Capturing & Analyzing Requirements with FRET

Dimitra Giannakopoulou, Anastasia Mavridou, Tom Pressburger, Johann Schumann

Lockheed Martin Cyber-Physical System Challenge, component FSM:

= Exceeding sensor limits shall latch an autopilot pullug when the pilot is not in
control (not standby) and the system iswhout failures (not apfail).

every time these conditions hold or only when they become true?

= The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

= The autopilot shall change states from NOMINAL to MANEUVER when the
sensor data is not good.

= The autopilot shall change states from NOMINAL to STANDBY when the pilot is
in control (standby).

= The autopilot shall change states from MANEUVER to STANDBY when the pilot
is in control (standby) and sensor data is good.

are these requirements consistent? does my model/code satisfy them?

language formal analysis tools understand

var autopilot: bool = (not standby) and supported and (not
apfail);

var pre_autopilot: bool = false -> pre autopilot;

var pre_limits: bool = = false -> pre limits;

guarantee "FSM-001v2" S((((((autopilot and pre_autopilot and
pre_limits) and (pre (not (autopilot and pre_autopilot and
pre_limits)))) or ((autopilot and pre_autopilot and
pre_limits) and FTP)) => (pullup)) and FTP), ((((autopilot
and pre_autopilot and pre_limits) and (pre (not (autopilot
and pre_autopilot and pre_limits)))) or ((autopilot and
pre_autopilot and pre_limits) and FTP)) => (pullup)));

do you speak Fretish?: an extensible grammar defines a restricted
natural language with unambiguous semantics

requirements made up of fields for scope, conditions, component,
timing, response; help users think of all aspects

explanations of the formal semantics in various forms: natural
language, diagrams, interactive simulation

compositional (hence maintainable and extensible) generation of
formulas from requirement fields for analysis tools

checks consistency of requirements and provides feedback

connects requirements to Simulink models for verification with
Cocosim and Simulink Design Verifier

welcome to FRET!

https://github.com/NASA-SW-VnV/fret

i o FRET

Total Projects Total Requirements Formalized Requirements System Components Requirement Size

~ 4 119 92.44. 23 10462 bytes

i

J Hierarchical Cluster Recent Activity
™ _
LM_requirements EUL-001
This requirement is the parent of the EUL-001 A

subrequirements”

LM_requirements AP-003
This requirement is the parent requirement that summarizes all A

003 reqgs’
r LM_requirements FSM-006
SemanticsPaper FSM_Autopilot shall always satisfy (state = ap_maneuver_state
. & standby & good) => STATE = ap_standby_state

LM_requirements EUL-00TH
Euler shall always satisfy DCM321_32 = (- SinPhi * CosPsi) +

(CosPhi * SinTheta * SinPsi)
LM_requirements HAMLET_SW ‘ il

. LM_requirements AP-003C
in roll_hold mode RollAutopilot shall immediately satisfy

LM_requirements EUL-001B
Euler shall always satisfy DCM321_12 = CosTheta * SinPsi

abs_roll_angle >= 30.0 => roll_hold_reference = 30.0 *
sign(roll_angle)

TestRequIr.ts
LM_requirements AP-008B

in hdg_hold mode RollAutopilot shall always satisfy roll_cmd =
hdg_hold_mode_cmd

LM_requirements EUL-002B
Euler shall always satisfy R2_21 = VI_1 *R_21 +VI_2*R_22 +
VI_3 *R_23

let’s speak Fretish

0O

FRET

Requirements: LM_requirements

D

AP-

AP-

001

AP-
002

AP-
002A

AP-
002B

AP-
003

AP-
003A

AP-
003B

© © 0 0 o0 o o ©

Summary

Autopilot shall always satisfy altitude_hold => absOf_alt_minus_altIC <= 35.0

RollAutopilot shall always satisfy ! autopilot_engaged => roll_actuator_command = 0.0

"Parent of all AP 002 regs"

when in roll_hold mode RollAutopilot shall always satisfy autopilot_engaged & no_other_lateral_mode

in roll_hold mode RollAutopilot shall always satisfy roll_cmd = roll_hold_mode_cmd

“This requirement is the parent requirement that summarizes all 003 reqs"”

in roll_hold mode RollAutopilot shall immediately satisfy if P then Q

in roll_hold mode RollAutopilot shall immediately satisfy (roll_angle < 6.0 & roll_angle > -6.0) => roll_hold_reference =0.0

N =

Project

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

Everything is built in a modular / compositional way based on the
requirement fields: semantics, formulas, diagrams, test oracles

L \

[),
[) RES immediately
COND =>
:) [=)
} | —)
[] T"RES
never
: 0)|
[Ll] [™)
1COND : o ’
.................. > RES |
COND TS
=>
) [<)
RES eventually

Recently added timing options until and before, as well as a different
semantic notion of triggering conditions.

Dimitra Giannakopoulou, Thomas Pressburger, Anastasia Mavridou, Johann Schumann:
Generation of Formal Requirements from Structured Natural Language. REFSQ 2020

templates

Lockheed Martin Cyber-Physical System Challenge, component FSM:

= The autopilot shall change states from TRANSITION to STANDBY when the
pilot is in control (standby).

= The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

= The autopilot shall change states from NOMINAL to MANEUVER when the
sensor data is not good.

= The autopilot shall change states from NOMINAL to STANDBY when the pilot is
in control (standby).

= The autopilot shall change states from MANEUVER to STANDBY when the pilot
is in control (standby) and sensor data is good.

brand new feature

e0e

FRET

Requirements: LM_requirements

[

AP-000

AP-001

AP-002

AP-002A

AP-002B

AP-003

AP-003A

AP-003B

AP-003C

AP-003D

© 0 ©¢ © 0 ©6 0 6 o0 ¢

Summary

Autopilot shall always satisfy altitude_hold => absOf_alt_minus_altIC <= 35.0

RollAutopilot shall always satisfy ! autopilot_engaged => roll_actuator_command = 0.0

"Parent of all AP 002 regs" 3

when in roll_hold mode RollAutopilot shall always satisfy autopilot_engaged & no_other_lateral_mode

in roll_hold mode RollAutopilot shall always satisfy roll_cmd = roll_hold_mode_cmd

“This requirement is the parent requirement that summarizes all 003 regs"

in roll_hold mode RollAutopilot shall immediately satisfy if P then Q

in roll_hold mode RollAutopilot shall immediately satisfy (roll_angle < 6.0 & roll_angle > -6.0) => roll_hold_reference =0.0

in roll_hold mode RollAutopilot shall immediately satisfy abs_roll_angle >= 30.0 => roll_hold_reference = 30.0 * sign(roll_angle)

RollAutopilot shall always satisfy (TurnKnob >= 3.0 | TurnKnob <= -3.0) & (TurnKnob <= 30.0 | TurnKnob >= -30.0) => roll_hold_reference = TurnKnob

N =

Project

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

LM_requirements

ed.newTemplate ("template-change-state","Change State");

ed.templateSummary ("This template describes how the state of a finite-state-machine component changes. \

It describes the input state and some conditions based on which the change must occur. \

The corresponding output state must reflect the required change. \

The input and output states have a pre — post- relationship")

ed.templateStructure(' [component] shall always satisfy if ([input_state] & [condition]) then [output_state]')

ed.fieldDescription('component', "Specifies the component of the system that the requirement applies to.")
ed.addOption('component', 'component',"Replace the text by the name of the target component")

ed.fieldDescription('input_state', "Specifies the value of the input state that may need to change.")
ed.addOption('input_state', 'state = value',"The input state value is determined")

ed.fieldDescription('condition', "The condition under which the change is triggered. \
Usually expressed in terms of a predicate, the negation of a predicate, or a conjunction. ")
ed.addOption('condition', 'predicate',"Predicate is described by name')
ed.addOption('condition', '! predicate', "Predicate should not hold")
ed.addOption('condition', 'predicatel & predicate2', "Conjunction")

ed.fieldDescription('output_state', "Specifies the value of the output state, reflecting \
the new value of the input state .")
ed.addOption('output_state', 'STATE = value',"The output state value is determined")

ed.addExample(" [FSM_Autopilot] shall always satisfy \
if ([state = ap_standby_state] & [! standby & ! apfaill]) then [STATE = ap_transition_state]")

analysis

requirements consistency (realizability)

The autopilot shall change states from TRANSITION to STANDBY when the
pilot is in control (standby).

The autopilot shall change states from TRANSITION to NOMINAL when the
system is supported and sensor data is good.

inputs: standby=true; supported=true; good=true; output: state=nominal

£s
Akb)

confiict 2

FSMopg

Conficy 3

CLOSE

connecting to Simulink model

FSM 4
Corresponding Model Component
FRET Component: FSM fsm_128 — .
FRET Variable Name 4 Model Variable Name Variable Type* Data Type* Description
AUTOPILOT Internal boolean
@ Ilmb Input boolean
PULLUP pullup Output Update Variable
FRET Project FRET Component
LM_requirements FSM

Model Component

fsm_12B

FRET Variable Variable Type*

limits Input -
None
apfail

standby CANCEL -

supported

verification of Simulink model
1. detection: FSM requirement 1 violation
2. explanation through counterexample and simulation:

“Exceeding sensor limits
shall latch an autopilot
pullup when the pilot is not
in control (not standby) and
the system is supported
without failures (not apfail).”

A. Mavridou, H. Bourbouh, P.L. Garoche, D. Giannakopoulou, T. Pressburger, J. Schumann:
Bridging the Gap Between Requirements and Simulink Model Analysis. REFSQ 2020 Posters

= FRET tries to bridge the gap between intuitive capture of
requirements and formal languages needed for analysis

= goal: combine formal rigor with usability
= currently in the hands of several projects: Starling, Boeing, GE

= researching into bringing natural language requirements into FRET,
providing customization capabilities, providing help with
requirements repair

= user feedback is extremely valuable
= available open-source: https://github.com/NASA-SW-VnV/fret

" contact: fret@lists.nasa.gov

Other contributors: Andreas Katis, David Kooi, Julian Rhein, Nija Shi, Tanja de Jong, Hank Bushnell

