
Model Based Analysis and Test Generation for Flight Software

Corina S. P̆as̆areanu, Johann Schumann, Peter Mehlitz, Mike Lowry
NASA Ames Research Center, Moffett Field, CA 94035-1000

NAME@nasa.gov

Gabor Karsai, Harmon Nine, Sandeep Neema
ISIS, Vanderbilt University

{gabor|hnine|sandeep}@isis.vanderbilt.edu

Abstract

We describe a framework for model-based analysis and
test case generation in the context of aheterogeneous
model-based development paradigm that uses and com-
bines MathWorks and UML 2.0 models and the associated
code generation tools. This paradigm poses novel chal-
lenges to analysis and test case generation that, to the best
of our knowledge, have not been addressed before. The
framework is based on a common intermediate represen-
tation for different modeling formalisms and leverages and
extends model checking and symbolic execution tools for
model analysis and test case generation, respectively. We
discuss the application of our framework to software mod-
els for a NASA flight mission.

1. Introduction

This paper reports on an on-going project at NASA
Ames, whose goal is to develop automated techniques for
error detection in the flight control software for the next
manned space missions. Such software needs to be highly
reliable. The developers of the flight software chose an
innovativeheterogeneousmodel-based paradigm that com-
bines model-based design using MathWorks1 with UML 2.0
statechart models, together with the associated code gener-
ation tools. The MathWorks tools are used to develop math-
intensive control software, while the UML-based tools are
used for the rest of the software, including flight, ground,
and simulation software.

The flight software will be complex, where errors can
be caused by interactions among many components, whose
dynamic behavior will be described using different model-
ing formalisms. The model-based approach not only pro-
vides leveraged generation of code for current and future

1http://www.mathworks.com

platforms, but also enables early life-cycle (design stage)
detection of errors because the software models are both
formal and abstracted from some details of the target code.

In the past two decades the avionics software community
has increasingly applied model-based software engineering,
where models are used to specify software designs, and
often executable code is generated automatically from the
models. The models are expressed in domain-specific mod-
eling languages with higher-level abstractions that are well-
known and convenient for domain engineers. Flight con-
trol software have been developed for various vehicles us-
ing Matrix-X2 and MathWorks’ Simulink/Stateflow, which
supports models based on dataflow diagrams and hierarchi-
cal finite state machines.

In spite of the popularity of model-based software en-
gineering (in the style of the two leading products men-
tioned above), the current approaches to the Verification and
Validation of model-based software are still very limited
(see e.g., MathWorks’ DesignVerifier and Section 8). Fur-
thermore, the particular characteristics of the model-based
paradigm usingheterogeneousmodels poses the additional
challenges of handling the different semantics of the mod-
eling formalisms, while keeping the analysis tractable, and
providing means of validating the model analysis results on
the code that is generated from the models. To the best of
our knowledge, these challenges are not addressed by any
existing approaches or tools.

In order to study integration issues between components
described using different modeling formalisms, we have de-
veloped a framework that is based on a commonintermedi-
ate representationfor different models and that leverages
existing verification and test case generation technologies
developed at Ames [6, 17]. The framework aims to pro-
vide automatedtechniques for analysis and test case gener-
ation for UML and Simulink/Stateflow models of mission-
critical systems and to provide seamless integration with

2http://www.matrixx.com

model based development frameworks.
We use model checking for the automated analysis of

the models. While this technology has shown great promise
of being cost-effective for finding defects in software, it
suffers from the well known state-space explosion prob-
lem: for real-size models, the systematic analysis of all the
model states runs quickly out of time or memory resources.
Therefore, the model representation used by our framework
should be abstract enough to exhibit a smaller state space,
allowing thorough automated analysis, but detailed enough
to reflect the model behavior (that will be later represented
in the generated code). Furthermore, the model represen-
tation should be generic enough to allow representation of
various model features represented in different formalisms.

To address these issues, our framework usestwo levels
of abstraction for representing the models:(i) One model-
checker specific representation is designed specifically for
modeling of variousstatechartformalisms. Its main pur-
pose is to provide an abstract execution semantics for state
machines, while aligning the diagram and representation
state space as closely as possible. The representation is de-
signed so that it can represent many representations (includ-
ing Stateflow and UML) and it can beadaptedto specific
statechart dialects and associated execution semantics.(ii)
The second representation is less abstract and closer to the
actual production code (e.g., the code that is auto-generated
from the models). This abstraction is used for represent-
ing mixed formalisms (i.e., both Simulink and Stateflow
models). While the first abstract representation is more
amenable to thorough, model-level verification, the second
one can reveal problems that are more related to the actual
production code. For example, this second representation
can be used for the generation of test cases for testing the
actual code.

The framework’s characteristics are summarized as fol-
lows:
Intermediate Common Representation. The framework
uses a common representation that is executable, ana-
lyzable, and restricted to a safe language subset (e.g.,
no dynamic memory allocation, no un-bounded arrays).
Graph transformation [9] techniques are used for translat-
ing Simulink, and Stateflow models, while customized code
generators are used to translate Embedded Matlab scripts
and UML-style statecharts.
Different Levels of Abstraction. The framework uses two
levels of abstraction as discussed above for the intermediate
representation.
Model Analysis. Model analysis is performed with the Java
PathFinder (JPF) [6] model checker. JPF is a highly cus-
tomizable explicit state model checker with particular fo-
cus on finding bugs (concurrency related errors, run-time
errors, assertion violations). Our framework uses JPF’s
built-in capabilities to address the state explosion problem,

e.g., partial-order and symmetry reduction, heuristic state
space search, abstract state matching, etc. Furthermore, our
framework uses JPF’s statechart library (Section 5.2) for
modeling different statechart formalisms.
Test vector and test sequence generation. Our framework
uses and extends Symbolic (Java) PathFinder (SPF) [17] for
model based test case generation. SPF uses symbolic ex-
ecution and constraint solving techniques to generate test
cases that achieve user specified test coverage (e.g., state,
transition, path coverage). Test cases encode both the in-
puts and the expected outputs (the so called test oracles)
to allow testing of the production code against the mod-
els. Since the models that we need to analyze perform ex-
tensive mathematical computations and make use of exter-
nal libraries, SPF has been extended with precise modeling
of Math functions (via specialized decision procedures [3])
and with mechanisms for modeling embedded code.

Our framework consists of a set of loosely coupled com-
ponents and is easilyextensibletoward different modeling
formalisms (e.g., a new flavor of UML) or different analy-
sis tools. The analysis and test case generation components
(including the generic statechart library) are available for
download [6] (and we are making efforts to make the model
transformation component also available).

We describe how we applied our framework to parts of
the flight control software that is being developed for a
NASA mission. Although we make our presentation in the
context of a NASA project, we believe that our work should
be relevant to other complex, safety critical model-based
software that is built from heterogeneous components.

The rest of the paper is organized as follows. In the next
section we give some background on modeling languages
and associated tools. We then describe the our model based
analysis and test case generation framework (Section 3),
followed by a detailed description of the framework com-
ponents: model transformation (Section 4), model analysis
(Section 5) and test case generation (Section 6). We then de-
scribe the application of our framework (Section7), related
work (Section 8) and conclusions (Section 9).

2. Modeling Languages and Associated Tools

Mathworks’ Simulink is a data-flow oriented modeling
tool, which has been specifically developed for the design
and analysis of continuous- and discrete-time (control) sys-
tems. Hierarchical models contain operational blocks (e.g.,
mathematical functions, signal routing, integrators and de-
lay elements), and links between the blocks denote the data
flow. Whereas the underlying continuous-time semantics is
suitable for simulation and analysis, most flight-code rel-
evant models use a discrete-time semantics, where time is
incremented in discrete, fixed time steps (e.g., in 12.5ms in-
crements). Simulink diagrams can contain ’delay elements’

that store the state of the diagram, or the diagrams can be
purely functional, i.e., stateless. For fixed time step models,
efficient executable code can be generated, e.g., by using
Mathworks’ RealTime Workshop code generator. For our
framework we assume that all models use fixed time steps.

In order to facilitate modeling of event-driven, state-
based systems Stateflow can be used, which is integrated
into Simulink. Stateflow is a variant of the Harel’s statechart
notation and provides hierarchical finite state machines with
several extensions, e.g., history nodes. Stateflow models
describe event-driven systems that undergo state transitions
upon the occurrence of specific events. In the combined
Simulink/Stateflow models events are typically generated
by the Simulink models (e.g., when a signal reaches a cer-
tain threshold value). Stateflow models could also be used
in a standalone manner, where they could describe complex
controller logic. Stateflow semantics has been formally de-
veloped by Rushby et al. [7].

In general, traditional block-oriented Simulink models
are used to model the continuous-time and mathematical
components of the flight software (e.g., large portions of
navigation and control software) and the system architec-
ture, whereas Stateflow is used for discrete, state-oriented
models, e.g., the guidance system. With the advent of ad-
vanced data structures (e.g., buses) and efficient code gen-
erators (RealTime workshop), large parts of modern flight
software is developed in a model-based fashion and pro-
duction code is auto-generated. Additionally, mathemati-
cal (i.e., matrix) algorithms could be implemented as scripts
in Embedded Matlab (eML), which is a restricted and safe
subset of the general Matlab scripting language, suitable for
generation of safe code.

In contrast to Simulink/Stateflow, UML modeling sys-
tems offer more support for high-level and architectural de-
sign. Discrete, state-based components can be modeled us-
ing UML statecharts (which have a slightly different seman-
tics from Stateflow diagrams). Modern tools with code gen-
erators are used for the modeling and automated generation
of flight software.

3. Framework for Model Based Analysis and
Testing

The overall framework for model based analysis and test
case generation is illustrated in Figure 1. Various mod-
els (Simulink/Stateflow/eML and also UML statecharts) are
translated into a common representation (a safe subset of
Java) that is suitable for simulation and (exhaustive) analy-
sis with the JPF model checking tool.

As mentioned, we have two abstract intermediate repre-
sentations: one for different statechart formalisms (denoted
“SC” in the figure) and a second one that is closer to produc-
tion code (denoted “.java”). The SC representation factors

S i m u l i n kS t a t e fl o wE m b e d d e dM a t l a bU M L M o d e lT r a n s f o r m a t i o n S C* . j a v ai n t e r m e d i a t er e p r e s e n t a t i o n J a v a P a t h fi n d e rS y m b o l i cP a t h fi n d e r e r r o rt r a c e st e s tc a s e s* . cp r o d u c t i o n c o d e
M o d e l i n gE n v i r o m e n t

g e n e r a t e c o d e r u n / t e s t c o d e
c o r r e c t m o d e l ss i m u l a t e m o d e l s m o d e l c h e c k i n gt e s t c a s e g e n e r a t i o n(S C f r a m e w o r k s p e c i fi c)

Figure 1. Model Based Analysis and Testing

the semantics of the model into a class hierarchy, that (i) fol-
lows the state hierarchy of the original statechart model, (ii)
contains the ’actions’ from the model in specific methods of
the classes, and (iii) uses a generic, reusable execution en-
gine that operates on the class hierarchy and implements the
behavior of the corresponding model by calling the appro-
priate methods. The SC class hierarchy is a straightforward
transcription of the statechart model. These two represen-
tations allow us to perform different kinds of analyses for
the same models and provide additional confidence in the
translation tools.

Properties to be checked with JPF are given in terms
of assertions or safety monitors encoding software require-
ments, flight rules, etc. The error traces and the debugging
information reported by JPF are used by the developers to
correct the models.

Once the developers have enough confidence in the mod-
els, they can generate test cases (test vectors and test se-
quences) encoding the input values and the expected out-
puts. The user can also specify the desired code coverage
criterion to be achieved by the test cases (e.g., state, tran-
sition, path coverage, or some coverage criteria). Also test
cases for testing of user defined, domain-specific properties
can be generated.

Test cases can be fed back to model simulators (e.g.,
Matlab’s simulator) or can be used to test the actual code
generated from the models. The code does not need to be
auto-generated, but we assume a close correspondence be-
tween models and code.

Test cases can be used for the following activities: test-
ing the code, validating the model transformation (e.g. by
running them against Matlab’s simulator), and validating
the code generators. The model based test cases can reveal
problems such as un-covered code, undesired discrepancies
between models and code, etc. We believe that such testing
should complement other analysis and testing activities at
the code level.

4. Model Based Transformation

The model based transformation component of our
framework is used to translate various models into a com-
mon Java representation that is suitable for analysis. In this
paper, we focus on the the graph-based model transforma-
tion tools for translating Simulink/Stateflow/Matlab mod-
els. Other translation tools for xUML for Kennedy Carter
(KC) [2] using a customized version of KC’s code generator
is also being developed.

Simulink/Stateflow
embedded Matlab

Code Printer

Model

M
et

am
od

el
s

IMPORT

EXPORT

Import translator
type inference

Java
SC

JPF/symbolic JPF

Translator

Figure 2. Model-Integrated Transformation
Tools

4.1. Model Integrated Computing

At the heart of our model transformation component
lies Model-Integrated Computing (MIC) [11], a technology
for building domain-specific software development tools,
which is supported by a tool suite [10] that includes a
metaprogrammable model editor GME, a model transfor-
mation tool GReAT, and a software infrastructure for in-
tegrating model-based software development tool chains,
called OTIF.

We have used the MIC tool infrastructure to build a trans-
lation tool chain whose main task is to bridge the gap be-
tween the analysis tools and the source Simulink/Stateflow
models. The model translators have been implemented as
graph transformation programs, where the input models are
treated as typed, attributed graphs. The type system of the
graphs is defined by a metamodel, which is constructed as a
UML class diagram (for details see [10]). In the following
sections, we will describe the principles of graph transfor-
mations used for this translation as well as the individual
steps of the translation process.

Figure 3. Example graph transformation rule

4.2. Graph Transformations and Rewriting

The translation program is a graph transformation [9]
system that rewrites the input model, a graph, into the target
model, which is another graph.

The transformation consists of explicitly sequenced
rewriting rules (taking advantage of the features of the
transformation language used) that traverse the input model
depth-first (based on the containment hierarchy) and incre-
mentally construct the target tree. Figure 3 shows an ex-
ample for a transformation rule for Stateflow, which is con-
structed using the graphical GME editor. The rule applies
to a State (in the input model) and a Program (which is part
of the output model). The matches if the State has an as-
sociated StateLabel, and checks if the state is a ’function
state’ (i.e., not a pseudo-state like a history state) via the ’is-
FunctionState’ guard expression. If the rule matches and the
guard evaluates to true then the rule creates an Exec func-
tion node and attaches it under the Program.

4.3. Simulink/Stateflow Translation

Our translation tool chain includes the following ele-
ments (see Figure 2): animport translator converts Si-
mulink/Stateflow models into a format compatible with the
MIC tools. This translator uses Matlab’s API to access all
necessary details of the Simulink and Stateflow models, and
transcribes them into an equivalent model for the translation
process. This approach avoids the necessity to develop a
parser to directly read Mathwork’s own and ever changing
internal format.

The models, as imported from Simulink/Stateflow, do
not contain sufficient information for the translation. In

particular, data types of internal signals are missing. The
type inference analyzercalculates this information. It starts
from the input ’ports’ of the toplevel model, which must be
typed, and propagates their type through the dataflow opera-
tors used in the Simulink model. Every elementary operator
in the Simulink diagram is well-defined, so the output data
type of the operator instance can be easily determined. By
forward tracing the dataflow graph our algorithm computes
the data type for each intermediate ’signal’.

Three model translators, for Simulink, Stateflow and
Embedded Matlab, respectively, translate the imported
models into a language-independent executable format,
SFC (a data structure similar to Abstract Syntax Trees used
in compilers). The first two of the generators were imple-
mented using graph transformations, as discussed above.
Finally, acode printerconverts the SFC data structures into
a safe subset of Java.

A different code printer can translate SFC into C code,
which satisfies the requirements of the MISRA[15] guide-
lines, a coding standard for embedded C code.

A separate tool translates Stateflow models into an
equivalent statechart (SC) representation in Java, suitable
for analysis by the Java Path Finder (JPF). This translation
is a simple text generation from the model, as the gener-
ated Java code here is a hierarchical collection of classes,
representing the states, and methods representing the state
transitions (see Section 5.2).

4.4. Model Analysis during Transformation

We note here that the model transformation compo-
nent can perform several preliminary analyses on the im-
ported models, which are complementary to the analyses
performed by JPF and SPF. Specifically, we validate that
the models follow the MAAB guidelines [13] that constrain
the models to make them suitable for generating safe and
efficient embedded code. We also analyze the call graph of
the generated code and verify that there is no infinite recur-
sion (which would lead to unbounded stack growth during
execution, thus a catastrophic failure). The analysis takes
advantage of the fact that recursive calls (if generated at all),
are always protected with conditions. Other verification ac-
tivities are also possible, as the tool chain is built using open
interfaces, and XML is used for interchanging information
between the elements of the toolchain.

4.5. Semantics of the Translated Models

We describe briefly here the semantics of the translated
models, for the two abstract representations (.java and SC).

The translated Simulink/Stateflow .java models strictly
follow the semantics as specified in the language documen-
tation from Mathworks. For the Simulink models we follow

the ’discrete-time’ with ’fixed-stepsize’ assumption. Each
Simulink subsystem is translated into two functions: one
is used to initialize the ’state’ (i.e., the delay elements)of
the Simulink model, and another one that executes a single
computational update step defined by the Simulink diagram.
Similarly, the Stateflow models are translated into two main
functions (one for initialization, one for the update), andfor
each state in the diagram we generate three functions that
implement the necessary actions upon entering, exiting, and
executing in the state, respectively. This approach is similar
to the one used in RealTime Workshop.

For the SC representation, the SC class hierarchy is a
straightforward transcription of the Stateflow model and the
execution semantics is captured in the ’JPF SC engine’ that
operates on the class objects (see Section 5.2). The JPF
SC approach gives a better analysis of the original model,
while analyzing the generated production code can give as-
surances about the executable code that will be deployed in
the final system.

5. Model Analysis

We use the Java PathFinder (JPF) model checker for
model analysis. JPF also provides an adaptable, highly op-
timized, state chart (SC) framework that we use for trans-
lating models written using various state-chart formalisms.
We describe here both JPF and the SC framework.

5.1. Java PathFinder

JPF is an explicit state software model checker for Java
bytecode programs, and includes its own Java Virtual Ma-
chine (JVM) implementation that supports state storing and
matching. Given the well known scalability problem of
software model checking, JPF is focused on finding defects
and producing and analyzing respective error traces. De-
fects can refer to non-functional properties like deadlocks
and data races, or can be defined by user-provided, applica-
tion or domain specific property modules.

The primary design goal of JPF is its extensibility, es-
pecially to achieve the required scalability. In addition to
mechanisms like partial order reduction and heap symme-
try, JPF provides an array of extension mechanisms to de-
fine alternative search strategies, implement complex prop-
erties, abstract standard libraries using the Model Java In-
terface (MJI), observe system-under-test execution, define
state space branches, and to implement different bytecode
execution semantics. For details see, e.g., [6].

5.2. The JPF State-chart (SC) Framework

JPF includes a framework to analyze state machine mod-
els. The framework supports a broad range of state ma-

A BC e 1 e 2e 3 [c]c l a s s M y M o d e l e x t e n d s S t a t e {c l a s s A e x t e n d s S t a t e { . . }c l a s s B e x t e n d s S t a t e { . . }c l a s s C e x t e n d s S t a t e { . . }}
M y M o d e lU M L J a v a M o d e l(i n v a r i a n t s t r u c t u r e)S o f t w a r eM o d e l C h e c k e rV e r i fi c a t i o nR e p o r t(e r r o r t r a c e s) e r r o r :u n r e a c h a b l e e n d s t a t e . .t r a c e :e 1 () , e 2 ()e 1 ()e 2 ()A N Y { * }g u i d a n c e s c r i p t(o p t i o n a l) c l a s s S t a t e { . . }c l a s s S C E v e n t { . . }c l a s s S C E n v i r o n m e n t { . . }. . .

A BC a l t e r n a t i v es t a t e m a c h i n en o t a t i o n s
J P F

S C D r i v e r(e x e c u t i o n s e m a n t i c s)c l a s s S t a t e M a c h i n e {s t e p () { . . }. .} S C L i b r a r y g r a p h i c a lm o d e l i n g l a n g u a g ee x e c u t a b l em o d e lr e p r e s e n t a t i o ne x e c u t i o ne n v i r o n m e n t
p e r d i a g r a m p e r l a n g u a g e

@ T e s tv o i d t e s t X () {. . .} s y m b o l i ca n a l y z e r a c t i v e : Ae n a b l e d : e 1 ()t r a n s i t i o n : A � > B. . . s t a n d a r dJ V MT e s t C a s e S i m u l a t i o n L o g o u t p u t
Figure 4. JPF’s state-chart extension

chine types and execution environments. The major goal
of this framework is to provide an execution semantics for
a given state machine. This is achieved by translating the
model into Java code that intuitively reflects the state ma-
chine structure, and builds upon a layer of extensible li-
brary classes that encapsulate concrete execution semantics.
By choosing different driver applications, the resulting pro-
gram can be run either under the JPF model checker, or in
stand alone simulation.

The SC framework is implemented using JPF’s exten-
sion mechanisms and it consists (Figure 4) (i) a transla-
tion scheme from state machine models into SC specific
Java classes, (ii) basic building blocks likeState and
SCEvents, and (iii) a specialStateMachine class that
provides adriver that captures execution semantics of a
given modeling language (like UML).

The model-to-Java translation scheme is primarily aimed
at representing the original diagram structure in a read-
able form, i.e., without adding execution related overhead
which obfuscates the hierarchical composition and transi-
tional structure of the model. It translates diagrams into a
set of nested classes. Each class represents a modelState,
defining methods for all events/triggers this state can react
to. Transition guards are Java boolean expressions inside
trigger methods, while various actions are ordinary Java ex-
pressions inside trigger methods. Details of the translation
rules are outside the scope of this paper, and can be found
in [14] (for UML state machines).

Albeit the framework is flexible in terms of state ma-
chine types and execution policies, it assumes one funda-
mental constraint: state composition and transitions are in-
variant (i.e., there is no dynamic creation of states and/or
transitions). This is reflected by the structure of classes and
the set of defined methods per class, which both cannot be
changed at runtime. The main reason for this constraint is
to enable deep analysis of the state machine structure by

means of the Java type system (using reflection). This in
turn is key to avoiding verification related overhead in the
resulting program representing the model.

hierarchical state composition
active state sets
begin/end states
actions when entering/exiting a state
events and transitions
transition actions
transition guards
domain specific state categorization
specialized and universal environments (event sources)
prioritized event queues and explicitly sent events
concurrency (independently executing machines)
event based synchronization
extensible execution semantics

Table 1. JPF SC features

Based on this assumption, the our framework supports
numerous state machine features (Table 1), in particular:
Hierarchical State Composition. Complex models often
exceed the size that can be displayed in one diagram. A
standard technique to solve this problem is to use hierar-
chical composition into super- and sub-states, keeping the
details of composed states in separate diagrams. UML is
the most prominent example of a hierarchical state machine
notation, but almost all other systems (like Stateflow) do
support them. The SC framework implements state hierar-
chies by means of class nesting, leaving class inheritance to
be available for model domain specific state categorization.
Environments. The framework allows to separate the re-
active part of the system (the state machine) from the event
generator (the environment). Environments can be either
script based or use Java reflection to compute events. The
script language is mostly declarative, but provides also sim-
ple control structures like bounded and unbounded loops.
This mode is mostly useful for simulation, or to guide ex-
ecution into specific states before deeper model analysis is
started. The reflection based environment represents auni-
versal environmentthat computes all events which could
possibly cause transitions or actions, given a set of active
states. This environment type is especially useful for model
checking.
Prioritized Event Queues. Some state machine languages
do not assume environments, but rely on explicit modeling
of event generation. For such languages, the JPF framework
provides asendEvent() method, which is the front end
for state-specific, prioritized event queues. It is even possi-
ble to mix environments and explicitly sent events, the latter
ones taking priority over environment generated events.
Concurrent State Machine Execution. Following the con-
cept of orthogonal regions in UML, the framework can
model non-preemptive parallel execution of state machines.
This is achieved by composite states with more than one
initial state, executing within the composite state until all

regions are in their respective end states. While this is suf-
ficient to implement orthogonal regions, it should be noted
that this concurrency model is coarse, and would require
additional verification capabilities to detect race conditions
and deadlocks. This feature is therefore mostly used to
model truly independent automata, or state machines that
only communicate via sending events.
Event Based Synchronization. Some languages for con-
current state machines do require explicit synchronization
mechanisms, which can be seen as dynamic guards over
input alphabets of active states. For this purpose, the JPF
framework includes a generic receiveEvent(eventName)
that populates state specific wait sets, effectively suspend-
ing event processing of this state until an event from the
wait set becomes available.
Extensible Execution Semantics. JPF’s state machine
framework can be adapted to different execution seman-
tics by extending itsStateMachine class (thestep
method).

Model execution semantics are implemented in the
StateMachine class that is used for analysis or simula-
tion. StateMachines have to provide arun() method
that implements a driver for the state machine, that usually
loops until appropriate end conditions are detected. The
driver maintains a set of active states and a set of enabling
events, and it systematically goes through the set of events
to advance the state machines to the next set of active states,
using thestep method. One can obtain different execu-
tion semantics by customizing this driver. Off-the-shelf,the
framework includes two implementations. The first one is
suitable for model checking, and is designed to keep model
and program states as closely aligned as possible. The sec-
ond implementation allows stand alone execution outside
JPF, and can be used for - possibly interactive - simulation.

JPF can be used for checking various properties of
the translated statecharts, such as built-in Java properties
(e.g., no unhandled execeptions), modeling language spe-
cific properties (e.g., check for ambiguous transitions), and
more general safety properties, encoded as assertions or as
safety monitors (using JPF’s Listeners).

6. Test Case Generation

For model based test case generation we use Symbolic
PathFinder [17], a recent extension to JPF that combines
symbolic execution and constraint solving for automated
test case generation. Symbolic PathFinder implements a
symbolic execution framework for Java byte-code. It can
handle mixed integer and real inputs, as well as multi-
threading and input pre-conditions. We describe symbolic
execution, the Symbolic PathFinder tool, and its extensions
for model based test case generation in more detail below.

[1] if ((pressure < pressure_min) ||
[2] (pressure > pressure_max)) {
[3] ... /* abort */

} else {
[4] ... /* continue */

}

Figure 5. Example for symbolic execution.

6.1. Symbolic Execution

Symbolic execution [12] is a form of program analysis
that uses symbolic values instead of actual data as inputs
and symbolic expressions to represent the values of program
variables. As a result, the outputs computed by a program
are expressed as a function of the symbolic inputs. The
state of a symbolically executed program includes the (sym-
bolic) values of program variables, a path condition (PC),
and a program counter. The path condition is a boolean
formula over the symbolic inputs, encoding the constraints
which the inputs must satisfy in order for an execution to
follow the particular associated path. These conditions can
be solved (using off-the-shelf constraint solvers) to generate
test cases (test input and expected output pairs) guaranteed
to exercise the analyzed code. The paths followed during
the symbolic execution of a program are characterized by a
symbolic execution tree.

To illustrate the difference between concrete and sym-
bolic execution, consider the example in Figure 5. The code
checks if the value of pressure (input variablepressure)
is within min and max allowed values (input variables
pressure min andpressure max). In concrete execution
(e.g. testing) one executes the code on given concrete in-
puts. For example, forpressure = 460, pressure min =
640, pressure max = 960, only one path through the
code will be executed, corresponding to the first disjunct
in theif statement being true. In contrast, symbolic execu-
tion starts with symbolic input values (pressure = Sym1,
pressure min = MIN andpressure max = MAX).
Symbolic execution will analyze three paths through the
program and it will generate three path conditions, accord-
ing to different possibilities in the code:

PC1 : Sym1 < MIN ,
PC2 : Sym1 > MAX,
PC3 : Sym1 ≥ MIN ∧ Sym2 ≤ MAX

Concrete values for the inputs that satisfy (”solve”) the
path conditions are then found with the help of a constraint
solver and those solutions are used as concrete test inputs
that are guaranteed to give full path coverage for this code.

6.2. Symbolic PathFinder

Symbolic PathFinder implements a non-standard inter-
pretor for byte-codes on top of JPF. The symbolic informa-
tion is stored in attributes associated with the program data
and it is propagated on demand, during symbolic execution.
The analysis engine of JPF is used to systematically gener-
ate and explore the symbolic execution tree of the program.
JPF is also used to systematically analyze thread interleav-
ings and any other forms of non-determinism that might
be present in the code; furthermore JPF is used to check
properties of the code during symbolic execution. Off-
the-shelf constraint solvers/decision procedureschoco and
IASolver [3] are used to solve mixed integer and real
constraints. We handle loops by putting a bound on the
model-checker search depth and/or on the number of con-
straints in the path conditions. Furthermore we have ex-
tended Symbolic PathFinder to handle input arrays of fixed
size (in addition to inputs of primitive type).

6.3. Test Vectors and Test Sequences

By default, Symbolic PathFinder generates vectors of
test cases, each test case representing input-output vector
pairs. In order to test looping, reactive systems, such as
the state-chart models in our model-based framework, we
have extended Symbolic PathFinder to also generate test se-
quences (i.e., sequences of test vectors) that are guaranteed
to cover states or transitions in the models (other coverages
such as condition, or user-defined are also possible). This
works by instructing Symbolic PathFinder to generate and
explore all the possible test sequences up to some user pre-
specified depth (or until the desired coverage is achieved)
and to use symbolic, rather than concrete, values for the in-
put parameters.

Per default, Symbolic PathFinder prints the generated
test vectors and test sequences in a tabular HTML format
and as text. We have also customized SPF to print the gen-
erated test cases in terms of test drivers (for testing the auto-
generated code) and in terms of simulation scripts; SPF’s
output can be customized easily for such purposes.

6.4. Modeling Math Functions and External
Function Calls

The models that we need to analyze perform complex
mathematical computations. To generate test cases for them
Symbolic PathFinder uses JPF’snative peersmechanisms
for modeling native libraries, i.e., to capturemath library
calls and to send them to the constraint solvers. The same
mechanism can be used to handle native code embedded in
the models.

A s c e n tP r e l a u n c hC h e c kF i r s tS t a g eS e c o n dS t a g e
s r b I g n i t i o n ()s t a g e 1 S e p ()

P a dA b o r tA b o r tL o w A c t i v eL A SA b o r tH i g h A c t i v eL A S
f a i l u r e ()

a b o r t ()E a r t h O r b i ts t a g e 2 S e p ()
a b o r t (a l t i t u d e)[a l t i t u d e < = 1 . 2 e 5][a l t i t u d e > = 1 . 2 e 5]l a s J e t t i s o n () E n t r y

Figure 6. Model of the Ascentand EarthOrbit
flight phases of a spacecraft

6.5. Example

We illustrate model based test case generation using the
state-machine model of theAscentand EarthOrbit flight
phases of a spacecraft (Figure 6), where transitions are la-
beled with both events and guards on event parameters. The
model has an error: there is an ambiguous transition going
from stateFirst Stageon anabort event when the value of
thealtitude is exactly1.2e5. Exposing this error requires
a test sequencesrbIgnition(); abort(1.2e5)that depends on
both event and parameter choice, i.e., it is not amenable to
simulation testing (that would fix the the event sequence
apriori), to random testing, or to purely explicit state model
checking techniques (that can not “guess” the exact value of
the abort parameter that leads to error). However, the com-
bination of explicit state model checking (to systematically
explore all the methods sequences up to a given depth) with
symbolic execution (to discover the right partitions on input
values) allows us to discover such sequences automatically.
We believe that the analysis of every realistically complex,
reactive model with a data acquisition part requires such
combined analysis tools.

7. Applications

In this section, we will present some results of a case
study, which applied our framework on safety-critical mod-
els for NASA flight software.

Figure 7. Stateflow example

7.1. Analysis of a Sampling Port

We illustrate some of the features of our framework with
a simple Stateflow example (see Figure 7). This model is a
simplified version of one of the flight software components
that we have analyzed. This diagram implements a sam-
pling port. At each cycle of execution, the component first
checks to see if a new message (RC == 0) is present. If
not, the output (om) is set to a default message (dm) and
the component waits for the next cycle. If a new message is
present and it is valid, the output is set to the new message
data (om = nm). If the new message is not valid, we incre-
ment variablebad (representing the port status) and set the
output to the default message.

Although very simple, this example illustrates some of
the problems discovered during the analysis of the real flight
software component. We used JPF to perform simulations
of the model and to check for properties, extracted from the
informal documentation provided by the developers of the
models. For example, JPF runs out of memory on this small
example, the reason being that variablebad is unbounded,
since it is being incremented without ever being reset. Thus,
eventually an integer overflow error can occur. Interest-
ingly, several other models that we have analyzed exhibited
similar problems of missing resets.

We also used SPF to generate test cases for this model.
Table 2 shows the test cases that are generated to achieve
branch coverage.

In order to run the test cases from Table 2, we used Re-
alTime Workshop to generate code and used a simple test
harness. Code coverage was measured usinggcov, which
is a part of the GNU C compiler. While running these test
cases on the code did not reveal any discrepancies between
code and model in terms of expected output, we did dis-
cover some code statements that were not covered (Figure 8:
unreachable statement is highlighted). Such examples of
unreachable code in general poses a big problem in the de-
velopment of flight code, as no dead code is allowed.

Table 2. Generated test cases for model in
Figure 7

C
ov

er
ag

e

V
A

L
in

R
C

in

d
m

in

n
m

in

b
a
d

in

o
m

o
u
t

b
a
d

o
u
t

Tr 1 2 VAL!=1 0 0 0 0 0 0 1
Tr 2 1 RC!=0 0 1 0 0 0 0 0

Tr 1 0 0 0 0 0 0 1
Tr 1 2 0 0 0 0 0 0 1
Tr 1 1 1 0 0 0 0 0 0

St CHECK2 0 0 0 0 0 0 1
Tr 2 0 1 0 0 0 0 0

Figure 8. Measuring coverage on generated
code

7.2. Analysis of Flight Software

We have applied our framework to several flight software
components written in Matlab’s Simulink/Stateflow. These
models were built for the Launch Abort System (LAS) – one
of the most important safety features of the new Orion space
capsule and the ARES rocket. In particular, we analyzed
the Guidance, Navigation, and Control (GN&C) part of the
software that will be flight tested in the near future.

The entire GN&C software has been modeled using
Mathwork’s Simulink/Stateflow system, and large por-
tions of the flight code are automatically generated us-
ing Mathwork’s RealTime Workshop. This model has a
highly hierarchical structure and contains Stateflow dia-
grams, Simulink blocks for continuous calculations and sig-

Figure 9. Simulink Model

nal routing, as well as some embedded Matlab scripts. The
entire system consists of roughly 25,000 Simulink blocks,
100 Stateflow diagrams of various sizes and complexity and
more than 200 embedded Matlab scripts.

Since none of the tools (inhouse and commercial) could
handle the entire system at once, we selected a number of
representative subsystems for this case study. These exam-
ples included pure Simulink parts (to analyze the tool’s ca-
pabilities for handling continuous and hybrid parts and sig-
nal flow), Stateflow diagrams (Statecharts), and subsystems
with embedded Mathscript. The extraction of the subsys-
tems under consideration proved to be far from trivial, be-
cause data types and signal dimensions were not encoded
with all signals of the model; rather they were automati-
cally inferred by the Simulink system. In total, we applied
our analysis and test case generation tools to 6 selected
small subsystems (Simulink, Stateflow, embedded Math-
script) and two larger subsystems, which mainly consisted
of mode logic modeled by several Stateflow statecharts. For
each of the models, we generated test vectors and test se-
quences (where applicable) with the goal of obtaining state,
transition, and path coverage.

Figure 9 shows one of the analyzed Simulink models,
which encodes some mathematical operations on quater-
nions with 5 inputs and 4 outputs. Besides various math-
ematical operations (e.g., inverse, square root), this model
contains several if-then-else and merge blocks. With a range
restriction on the inputs of[−50, . . . , 50], our tool generated
11 testcases (and in several cases our constraint solver gave
warnings that it could not find solutions).

When executing these testcases on the corresponding
generated code, only a code coverage of appr. 95% was
obtained (analysis of the coverage revealed un-reachable
code).

We analyzed several Simulink/Stateflow diagrams, rang-
ing from the simple model in the previous section to two

Rejectcmd
2

CmdStatus
1

Validate NewCommand

validate()
newcmd

rejectcmd

Process
Sampling Port

MSG valid

Port
1

Figure 10. Synchronizing SF diagrams

large SF diagrams, which contain embedded Matlab code
and which synchronize by recursive calls (Figure 10) as
well as other advanced Simulink/Stateflow features, like
buses.

For these models, we analyzed properties encoded as as-
sertions; these assertions were derived from the informal
model documentation (e.g., “On entry to stateParachute,
assert that the Reaction Control System (RCS) control is
disabled”). In addition to the problems related to integer
overflow and unreachable code described above, our anal-
ysis revealed several errors in the models (e.g. assertion
violation for the above property due to underconstrained en-
vironment).

It still remains for us to study the interaction between
heterogeneous models and we are working with the devel-
opers of the code to define such interactions. However, we
believe that our framework will provide good support for
this study.

8. Related Work

The work related to this paper is vast and for brevity, we
only highlight here some of the most relevant one.

The automatic generation of test cases from
Simulink/Stateflow is the subject of several approaches. In
particular, we have performed some experiments to inves-
tigate the applicability of two commercial tools, T-VEC
and Design Verifier, in the context of our case study. The
tool T-VEC3 is a commercial tool for testcase generation
based on Simulink/Stateflow diagrams; it uses constraint
solving technology. We had been able to run the submodels
from our case study through T-VEC. Although T-VEC
supports a large subset of Simulink blocks and Stateflow,
the translator has problems with processing large diagrams
and complex statecharts, and unlike our framework, it does
not support embedded Matlab. Furthermore, in order to
produce test sequences, T-VEC has to work with multiple
copies of the diagram, thus severely limiting its scalability.

Design Verifier is a tool by Mathworks, which is even
closer integrated with the Simulink/Stateflow system. It
also translates the models into a logic representation and

3http://www.t-vec.com

the uses the Prover technology for analysis and generation
of test cases. The current version has a relatively limited
functionality, as it cannot handle nonlinear functions (e.g.,
sqrt, trigonometric functions), Simulink bus objects, or re-
cursive functions. However, both T-VEC and Design Veri-
fier are under active development, so it is expected that the
above limitations will be soon overcome.

Another commercial tool, Reactis4 is a toolset for model-
based testing and validation of Simulink/Stateflow models.
It uses random and heuristic search to exercise the behavior
of the models to reach a certain coverage.

None of the above tools attempt to address the analysis
of heterogeneous models.

There are many approaches for automatically verifying
model-based specifications (e.g., [8]). The most closely re-
lated to ours are the ones targeting multi-formalisms tem-
plate semantics and analysis tools (e.g., [1, 18]). However,
such approaches target only multiple state machine repre-
sentations. In the future, we plan to investigate the appli-
cability of the template semantics in the context of our SC
framework.

Model based generated test cases can be used to ensure
that the translation (code generation) from the model to the
code is working properly, as automatic code generators or
manual implementation is not necessarily error free. Many
approaches address the problem of making code genera-
tors and/or compilers trustworthy. Such approaches range
from verifying model transformations [16] and verifying
compilers/proof-carrying code [4] to instance-based verifi-
cation, e.g., the AutoCert system [5].

9. Conclusion

We described a framework for model based analysis and
test case generation based on Simulink/Stateflow and UML
representations. We applied our framework to the analysis
of various safety-critical parts of the flight code for NASA
Orion. Our analyses and test cases revealed various defi-
ciencies in the models (e.g., ambiguity in statechart transi-
tions, potential integer overflows) as well as problems in the
code generation phase (e.g., dead code).

Although this tool chain is currently used for Simulink/-
Stateflow and UML models, the underlying framework for
translation and analysis is very flexible and could be cus-
tomized to handle other formalisms (e.g., multiple state-
chart semantics).

In the future, we plan to make the framework more ro-
bust and to apply it further to the analysis of heterogeneous
models.

4http://www.reactive-systems.com

References

[1] J. M. Atlee and J. Gannon. State-based model checking of
event-driven systems requirements.IEEE Transactions on
Software Engineering, 19(1):24–40, 1993.

[2] Kennedy Carter. http://www.kc.com
[3] Choco Constraint Solver.

http://choco.sourceforge.net.
[4] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and

K. Cline. A certifying compiler for Java. InProc. PLDI
2000, pp 95–107, 2000. ACM Press.

[5] E. Denney and S. Trac. A software safety certification tool
for automatically generated guidance, navigation and con-
trol code. InIEEE Aerospace, 2008. IEEE.

[6] Java Path Finder.
http://javapathfinder.sourceforge.org.

[7] G. Hamon and J. Rushby. An operational semantics for
Stateflow. InProc. 7th FASE, vol 2984LNCS, pp 229–243,
2004. Springer.

[8] D. Harel and A. Naamad. The Statemate Semantics of Stat-
echarts.ACM TOSEM, 5(4):293–333, 1996.

[9] R. Heckel. Graph transformation in a nutshell. InLan-
guage Engineering for Model-Driven Software Develop-
ment, number 04101 in Dagstuhl Seminar Proceedings,
2005. http://drops.dagstuhl.de/opus/volltexte/2005/16.

[10] G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits. The
model-integrated computing toolsuite: Metaprogrammable
tools for embedded control system design. In2006 IEEE In-
ternational Symposium on Computer-Aided Control Systems
Design, pp 50–55, 2006.

[11] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. InProceed-
ings of the IEEE, volume 91, pp 145–164, 2003.

[12] J. C. King. Symbolic execution and program testing.Com-
mun. ACM, 19(7):385–394, 1976.

[13] Control algorithm modeling guidelines using Matlab,
Simulink, and Stateflow - Version 2.0. Mathworks Auto-
motive Advisory Board.
http://www.mathworks.com/industries/auto/maab.html.

[14] P. Mehlitz. Trust your model - verifying aerospace system
models with Java pathfinder. InProc IEEE Aerospace, 2008.

[15] Guidelines for the use of the C language in critical sys-
tems. The Motor Industry Software Reliability Association.
http://www.misra.org.uk/.

[16] A. Narayanan and G. Karsai. Using semantic anchoring to
verify behavior preservation in graph transformations.Elec-
tronic Communications of the EASST: Graph and Model
Transformation 2006, 4, 2006.

[17] C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-
Burlet, M. Lowry, S. Person, and M. Pape. Combining unit-
level symbolic execution and system-level concrete execu-
tion for testing NASA software. InProc. ISSTA’08 (to ap-
pear), 2008.

[18] M. Pezz̀e and M. Young. Constructing multi-formalism
state-space analysis tools. InProc. ICSE, pp 239–249. ACM
Press, 1997.

