run-time Overhead

Experiments were performed on a Windows 10.0 with Intel
Core-i9 and 64GB RAM. The NEUROSPF tool along with
neural network models are available at https://github.com/
neurospf/neurospf.

Table I compares the performance (execution time) of the
following: (1) Keras model representation, (2) Java code
representation, (3) Vanilla SPF (SPF without peer classes) and
(4) NEUROSPF. Our experiments are based on the commonly
used datasets MNIST and CIFAR-10. The MNIST models are
10-layer convolutional neural networks (CNNs) and have the
typical structure of modern neural networks such as convo-
lutional/dense, max-pooling and softmax layers. The CIFAR-
10 model is a 15-layer CNN with 890k trainable parameters.
The results show that all 4 settings gives the same accuracy
confirming the correctness of our implementation.

For MNIST-LowQuality model, the Keras representation is
able to predict labels for 100 images in 0.1 seconds whereas
Java representation takes 0.2 seconds. Vanilla SPF times
out while NEUROSPF takes just 34.1 seconds. For MNIST-
HighQuality model, the Keras representation is able to predict
labels for 100 images in 0.1 seconds whereas Java represen-
tation takes 0.2 seconds. Vanilla SPF takes 2424.3 seconds
(40 minutes) while NEUROSPF takes just 43.3 seconds. For
CIFAR-10 model, Keras representation is able to predict labels
for 100 images in 0.1 seconds whereas Java representation
takes 4.2 seconds. Vanilla SPF times out while NEUROSPF
takes 1908.1 seconds (32 minutes).

As expected, the Keras representation outperforms the Java
representation in execution time but the major benefit of
the Java program representation is that the existing software
testing and verification techniques and tools for Java can be
applied to deep learning models, with reasonable effort. Our
results also show that NEUROSPF significantly outperforms
the original SPF in terms of execution time. This is because
NEUROSPF encodes specialized peer classes for efficient
parsing of NN model parameters.

TABLE I
COMPARISON BETWEEN KERAS MODEL REPRESENTATION, JAVA CODE

REPRESENTATION, VANILLA SPF AND NEUROSPF; ”-” INDICATES
TIME-OUT OF 1 HOUR

Model Acc Keras Java SPF NEUROSPF
% Time(s) Time(s) Time(s) Time(s)

MNIST-LowQ 96.0 0.1 0.2 - 34.1
MNIST-HighQ 100.0 0.1 0.2 2424.3 43.3
CIFAR-10 87.0 0.1 4.2 - 1908.1

The results indicate that NEUROSPF is effective in exe-
cuting neural networks with complex features (convolutional/-
dense, max-pooling, ReLU and softmax layers). They do not
give an indication of the scalability of a symbolic analysis,
which depends on the number of variables that are marked as
symbolic and the number of symbolic paths and constraints
that are generated. We view NEUROSPF as an open source
platform for researchers and software engineers who want
to experiment with different symbolic analysis on neural
networks using familiar languages and techniques. Simply
running symbolic execution over the whole network (with all
inputs symbolic) will likely not scale and specialized heuristics
will be needed to enable NEUROSPF to perform specific
analyses.

V. CONCLUSION

We presented the NEUROSPF tool that analyzes neural net-
works using Symbolic PathFinder. One of the challenges with
the adoption of neural networks in practice is to ensure their
reliability and security. The paper shows how NEUROSPF can
be used to check for adversarial robustness in neural networks.
In the future, we plan to investigate other applications of
NEUROSPF, such as test input generation, property inference
and automated constraint-based repair.
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