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This paper presents an adaptive control approach for flutter suppression of a performance adaptive aeroe-
lastic wing equipped with a variable camber continuous trailing edge flap design. The adaptive control ap-
proach is based on the optimal control modification method augmented to a linear quadratic gaussian optimal
control design. A model reduction based on a singular perturbation approach is presented. The control sur-
faces are subject to relative motion constraints due to the elastomer transition material in between the flap
sections. A virtual control method is proposed using a shape function to deal with the relative motion con-
straints. Simulation results indicate that the adaptive augmentation control design is effective in suppressing
unstable aeroelastic modes.

I. Introduction

The aircraft industry has been responding to the need for energy-efficient aircraft by redesigning airframes to be
aerodynamically efficient, employing light-weight materials for aircraft structures and incorporating more energy-
efficient aircraft engines. Reducing airframe operational empty weight (OEW) using advanced composite materials
is one of the major considerations for improving energy efficiency. Modern light-weight materials can provide less
structural rigidity while maintaining sufficient load-carrying capacity. As structural flexibility increases, aeroelastic
interactions with aerodynamic forces and moments can alter aircraft aerodynamics significantly, thereby potentially
degrading aerodynamic efficiency.

Under the Fundamental Aeronautics Program in NASA Aeronautics Research Mission Directorate, the Fixed
Wing project is conducting multidisciplinary research to investigate advanced concepts and technologies for future
aircraft systems. A NASA study entitled “Elastically Shaped Future Air Vehicle Concept” was conducted in 20101, 2

to examine new concepts that can enable active control of wing aeroelasticity to achieve drag reduction. This study
shows that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing
twist and vertical deflection in order to optimize the local angles of attack of wing sections to improve aerodynamic
efficiency through drag reduction during cruise and enhanced lift performance during take-off and landing.
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The study shows that active aeroelastic wing shaping control can have a potential drag reduction benefit. Conven-
tional flap and slat devices inherently generate drag as they increase lift. The study shows that conventional flap and
slat systems are not aerodynamically efficient for use in active aeroelastic wing shaping control for drag reduction. A
new flap concept, referred to as Variable Camber Continuous Trailing Edge Flap (VCCTEF) system, was conceived
by NASA to address this need.1 Initial study results indicate that, for some applications, the VCCTEF system may
offer a potential pay-off in drag reduction that could provide significant fuel savings. In order to realize the potential
benefit of drag reduction by active span-load and aeroelastic wing shaping control while meeting all other performance
requirements, the approach for high lift devices needs to be considered as part of the wing shaping control strategy.

NASA and Boeing are currently conducting a joint study to develop the VCCTEF further under the research
element Active Aeroelastic Shape Control (AASC) within the Fixed Wing project.3, 4 This study is built upon the
development of the VCCTEF system for NASA Generic Transport Model (GTM) which is essentially based on the
Boeing 757 airframe, employing light-weight shaped memory alloy (SMA) technology for actuation and three sepa-
rate chordwise segments shaped to provide a variable camber to the flap. This cambered flap has potential for drag
reduction as compared to a conventional straight, plain flap. The flap is also made up of individual 2-foot spanwise
sections which enable different flap setting at each flap spanwise position. This results in the ability to control the wing
twist shape as a function of span, resulting in a change to the wing twist to establish the best lift-to-drag ratio (L/D)
at any aircraft gross weight or mission segment. Wing twist on traditional commercial transport designs is dictated by
the aeroelastic deflection of a fixed “jig twist” shape applied at manufacture. The design of this jig twist is set for one
cruise configuration, usually for a 50% fuel loading or mid-point on the gross weight schedule. The VCCTEF offers
different wing twist settings, hence different spanwise loadings, for each gross weight condition and also different
settings for climb, cruise and descent, a major factor in obtaining best L/D conditions.

The second feature of VCCTEF is a continuous trailing edge flap. The individual 2-foot spanwise flap sections are
connected with a flexible covering, so no breaks can occur in the flap planforms, thus reducing drag by eliminating
these breaks in the flap continuity which otherwise would generate vorticity that results in a drag increase and also
contributes to airframe noise. This continuous trailing edge flap design combined with the flap camber result in lower
drag increase during flap deflections. In addition, it also offers a potential noise reduction benefit.

The VCCTEF is divided into 14 sections attached to the outer wing and 3 sections attached to the inner wing, as
shown in Fig. 1.4 Each 24-inch section has three camber flap segments that can be individually commanded to form a
variable camber trailing edge, as shown in Fig. 2. These camber flaps are joined to the next section by a flexible and
supported material (shown in blue) installed with the same shape as the camber and thus providing continuous flaps
throughout the wing span with no drag producing gaps.

Using the camber positioning, a full-span, low-drag, high-lift configuration can be activated that has no drag
producing gaps and a low flap noise signature. This is shown in Fig. 3. To further augment lift, a slotted flap
configuration is formed by an air passage between the wing and the inner flap that serves to improve airflow over the
flap and keep the flow attached. This air passage appears only when the flaps are extended in the high lift configuration.

Figure 4 illustrates the GTM equipped with the VCCTEF for wing shaping control. By actively shaping the wing
aerodynamic surface using the VCCTEF, optimal aerodynamic performance could potentially be realized at any point
in the flight envelope. The VCCTEF relies on two mechanisms to improve aerodynamic performance: 1) wing twist
optimization for flexible wing design, and 2) variable camber and continuous trailing edge for improved aerodynamics.
This fixed-wing technology may be referred to as Performance Adaptive Aeroelastic Wing (PAAW) technology.
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Fig. 1 - Wing Configured with the Variable Camber Continuous Trailing Edge Flap

Fig. 2 - Variable Camber Flap

Fig. 3 - Cruise and High Lift VCCTEF Configurations
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Fig. 4 - GTM with VCCTEF

The performance of an adaptive wing can be described by the following equation:5

αc (y) = α

[
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dȳ
sinΛ

+
N

∑
i=1

[
∂αc

∂δi
cosΛh−

∂Θ(ȳ)
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where αc is the sectional angle of attack, α is the geometric angle of attack of the wing section about the pitch axis
y, αi is the induced angle of attack due to the downwash about the pitch axis y, γ is the wing pre-twist angle about
the elastic axis ȳ = y/cosΛ (positive nose down), Θ is the wing torsional twist about the elastic axis ȳ (positive nose
down), W is wing vertical bending along the elastic axis (positive upward), Λ is the sweep angle of the elastic axis, δi

is the absolute deflection of the i-th flap segment of the VCCTEF about the hinge axis yh which has a sweep angle of
Λh, and ∂αc/∂δi is the angle of attack sensitivity or camber control derivative due to the VCCTEF flap deflection.

It can be seen that the aeroelastic deflections can cause the desired sectional angle of attack to be non-optimal. The
effect of the adaptive aeroelastic wing shaping control by the VCCTEF is captured in the last term. The term ∂αc/∂δi

is the rigid camber control to compensate for the non-optimal sectional angle of attack. The two terms ∂Θ/∂δi and
∂ (dW/dȳ)/∂δi are the aeroelastic wing shaping control by leveraging wing flexibility to change the wash-out twist of
a wing in order to achieve improved aerodynamic performance. Thus, the effect of adaptive aeroelastic wing shaping
control is to optimize the span load at any operating point inside a given flight envelope.

The flexibility of modern transport wings can cause a reduction in flutter margins which can compromise stability
of aircraft. In a previous study, a flutter analysis was conducted to examine the effect of increased flexibility of the
GTM wing.6 The baseline wing stiffness of the GTM is reduced by 50%. This wing is referred to as the Elastic
Shaped Aircraft Concept (ESAC) wing. Table 1 shows the flutter speed prediction at 35,000 ft for the GTM wing and
the ESAC wing. The critical flutter modes for the GTM wing and ESAC wing are the first anti-symmetric bending
mode. The flutter speed prediction is also compared against NASTRAN doublet lattice solution which gives a flutter
speed of Mach 0.954 for the ESAC wing at 35,000 ft corresponding to the first anti-symmetric bending mode at a
frequency of 2.53 Hz. This represents a 3% difference which demonstrates an excellent agreement.
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Symmetric Mode Anti-Symmetric Mode

GTM Flutter Mach @ 35K ft 1.358 1.310

GTM Flutter Frequency @ 35K ft, Hz 4.31 3.87

ESAC Flutter Mach @ 35K ft 0.938 0.925

ESAC Flutter Frequency @ 35K ft, Hz 6.94 2.85

Table 1 - Flutter Speed Prediction

The FAA certification requires a flutter margin of at least 15% above the dive speed which is normally determined
from flight testing. For a maximum operating Mach 0.8, the dive speed may be estimated at 20% over the maximum
operating Mach, or 0.96. Thus, the flutter clearance requires a flutter speed of at least Mach 1.10 at 35,000 ft. The
GTM wing demonstrates to meet this flutter clearance but not the ESAC wing. Thus, active flutter suppression control
will be required. In practice, active flutter suppression could be difficult to certify since aircraft must demonstrate
to be open-loop stable. Also, active flutter suppression control will require power which could offset any potential
aerodynamic performance benefits from wing shaping control using the VCCTEF.

To address the wing shaping control objective, a multidisciplinary design analysis optimization (MDAO) frame-
work must be considered by incorporating the aerodynamic performance prediction together with aeroelasticity and
flutter suppression control. The objective of the MDAO is to identify a desired wing flexibility that would provide the
best overall aerodynamic, aeroelasticity, and control benefits. For example, the wing stiffness could be reduced to an
optimal value that would maximize the aerodynamic performance at off-design cruise with the least amount of control
effort to maintain aeroelastic stability margin. The MDAO would also include control gain synthesis directly in the
MDAO process.
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Fig. 5 - Flutter Boundary of ESAC Wing as a Function of GJ
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Fig. 6 - Flutter Mach Clearance of ESAC Wing

To explore the effect of stiffness reduction on the flutter speed, a sensitivity study is conducted to determine the
flutter boundary as a function of the ESAC wing torsional stiffness GJ while the ESAC wing bending stiffness EI is
kept at half of that of the GTM wing. Figure 5 is a plot that shows the flutter boundary for a varying torsion stiffness
from 100% to 50% of that of the GTM wing. It can be seen from Fig. 6 that to clear the flutter boundary at Mach 1.1,
the ESAC wing torsional stiffness GJ cannot be reduced to less than 65% of that of the GTM wing. The question to be
investigated is whether or not there are any aerodynamic performance benefits to reduce torsional stiffness GJ further
in exchange for the need to incorporate active flutter suppression control.

This paper presents a study of a candidate adaptive flutter suppression control. The adaptive control method is the
Optimal Control Modification designed as an adaptive augmentation control to a baseline control which uses a Linear
Quadratic Gaussian (LQG) method. The aeroelastic state space models were generated by NASTRAN for various
flight conditions for the ESAC wing. The four outboard third camber flap segment of the VCCTEF are used as control
inputs. A model reduction is developed using the singular perturbation method for control design.

II. Aeroelastic State Space Model Reduction

Consider a general aeroservoelastic (ASE) state space model of the form

 η̇

µ̇

=

 A11 A12

A21 A22

 η

µ

+
 B11 B12 B13

B21 B22 B23




δ

δ̇

δ̈

 (2)

y =C1η +C2µ +D1δ +D2δ̇ +D3δ̈ (3)

where µ (t) is a fast state vector, η (t) is a slow state vector, δ (t) is the control surface deflection vector, and y(t) is
the output vector.

The quality of fast and slow states can be examined by the eigenvalues of the partitioned matrices A11 and A22.
Since µ (t) is a fast state vector, then we can write ‖A11‖< ε ‖A22‖.
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In general, an ASE state space model contains both rigid-body modes which usually have low frequencies, and
aeroelastic modes which are at much higher frequencies than the rigid-body modes. Flutter modes are usually associ-
ated with those aeroelastic modes in the low frequency range. As a result, high frequency aeroelastic modes normally
do not participate in a flutter response. In control design, it is usually expedient to remove high-frequency modes in
order to simplify a controller design. By removing the high frequency aeroelastic modes, the ASE state space model
is reduced in order. Balanced realization is a popular technique for model reduction. In this paper, we will employ a
singular perturbation method to reduce the order of an ASE state space model.7

Using the singular perturbation approach, the fast and slow dynamics can be decoupled. To decouple the fast and
slow states, we perform a time-scale separation by applying the singular perturbation method. Toward that end, we
consider a slow time transformation

τ = εt (4)

where τ is a slow time variable.
Then, the fast and slow state space models are transformed into a singularly perturbed system as

η̇ = A11η +A12µ +B11δ +B12δ̇ +B13δ̈ (5)

ε
dµ

dτ
= A21η +A22µ +B21δ +B22δ̇ +B23δ̈ (6)

The Tikhonov’s theorem can be used to approximate the solution of the singularly perturbed system with the
solution of a “reduced-order” system by setting ε = 0.8 Thus, the reduced-order system is given by

η̇0 = A11η0 +A12µ0 +B11δ +B12δ̇ +B13δ̈ (7)

A21η0 +A22µ0 +B21δ +B22δ̇ +B23δ̈ = 0 (8)

where η0 and µ0 are the “outer” solution of the singularly perturbed system.
The term “outer” is in connection with the concept of “inner” or “boundary layer” and “outer” solutions which

have the origin in boundary layer theory due to Prandtl. The “inner” or “boundary layer” solution for this system is
obtained from

A11ηi +A12µi +B11δ +B12δ̇ +B13δ̈ = 0 (9)

µ̇i = A21ηi +A22µi +B21δ +B22δ̇ +B23δ̈ (10)

The solution is then expressed as
η = η0 +ηi−ηMAE (11)

µ = µ0 +µi−µMAE (12)

where ηMAE (t) and µMAE (t) are correction terms by a matched asymptotic expansion method applied to both the inner
and outer solutions.9 The outer solution is in fact the asymptotic solution of the original system as t→ ∞.

Since the asymptotic behavior of a closed-loop system is an important consideration for stability implication, the
outer solution of the singularly perturbed system is of significant importance. Thus, we obtain the outer solution as
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the reduced-order model using only the outer solution of the slow state vector η0 as

η̇0 =

A11−A12A−1
22 A21︸ ︷︷ ︸

Ā11

η0 +

[
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B13−A21A−1
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B̄13

]
δ
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+∆η̇0 (13)
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Now consider a simplified second-order actuator model
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2
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2
n δc (15)

The state space representation then becomes
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y =
[

C̄1 D̄1− D̄3ω2
n D̄2−2D̄3ζ ωn

]
︸ ︷︷ ︸

C


η

δ

δ̇


︸ ︷︷ ︸

x

+ D̄3ω
2
n︸ ︷︷ ︸

D
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u

+∆y (17)

which can be expressed in the canonical form

ẋ = Ax+Bu (18)

y =Cx+Du (19)

To illustrate the model reduction, ASE state space models at various flight conditions were developed by Boeing
Research & Technology under a NASA contract. This model represents the ESAC wing asymmetric modes. The
open-loop model has two unstable modes. Using the model reduction method above, it can be shown in Tables 1 that a
reduced-order model using only the first 8 modes can capture all the unstable modes and approximate the first 6 modes
of the full-order ASE model with 22 modes quite well.

Mode n = 6 n = 7 n = 8 n = 22 (Full)

Rigid −3.3509 −3.3518 −3.3454 −3.3449

1 −19.9521 −19.7469 −20.0260 −20.0563

2 4.6884±21.6354i 4.7076±21.5817i 4.6998±21.6199i 4.7027±21.6211i

3 −0.1415±24.2902i −0.1418±24.2912i −0.1366±24.2890i −0.1365±24.2889i

4 −7.0504±25.8639i −7.0952±25.8198i −7.427±26.0338i −7.4493±26.0608i

5 −0.0239±37.1526i −0.0174±37.1362i 1.2104±37.5060i 1.2643±37.5538i

8 of 23

American Institute of Aeronautics and Astronautics



Table 2 - Asymmetric Modes @ Mach 0.86 and 0 ft (VCCTEF_PT_AS_Mp86_H00.mat)

Mode n = 6 n = 7 n = 8 n = 22 (Full)

Rigid −2.7392 −2.7395 −2.7385 −2.7385

1 2.7294±19.8683i 2.7512±19.8529i 2.7804±19.8561i 2.7842±19.8513i

2 −0.1553±24.3565i −0.1557±24.3562i −0.1547±24.3553i −0.1549±24.3552i

3 −6.3434±24.0892i −6.3272±24.0739i −6.4220±23.9949i −6.4174±23.9920i

4 −0.3902±37.1580i −0.3782±37.1461i 0.0571±37.4423i 0.0584±37.4846i

5 −20.0160±32.3722i −20.2813±32.3013i −20.4217±32.4999i −20.4833±32.5445i

Table 3 - Asymmetric Modes @ Mach 0.86 and 10,000 ft (VCCTEF_PT_AS_Mp86_H10.mat)

Mode n = 6 n = 7 n = 8 n = 22 (Full)

Rigid −2.0746 −2.0747 −2.0745 −2.0745

1 0.7903±18.1375i 0.8018±18.1385i 0.8171±18.1481i 0.8198±18.1459i

2 −4.4641±20.4767i −4.4687±20.4764i −4.4906±20.4657i −4.4900±20.4700i

3 −0.1751±24.4220i −0.1749±24.4218i −0.1748±24.4211i −0.1748±24.4210i

4 −1.2718±36.9051i −1.2528±36.9020i −1.1653±37.1472i −1.1782±37.1724i

5 −9.9580±41.9817i −10.0850±41.9660i −10.1183±41.8219i −10.1254±41.8270i

Table 4 - Asymmetric Modes @ Mach 0.86 and 20,000 ft (VCCTEF_PT_AS_Mp86_H20.mat)

Mode n = 6 n = 7 n = 8 n = 22 (Full)

Rigid −1.4746 −1.4747 −1.4747 −1.4747

1 −0.8119±15.3391i −0.8116±15.3423i −0.8132±15.3481i −0.8119±15.3485i

2 −1.5973±20.3657i −1.5961±20.3629i −1.6023±20.3599i −1.6030±20.3603i

3 −0.1667±24.4533i −0.1667±24.4533i −0.1669±24.4531i −0.1669±24.4530i

4 −1.4328±35.9317i −1.4290±35.9368i −1.4601±36.0166i −1.4701±36.0234i

5 −5.7255±46.4733i −5.7766±46.4699i −5.7264±46.4024i −5.7217±46.4071i

Table 5 - Asymmetric Modes @ Mach 0.86 and 30,000 ft (VCCTEF_PT_AS_Mp86_H30.mat)

III. Linear Quadratic Gaussian Optimal Control Modification

The linear quadratic gaussian (LQG) is a standard technique for control design of systems with output or partial
state information. A state observer is constructed using the Kalman filter optimal estimation method as

˙̂x = Ax̂+L(y− ŷ)+Bu (20)

where x̂ is the estimated state vector, L is the Kalman filter gain, and ŷ is the estimated output

ŷ =Cx̂+Du (21)
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The objective is to design a closed-loop observer model that tracks a reference model

ẋm = Amxm +Bmr (22)

Consider an ideal controller
u∗ = K∗x x̂+K∗y (y− ŷ)+K∗r r (23)

The ideal closed-loop observer model is then expressed

˙̂x = Ax̂+L(y− ŷ)+BK∗x x̂+BK∗y (y− ŷ)+BK∗r r (24)

Assuming the following model matching conditions are satisfied

A+BK∗x = Am (25)

BK∗r = Bm (26)

BK∗y =−L (27)

Then the adaptive controller is designed as

u = Kx (t) x̂+Ky (t)(y− ŷ)+Kr (t)r (28)

Let K̃x = Kx−K∗x , K̃y = Ky−K∗y , K̃r = Kr −K∗r be the estimation errors of Kx (t), Ky (t), and Kr (t). Then the
closed-loop plant is written as

˙̂x = Amx̂+Bmr+BK̃xx̂+BK̃y (y− ŷ)+BK̃rr (29)

Let e = xm− x̂ be the tracking error, then the equation is expressed as

ė = Ame−BK̃xx̂−BK̃y (y− ŷ)−BK̃rr (30)

The adaptive laws for Kx (t), Ky (t), and Kr (t) using the optimal control modification10, 11 are given by

K̇>x = Γxx̂
(

e>P+νxx̂>K>x B>PA−1
m

)
B (31)

K̇>y = Γy (y− ŷ)
[
e>P+νy (y− ŷ)>K>y B>PA−1

m

]
B (32)

K̇>r = Γrr
(

e>P+νrr>K>r B>PA−1
m

)
B (33)

with the initial conditions Kx (0)= K̄x, Ky (0)= K̄y, and Kr (0)= K̄r, where Γx =Γ>x > 0, Γy =Γ>y > 0, and Γr =Γ>r > 0
are the adaptive gains, νx > 0 νy > 0, and νr > 0 are the modification parameters, and P = P> > 0 is the solution of
the Lyapunov equation

PAm +A>mP+Q = 0 (34)

where Q = Q> > 0.
For an adaptive augmentation regulator design whereby the reference model is zero, the adaptive controller is given

by
u = K̄xx̂+∆Kxx̂+Ky (y− ŷ) (35)
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where K̄x is obtained from the linear quadratic regulator (LQR) design of the full-state equation, and the adaptive laws
for ∆Kx (t) and Ky (t) are given by

∆K̇>x =−Γxx̂x̂>
(

P−νx∆K>x B>PA−1
m

)
B (36)

K̇>y =−Γy (y− ŷ)
[
x̂>P−νy (y− ŷ)>K>y B>PA−1

m

]
B (37)

The adaptive laws can be shown to be stable as follows:
Choose a Lyapunov candidate function

V = x̂>Px̂+ trace
(

∆K̃xΓ
−1
x ∆K̃>x

)
+ trace

(
K̃yΓ

−1
y K̃>y

)
(38)

Evaluating V̇ yields

V̇ =−x̂>Qx̂+2νxx̂>∆K>x B>PA−1
m B∆K̃xx̂+2νy (y− ŷ)>K>y B>PA−1

m BK̃y (y− ŷ) (39)

Note that PA−1
m = M+N

M =
1
2

(
PA−1

m +A−>m P
)
=−1

2
A−>m QA−1

m < 0 (40)

N =
1
2

(
PA−1

m −A−>m P
)

(41)

N =−N> which implies z>Nz = 0. Therefore

V̇ =−x̂>Qx̂−νxx̂>∆K̃>x B>A−>m QA−1
m B∆K̃xx̂−νy (y− ŷ)> K̃>y B>A−>m QA−1

m BK̃y (y− ŷ)

+2νxx̂>∆K∗>x B>PA−1
m B∆K̃xx̂+2νy (y− ŷ)>K∗>y B>PA−1

m BK̃y (y− ŷ) (42)

V̇ is then bounded by

V̇ ≤−c1 ‖x̂‖2−νxc2 ‖x̂‖2 (∥∥∆K̃x
∥∥− c3 ‖∆K∗x ‖

)2−νyc2 ‖y− ŷ‖2 (∥∥K̃y
∥∥− c3

∥∥K∗y
∥∥)2 (43)

+νxc2c2
3 ‖x̂‖

2 ‖∆K∗x ‖
2 +νyc2c2

3 ‖y− ŷ‖2∥∥K∗y
∥∥2 (44)

where c1 = λmin (Q), c2 = λmin
(
B>A−>m QA−1

m B
)
, and c3 =

‖B>PA−1
m B‖

c2
.

Then V̇ ≤ 0 if

‖x̂‖ ≥ c3 ‖y− ŷ‖
∥∥K∗y

∥∥√ νyc2

c1−νxc2c2
3 ‖∆K∗x ‖

2 = ρ (45)

∥∥∆K̃x
∥∥≥ c3 ‖∆K∗x ‖+

√√√√c2
3 ‖∆K∗x ‖

2 +
νyc2

3 ‖y− ŷ‖2∥∥K∗y
∥∥2

νx ‖x̂‖2 = κ (46)

∥∥K̃y
∥∥≥ c3

∥∥K∗y
∥∥+

√√√√c2
3

∥∥K∗y
∥∥2

+
νxc2

3 ‖x̂‖
2 ‖∆K∗x ‖

2

νy ‖y− ŷ‖2 = σ (47)

In addition, we require that c1−νxc2c2
3 ‖∆K∗x ‖

2 > 0 which implies νx <
c1

c2c2
3‖∆K∗x ‖2

. Then, all signals are uniformly
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ultimately bounded with an ultimate bound

lim
t−→∞

‖x̂‖ ≤

√
λmax (P)ρ2 +λmax

(
Γ
−1
x
)

κ2 +λmax
(
Γ
−1
y
)

σ2

λmin (P)
(48)

Thus, the adaptive optimal control modification regulator does not result in x̂(t)→ 0 as t → ∞. This is because
the optimal control modification provides robustness by seeking a optimal solution of x̂(t) bounded away from the
origin. The proximity of x̂(t) can be controlled by the modification parameters νx and νy. By setting νx = 0 and
νy = 0, we recover the standard model reference adaptive control which results in x̂(t)→ 0 as t → ∞. However, the
MRAC regulator is proven to be non-robust in presence of disturbance which will cause parameter drift. Thus, it is
not advisable to use standard MRAC for adaptive regulator design.

The optimal control modification has a linear limiting property under fast adaptation with large adaptive gains.12

In the theoretical limit as Γ→ ∞, then

B∆Kx→
1
νx

B
(

B>A−>m PB
)−1

B>P (49)

BKyy→ 1
νy

B
(

B>A−>m PB
)−1

B>Px̂ (50)

Using this limiting property, it is possible to estimate stability margin of the closed-loop system in the limit, which
becomes

ẋ = Ax+BK̄xx̂+
(

1
νx

+
1
νy

)
B
(

B>A−>m PB
)−1

B>Px̂ (51)

˙̂x =
[

A+BK̄x +

(
1
νx

+
1
νy

)
P−1A>mP−LC

]
x̂+LCx (52)

Thus the closed-loop matrix is given by

Ac =

 A BK̄x +
(

1
νx
+ 1

νy

)
B
(
B>A−>m PB

)−1 B>P

LC A−LC+BK̄x +
(

1
νx
+ 1

νy

)
B
(
B>A−>m PB

)−1 B>P

 (53)

Then, νx and νy can be chosen to provide stability margin based on the closed-loop poles.

IV. Implementation

The ASE state space model contains 45 states using p-transform without unsteady aerodynamic lag states, 64
outputs, and 4 inputs. The states include one rigid-body state; namely the aircraft roll rate p, and two generalized
states for each of the 22 aeroelastic modes. The outputs include the aircraft airspeed V∞, angle of attack α , sideslip
angle β , aircraft angular rates (p,q,r), aircraft position (x,y,z), aircraft attitude (φ ,θ ,ψ), accelerations in three axes
(Nx,Ny,Nz) at forward of wing tip, aft of wing tip, wing root centerline, and engine center of gravity, and the four
hinge moments of the control surfaces. The inputs are the four outboard third camber segments of the VCCTEF.

For the flutter suppression control design, the two Nz acceleration measurements are used at outputs. Figure 7
illustrates the input and output locations.

All the control surfaces are not entirely independent in their motions due to the physical constraints imposed by the
elastomer transition material. This material has certain position and rate limits. Thus, the control surfaces will have
relative position and rate limits. These limits are not the normal position and rate limits that actuators are subjected to.
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Thus, these relative constraints can cause challenges in a control design of this system.
Consider the following relative constraints

|δi+1−δi| ≤ ∆δ (54)∣∣∣δ̇i+1− δ̇i

∣∣∣≤ ∆δ̇ (55)

where i = 1,2,3.
For the VCCTEF design, the relative motion between any pair of adjacent flap sections is allowed to be within 2

degrees. The rate constraint imposed by the elastomer material is not yet defined and thus is assumed to be large. The
actuator dynamics are modeled as a second-order system. This actuator model is highly simplified since it does not
take into account the hinge moment which is a function of the states and the dynamics of the elastomer material which
contributes mass, damping, and stiffness to the overall actuator model. In the future, a detail actuator model of the
VCCTEF will be developed.

Fig. 7 - Flutter Suppression Input and Output Locations

To address the relative position limit, a concept of virtual control has recently been introduced.13 The control
surface deflections are described by a shape function. This shape function can be any reasonable shape function
with a smooth and gradual slope. One simple function is a linear function. The control surface deflections are then
parametrized as a linear function

δi =
iδv

4
(56)

where i = 1,2,3,4 such that δ1 is the inboard flap and δ4 is the outboard flap, and δv is the virtual control surface
deflection.

Since the inboard flap section δ1 cannot deflect more than 2 degrees relative to the stationary flap adjacent to it,
then δv ≤ 8 deg. Also, the outboard flap deflection δ4 is the same as the virtual control surface deflection. Thus, one
can think that outboard flap δ4 is a master control input while the other three control surfaces are slave control inputs
since their motions are dependent on the master control input.
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Thus, the virtual control derivatives are computed as

B jk =
4

∑
i=1

iB jki

4
(57)

where B jki is the control derivative of mode j-th with respect to the displacement (k = 1), velocity (k = 2), and
acceleration (k = 3) of flap section i-th.

The simulation is conducted with only the reduced-order aeroservoelastic state space model for flight condition
at Mach 0.86 and altitude of 10,000 ft. There are two unstable aeroelastic modes: mode 1 and mode 4, as shown in
Table 3. Process noise and sensor noise are introduced to simulate the structural response to atmospheric turbulence.
The baseline full-state feedback controller is designed with an LQR controller tuned to give good performance. An
LQG output feedback controller is then designed using the ideal full-state feedback gain. The adaptive augmentation
controller is then turned on. The adaptive gain matrices and modification parameters are selected to be Γx = Γy = 1
and ηx = ηy = 0.1.

The root locus of the open-loop transfer functions between the accelerometers and the virtual control are shown in
Figs. 8 and 9. It can be seen that the transfer functions are unstable and non-minimum phase with zeros on the right
half plane. This non-minimum phase behavior can be challenging for adaptive control.
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Fig. 8 - Root Locus of Open-Loop Transfer Function of Forward Accelerometer
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Fig. 9 - Root Locus of Open-Loop Transfer Function of Aft Accelerometer

An initial rol rate of 0.1 rad/sec is specified. Figures 10, 11, and 12 show the responses of the roll rate, the gen-
eralized displacement of mode 1, and the generalized displacement of mode 4 without process and sensors noises for
the baseline full-state feedback LQR controller and the output feedback LQG controller with and without the adaptive
augmentation controller. The full-state feedback LQR controller performs much better than the output feedback LQG
controller with and without the adaptive augmentation controller using only the two accelerometers at the wing tip.
The adaptive augmentation controller causes an increase in the overshoot of the responses due to the output feedback
LQG controller as well as injects high frequency contents into the modal responses. Nonetheless, all the controllers
are able to suppress the two unstable aeroelastic modes.
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Fig. 10 - Roll Rate Response for LQR and LQG Controllers without Process and Sensor Noises
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Fig. 11 - Mode 1 Generalized Displacement Response for LQR and LQG Controllers without Process and Sensor
Noises
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Fig. 12 - Mode 4 Generalized Displacement Response for LQR and LQG Controllers without Process and Sensor
Noises

The effects of process and sensor noises are examined. Figures 13, 14, and 15 show the responses of the roll
rate, the generalized displacement of mode 1, and the generalized displacement of mode 4 with process and sensor
noises for the baseline full-state feedback LQR controller and the output feedback LQG controller with and without
the adaptive augmentation controller. All the controllers are able to maintain good performance in the presence of
process and sensor noises.
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Fig. 13 - Roll Rate Response for LQR and LQG Controllers with Process and Sensor Noises
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Fig. 14 - Mode 1 Generalized Displacement Response for LQR and LQG Controllers with Process and Sensor Noises
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Fig. 15 - Mode 4 Generalized Displacement Response for LQR and LQG Controllers with Process and Sensor Noises

Figures 16 and 17 show the root locus plots of the closed-loop transfer functions of the accelerometers with the
adaptive augmentation controller using the final gain matrix. As can be seen, the closed-loop transfer functions are
completely stable. Figures 18 and 19 are the frequency response plots for the open-loop and closed-loop transfer
functions of the accelerometers. The largest frequency response is due to mode 4. The closed-loop frequency re-
sponse is significantly less than the open-loop frequency response, indicating the effectiveness of the aeroelastic mode
suppression controller.
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Fig. 16 - Root Locus of Closed-Loop Transfer Function of Forward Accelerometer
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Fig. 17 - Root Locus of Closed-Loop Transfer Function of Aft Accelerometer
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Fig. 18 - Frequency Response of Forward Accelerometer
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Fig. 19 - Frequency Response of Aft Accelerometer

Next, uncertainty is introduced into the aeroservoelastic state space model by ∆A = 0.05A and ∆B = −0.1B.
Process and sensor noises are also included. The output feedback LQG controller without the adaptive augmentation
controller is unstable as shown in Figs. 20, 21, and 22. The figures also show that the adaptive augmentation controller
is able to stabilize the aeroelastic modes in the presence of the uncertainty.
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Fig. 20 - Roll Rate Response with and without Adaptive Augmentation Controller
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Fig. 21 - Mode 1 Generalized Displacement Response with and without Adaptive Augmentation Controller
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Fig. 22 - Mode 4 Generalized Displacement Response with and without Adaptive Augmentation Controller

Figure 23 is the plot of the time history of the virtual control command for the output feedback LQG controller with
and without the adaptive augmentation controller. The largest amplitude of the stabilizing virtual control command
for the adaptive augmentation controller is 6.22o. The linear mapping between the virtual control command and the
physical control commands result in 1.56o which meets the physical constraints of 2o on the relative deflection of the
VCCTEF.
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Fig. 23 - Virtual Control Command with and without Adaptive Augmentation Controller

V. Discussion

It should be noted that the simulation study is limited in scope. It would be of interest to see how an adaptive
controller could be designed to stabilize the unstable aeroelastic modes at two points in the flight envelope. This
could enable a gain-scheduling control strategy using adaptive control. Also, the aeroservoelastic state space model
developed by Boeing is based on a frequency-dependent p-transform solution. So the state space model is only valid
at a given frequency which in this case is the flutter frequency of mode 1. Since there are two unstable modes,
the behavior of mode 4 may not be accurately captured in the model. Furthermore, the closed-loop frequency could
potentially be different from the open-loop flutter frequency. This could render the control design invalid. In the future,
we will be using a more detail aeroservoelastic state space model developed by NASA which uses aerodynamic lag
states to approximate the unsteady aerodynamic effect over a wider range of frequencies.

Flexible structures in general can introduce a non-minimum phase behavior in an output feedback control design.
This non-minimum phase behavior can challenge adaptive output feedback control. As a result, adaptive gain must be
designed to be properly bounded. This generally would require having a priori knowledge of the unstable zeros. In
some way, robustness of adaptive control for a non-minimum phase plant is difficult to be established without knowing
the behavior of the plant.

VI. Conclusion

This paper presents a method of augmenting an output feedback linear quadratic Gaussian regulator controller
with an adaptive augmentation controller using the optimal control modification method. The method is applied
to a flutter suppression control for a flexible wing aircraft with a novel control device called the Variable Camber
Continuous Trailing Edge Flap (VCCTEF). The aeroservoelastic state space model contains 22 modes. A model
reduction is performed using a singular perturbation approach. The reduced-order aeroservoelastic state space model
approximates the unstable modes quite well with only the first 8 modes. A simulation is performed to assess the
effectiveness of the adaptive augmentation control design using the reduced-order model. Process and sensor noises
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are included in the model to provide realistic simulations. A virtual control is used to address the physical constraints
on the relative deflection of the VCCTEF imposed by the elastomer materials. Simulation results indicate that the
adaptive augmentation control design is effective in suppressing unstable aeroelastic modes.
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