LADEE Multi-Domain Simulation

Danilo Viazzo
Cummings Aerospace
danilo.viazzo@cummingsaerospace.com

Nathan Benz
Millennium Engineering and Integration
nbenz@meicompny.com
Mission Overview

• Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon and its main objective is to characterize the atmosphere and lunar dust environment.
 – Low cost, minimal complexity and rapidly prototyped “common bus” design.
 – Model-Based Software Development

• Specific objectives are:
 – Determine the global density, composition, and time variability of the lunar atmosphere;
 – Confirm the Apollo astronaut sightings of dust jumps and diffuse emission
 – Laser Communications Demonstration: 622 Mbs Record download rate from the Moon!

Clementine spacecraft image of moon dust corona

Gene Cernan’s drawings of the lunar sunrise
Outline

• Model Based Development
• Simulation Objectives
• Simulation Language and Structure
• Multi-Domain Elements
 – Simulation Interface
 – Electrical System Model
 – Thermal Model
• Lessons Learned
Model Based Development

- **Scope**
 - Onboard Flight Software (Class B)
 - Support Software and Simulators (Class C)
 - Integration of FSW with avionics

- **Guiding Documents**
 - NPR 7150.2 Software Engineering Requirements
 - CMMI Level 2
 - NASA-STD-8739.8 NASA Software Assurance Standard

- **Development Approach**
 - Model Based Development Paradigm (prototyped process using a “Hover Test Vehicle”)
 - 5 Incremental Software Builds, 2 Major Releases, 4 final sub-releases
 - 5.1: Defects found by I&T and 3DOF
 - 5.2: Defects found by Mission Operations Testing
 - 5.3: Final RTS set for Golden Load
 - 5.4: Platinum Load, uploaded during flight

- **Leverage Heritage Software**
 - GOTS: GSFC OSAL, cFE, cFS, ITOS
 - MOTS: Broad Reach Drivers
 - COTS: VxWorks, Mathworks Matlab/Simulink & associated toolboxes
Model Based Development

Iterate Early and Often

- Develop Models of FSW, Vehicle, and Environment
- Automatically generate High-Level Control Software
- Integrate with hand-written and heritage software.
- Iterate while increasing fidelity of tests – Workstation Sim (WSIM), Processor-In-The-Loop (PIL), Hardware-in-the-Loop (HIL)
- Automated self-documenting tests providing traceability to requirements
Simulation Objectives

• Single Source Of Simulink Models
 – Superset of Models for Workstation Simulation
 • Onboard Clock Model
 • Onboard Stored Command Sequences
 • Spacecraft Commanding
 • Telemetry Collection

• Support Flight Software Development and Testing
 – Non Real-Time
 • Workstation Simulation
 • Monte Carlo
 – Real-Time
 • Processor In The Loop (PIL)
 • Hardware In The Loop (HIL)

• Support Mission Operations
 – Training
 – Flight
Simulation Language

- Simulation Tools
 - MATLAB/Simulink R2010b
 - Real-Time Workshop Embedded Coder

- Simulink
 - Native Blocks
 - Embedded MATLAB Blocks
 (MATLAB Function Blocks)

- MATLAB Scripts

- CSV Based Spreadsheet
 - Interface Definitions (Non-Virtual Bus Objects)
 - Subsystem Configuration Data

- External Data Files
Simulation Structure

- **CSCI (Configuration Item)**
 - Flight Software
 - Simulated Vehicle and Environment

- **CSC (Component)**
 - Vehicle Dynamics
 - Sensors
 - Actuators

- **CSU (Unit)**
 - Time Model
 - Gravity Model

- **Utility Libraries**
 - Quaternion Operations
Simulation Interface

• Goal 1: Single Interface To Control Simulation
 – Workstation Simulation (WSIM)
 – PIL/HIL

• Goal 2: Simulated Spacecraft
 Command Interface Consistent With Ground Interface
 – Ground Commands
 – Onboard Command Sequences

• Implementation
 – MATLAB Based Parser for STOL Command Sequences
 • Spacecraft Command Sequences
 • Embedded Simulation Directives to Initialize Parameters
 • Both reduced to time based table for WSIM execution
 – Tunable Parameters
 • MATLAB Initialization Scripts to Define Default Values
 • MATLAB Override Scripts for WSIM
 • Memory Poke Mechanism to Override Parameters in PIL/HIL
Electrical System Model

- **Goal 1:** Model the State of Charge of The Battery
 - Battery Model
 - Solar Panel Model
 - Switches Model
 - Load Model

- **Goal 2:** Model the Switch Command Interface and Current/Voltage Sensor to Support Development and Testing of the Onboard Electrical Load Control Software

- **Goal 3:** Support Injection of Failures
Electrical System Model

• Implementation
 – Model was developed prior to completion of the design for the electrical system
 – Battery model focused on integration of inflow and outflow of current
 – Solar Panels modeled by section (30 section)
 – Switches, Fuses, Loads model by type and vectorized
 – Designed to automatically reconfigure based on external configuration file
 • Command signal routing to components and back reduced to tables
 • Vectorized component organized in stages
 – Vectorized components built with failure states (on/off)
Electrical System Model
Thermal Model

- **Goal:** Model the response of the thermal sensors to external and internal heat sources to support development and testing of the onboard thermal control software.

- **External Heat Sources**
 - Sun
 - Moon Radiation
 - Moon Albedo

- **Thermal Propagation**
 - Conduction
 - Radiation

- **Internal Heat Sources**
 - Heater
 - Loads
Thermal Model

• Implementation
 – Lumped Mass Thermal Model
 • Node and transport properties defined by external file generated by thermal modeling tool
 • Resolution/Fidelity of model determined by input file selection
 • Automatic nodal mapping by node ID to external spacecraft surface, to internal heat sources, and to thermal sensors
 – Thermal Propagation at 10Hz
 • Thermal model input files tested for stability at 10Hz
 • Supported 400+ nodes model propagation in real-time
 – Heat Sources
 • External heat sources tied to vehicle orientation relative to Moon and Sun and eclipses
 • Internal heat sources tied to switch/load currents
Lessons Learned

• Command Interface
 – Development of a parser for STOL scripts for the simulation resulted in single source for test configuration
 – This also enabled the simulation to be used for mission ops training prior to the mission and command validation during mission operations

• Electrical System Model
 – Simplified electrical model was required to maintain real time performance
 – Design modularity and configurability minimized the time spent updating the model to match the actual configuration
 – Fault injection consideration in the initial design enable broad range of training scenario for mission operation personnel

• Thermal Model
 – Lumped mass thermal model proved sufficient for test and training purposes
 – Easy configurability of thermal model allowed user use smaller thermal databases for workstation simulation run that did not require consideration of thermal effects
Lessons Learned

• Overall
 – Multi-Domain simulations can provide broader application opportunities across a life-cycle, thus potentially reducing the cost of maintaining independent specialized tools
 – Multi-Domain simulations can be designed so as to minimize the performance hit by controlling the scope/fidelity of the models associated with each domain