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Abstract platforms, but also enables early life-cycle (design stage
detection of errors because the software models are both
We describe a framework for model-based analysis andformal and abstracted from some details of the target code.
test case generation in the context ofhaterogeneous In the past two decades the avionics software community
model-based development paradigm that uses and comhas increasingly applied model-based software engirgerin
bines MathWorks and UML 2.0 models and the associatedwhere models are used to specify software designs, and
code generation tools. This paradigm poses novel chal- often executable code is generated automatically from the
lenges to analysis and test case generation that, to the bestnodels. The models are expressed in domain-specific mod-
of our knowledge, have not been addressed before. Theeling languages with higher-level abstractions that aré we
framework is based on a common intermediate represen-known and convenient for domain engineers. Flight con-
tation for different modeling formalisms and leverages and trol software have been developed for various vehicles us-
extends model checking and symbolic execution tools foring Matrix-X? and MathWorks’ Simulink/Stateflow, which
model analysis and test case generation, respectively. Wesupports models based on dataflow diagrams and hierarchi-
discuss the application of our framework to software mod- cal finite state machines.
els for a NASA flight mission. In spite of the popularity of model-based software en-
gineering (in the style of the two leading products men-
tioned above), the current approaches to the Verification an
1. Introduction Validation of model-based software are still very limited
(see e.g., MathWorks’ DesignVerifier and Section 8). Fur-
This paper reports on an on-going project at NASA thermore, the particular characteristics of the modeetas
Ames, whose goal is to develop automated techniques forParadigm usingieterogeneousiodels poses the additional
error detection in the flight control software for the next challenges of handling the different semantics of the mod-
manned space missions. Such software needs to be highlling formalisms, while keeping the analysis tractablel an
reliable. The developers of the flight software chose an Providing means of validating the model analysis results on
innovativeheterogeneousiodel-based paradigm that com- the code that is generated from the models. To the best of
bines model-based design using MathWaémkih UML 2.0 our knowledge, these challenges are not addressed by any
statechart models, together with the associated code-gene@Xisting approaches or tools.
ation tools. The MathWorks tools are used to develop math-  In order to study integration issues between components
intensive control software, while the UML-based tools are described using different modeling formalisms, we have de-
used for the rest of the software, including flight, ground, Veloped a framework that is based on a comrimermedi-
and simulation software. ate representatiorfor different models and that leverages
The flight software will be complex, where errors can €Xisting verification and test case generation technatogie
be caused by interactions among many components, whoséeveloped at Ames [6, 17]. The framework aims to pro-
dynamic behavior will be described using different model- Vide automatedechniques for analysis and test case gener-
ing formalisms. The model-based approach not only pro- ation for UML and Simulink/Stateflow models of mission-

vides leveraged generation of code for current and futurecritical systems and to provide seamless integration with
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model based development frameworks. e.g., partial-order and symmetry reduction, heuristi¢esta
We use model checking for the automated analysis of space search, abstract state matching, etc. Furthermore, o
the models. While this technology has shown great promiseframework uses JPF’s statechart library (Section 5.2) for
of being cost-effective for finding defects in software, it modeling different statechart formalisms.
suffers from the well known state-space explosion prob- Test vector and test sequence generation. Our framework
lem: for real-size models, the systematic analysis of @l th uses and extends Symbolic (Java) PathFinder (SPF) [17] for
model states runs quickly out of time or memory resources. model based test case generation. SPF uses symbolic ex-
Therefore, the model representation used by our frameworkecution and constraint solving techniques to generate test
should be abstract enough to exhibit a smaller state spacegases that achieve user specified test coverage (e.g,, state
allowing thorough automated analysis, but detailed enoughtransition, path coverage). Test cases encode both the in-
to reflect the model behavior (that will be later represented puts and the expected outputs (the so called test oracles)
in the generated code). Furthermore, the model represento allow testing of the production code against the mod-
tation should be generic enough to allow representation ofels. Since the models that we need to analyze perform ex-
various model features represented in different formalism tensive mathematical computations and make use of exter-
To address these issues, our framework wsedevels nal libraries, SPF has been extended with precise modeling

of abstraction for representing the mode($:One model-  0f Math functions (via specialized decision procedure} [3]
checker specific representation is designed specifically fo @nd with mechanisms for modeling embedded code.
modeling of variousstatechartformalisms. Its main pur- Our framework consists of a set of loosely coupled com-

pose is to provide an abstract execution semantics for stat@onents and is easilgxtensibletoward different modeling
machines, while aligning the diagram and representationformalisms (e.g., a new flavor of UML) or different analy-
state space as closely as possible. The representation is déis tools. The analysis and test case generation components
signed so that it can represent many representationsdinclu (including the generic statechart library) are availatde f

ing Stateflow and UML) and it can bedaptedto specific ~ download [6] (and we are making efforts to make the model
statechart dialects and associated execution sematfifics. transformation component also available).

The second representation is less abstract and closer to the We describe how we applied our framework to parts of
actual production code (e.g., the code that is auto-gesaerat the flight control software that is being developed for a
from the models). This abstraction is used for represent-NASA mission. Although we make our presentation in the
ing mixed formalisms (i.e., both Simulink and Stateflow context of a NASA project, we believe that our work should
models). While the first abstract representation is more be relevant to other complex, safety critical model-based
amenable to thorough, model-level verification, the secondsoftware that is built from heterogeneous components.

one can reveal problems that are more related to the actual The rest of the paper is organized as follows. In the next
production code. For example, this second representatiorsection we give some background on modeling languages
can be used for the generation of test cases for testing th&nd associated tools. We then describe the our model based

actual code. analysis and test case generation framework (Section 3),
The framework’s characteristics are summarized as fol- followed by a detailed description of the framework com-
lows: ponents: model transformation (Section 4), model analysis

Intermediate Common Representation. The framework (Section 5) and test case generation (Section 6). We then de-

uses a common representation that is executable, ana§cr'be the application of our framework (Section7), redate

lyzable, and restricted to a safe language subset (e.g.VO'k (Section 8) and conclusions (Section 9).

no dynamic memory allocation, no un-bounded arrays).

Graph transformation [9] techniques are used for translat-2. M odeling L anguages and Associated Tools

ing Simulink, and Stateflow models, while customized code

generators are used to translate Embedded Matlab scripts mathworks’ Simulink is a data-flow oriented modeling
and UML-style statecharts. tool, which has been specifically developed for the design
Different Levels of Abstraction. The framework uses two  and analysis of continuous- and discrete-time (contra) sy
levels of abstraction as discussed above for the intereedia tems. Hierarchical models contain operational blocks. (e.g
representation. mathematical functions, signal routing, integrators aed d
Model Analysis. Model analysis is performed with the Java lay elements), and links between the blocks denote the data
PathFinder (JPF) [6] model checker. JPF is a highly cus-flow. Whereas the underlying continuous-time semantics is
tomizable explicit state model checker with particular fo- suitable for simulation and analysis, most flight-code rel-
cus on finding bugs (concurrency related errors, run-time evant models use a discrete-time semantics, where time is
errors, assertion violations). Our framework uses JPF'sincremented in discrete, fixed time steps (e.g., in 12.5ms in
built-in capabilities to address the state explosion @wot)l  crements). Simulink diagrams can contain 'delay elements’



that store the state of the diagram, or the diagrams can be " odaing simuiate models
purely functional, i.e., stateless. For fixed time step nmde Sonect modes
efficient executable code can be generated, e.g., by using

Simulink (SC framework specific)  model checking

intermediate

Mathworks’ RealTime Workshop code generator. For our el S reprosontation | Java Pathncer
framework we assume that all models use fixed time steps. Transiormation

In order to facilitate modeling of event-driven, state- Matab
based systems Stateflow can be used, which is integrated N procucton code 19516350 generation

g
\

generate code — run/test code
e

L

into Simulink. Stateflow is a variant of the Harel's statatha

notation and provides hierarchical finite state machinéis wi

several extensions, e.g., history nodes. Stateflow models

describe event-driven systems that undergo state transiti Figure 1. Model Based Analysis and Testing

upon the occurrence of specific events. In the combined

Simulink/Stateflow models events are typically generated

by the Simulink models (e.g., when a signal reaches a cer-

tain threshold value). Stateflow models could also be usedthe semantics of the model into a class hierarchy, thatli) fo

in a standalone manner, where they could describe complexows the state hierarchy of the original statechart modigl, (

controller logic. Stateflow semantics has been formally de- contains the 'actions’ from the model in specific methods of

veloped by Rushby et al. [7]. the classes, and (iii) uses a generic, reusable execution en
In general, traditional block-oriented Simulink models gine that operates on the class hierarchy and implements the

are used to model the continuous-time and mathematicalbehavior of the corresponding model by calling the appro-

components of the flight software (e.g., large portions of priate methods. The SC class hierarchy is a straightforward

navigation and control software) and the system architec-transcription of the statechart model. These two represen-

ture, whereas Stateflow is used for discrete, state-odente tations allow us to perform different kinds of analyses for

models, e.g., the guidance system. With the advent of ad-the same models and provide additional confidence in the

vanced data structures (e.g., buses) and efficient code geriranslation tools.

erators (RealTime workshop), large parts of modern flight

software is developed in a model-based fashion and pro-

duction code is auto-generated. Additionally, mathemati-

cal (i.e., matrix) algorithms could be implemented as ssrip

in Embedded Matlab (eML), which is a restricted and safe

subset of the general Matlab scripting language, suitable f correct the models.

generation of safe code. . Once the developers have enough confidence in the mod-
In contrast to Simulink/Stateflow, UML modeling sys- g5 they can generate test cases (test vectors and test se-
tgms offer more support for high-level and architectural de quences) encoding the input values and the expected out-
sign. Discrete, state-based components can be modeled Ugsyts. The user can also specify the desired code coverage
ing UML statecharts (which have a slightly different seman- ¢yiterion to be achieved by the test cases (e.g., state, tran
tics from Stateflow diagrams). .Modern tools with code gen- sition, path coverage, or some coverage criteria). Alsb tes
erators are used for the modeling and automated generatioRsses for testing of user defined, domain-specific propertie

Properties to be checked with JPF are given in terms
of assertions or safety monitors encoding software reguire
ments, flight rules, etc. The error traces and the debugging
information reported by JPF are used by the developers to

3. Framework for Model Based Analysis and Test, cases can be fed back to model simulators (e.g.,
Testing Matlab’s simulator) or can be used to test the actual code

generated from the models. The code does not need to be

, auto-generated, but we assume a close correspondence be-
The overall framework for model based analysis and test; . oen models and code

case generation is illustrated in Figure 1. Various mod-
els (Simulink/Stateflow/eML and also UML statecharts) are  Test cases can be used for the following activities: test-
translated into a common representation (a safe subset oing the code, validating the model transformation (e.g. by
Java) that is suitable for simulation and (exhaustive)yanal running them against Matlab’s simulator), and validating
sis with the JPF model checking tool. the code generators. The model based test cases can reveal
As mentioned, we have two abstract intermediate repre-problems such as un-covered code, undesired discrepancies
sentations: one for different statechart formalisms (tktho  between models and code, etc. We believe that such testing
“SC”in the figure) and a second one that is closer to produc-should complement other analysis and testing activities at
tion code (denoted “.java”). The SC representation factorsthe code level.



4. Model Based Transfor mation

The model based transformation component of ot
framework is used to translate various models into a con
mon Java representation that is suitable for analysis.i$n tF
paper, we focus on the the graph-based model transforr
tion tools for translating Simulink/Stateflow/Matlab mod-
els. Other translation tools for XUML for Kennedy Carter
(KC) [2] using a customized version of KC'’s code generato
is also being developed.

Simulink/Stateflow
embedded Matlab
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Figure 2. Model-Integrated Transformation
Tools

4.1. Model Integrated Computing

At the heart of our model transformation component
lies Model-Integrated Computing (MIC) [11], a technology
for building domain-specific software development tools,
which is supported by a tool suite [10] that includes a
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Figure 3. Example graph transformation rule

4.2. Graph Transformations and Rewriting

The translation program is a graph transformation [9]
system that rewrites the input model, a graph, into the targe
model, which is another graph.

The transformation consists of explicitly sequenced
rewriting rules (taking advantage of the features of the
transformation language used) that traverse the input mode
depth-first (based on the containment hierarchy) and incre-
mentally construct the target tree. Figure 3 shows an ex-
ample for a transformation rule for Stateflow, which is con-
structed using the graphical GME editor. The rule applies
to a State (in the input model) and a Program (which is part
of the output model). The matches if the State has an as-
sociated StateLabel, and checks if the state is a 'function
state’ (i.e., not a pseudo-state like a history state) \adith
FunctionState’ guard expression. If the rule matches amd th
guard evaluates to true then the rule creates an Exec func-

metaprogrammable model editor GME, a model transfor- tion node and attaches it under the Program.

mation tool GReAT, and a software infrastructure for in-

tegrating model-based software development tool chains,4.3. Simulink/Stateflow Translation

called OTIF.

We have used the MIC tool infrastructure to build a trans-
lation tool chain whose main task is to bridge the gap be-

Our translation tool chain includes the following ele-
ments (see Figure 2): amport translator converts Si-

tween the analysis tools and the source Simulink/Stateflowmulink/Stateflow models into a format compatible with the
models. The model translators have been implemented a#MIC tools. This translator uses Matlab’s API to access all
graph transformation programs, where the input models arenecessary details of the Simulink and Stateflow models, and
treated as typed, attributed graphs. The type system of thdranscribes them into an equivalent model for the trarwsiati

graphs is defined by a metamodel, which is constructed as
UML class diagram (for details see [10]). In the following
sections, we will describe the principles of graph transfor

mations used for this translation as well as the individual

steps of the translation process.

grocess. This approach avoids the necessity to develop a
parser to directly read Mathwork’s own and ever changing
internal format.

The models, as imported from Simulink/Stateflow, do
not contain sufficient information for the translation. In



particular, data types of internal signals are missing. Thethe 'discrete-time’ with 'fixed-stepsize’ assumption. Bac
type inference analyzexalculates this information. It starts  Simulink subsystem is translated into two functions: one
from the input 'ports’ of the toplevel model, which must be is used to initialize the ’state’ (i.e., the delay elemerms)
typed, and propagates their type through the dataflow operathe Simulink model, and another one that executes a single
tors used in the Simulink model. Every elementary operator computational update step defined by the Simulink diagram.
in the Simulink diagram is well-defined, so the output data Similarly, the Stateflow models are translated into two main
type of the operator instance can be easily determined. Byfunctions (one for initialization, one for the update), dod
forward tracing the dataflow graph our algorithm computes each state in the diagram we generate three functions that
the data type for each intermediate 'signal’. implement the necessary actions upon entering, exitirdy, an
Three model translators for Simulink, Stateflow and  executing in the state, respectively. This approach idaimi
Embedded Matlab, respectively, translate the importedto the one used in RealTime Workshop.
models into a language-independent executable format, For the SC representation, the SC class hierarchy is a
SFC (a data structure similar to Abstract Syntax Trees usedstraightforward transcription of the Stateflow model arel th
in compilers). The first two of the generators were imple- execution semantics is captured in the 'JPF SC engine’ that
mented using graph transformations, as discussed aboveoperates on the class objects (see Section 5.2). The JPF
Finally, acode printerconverts the SFC data structures into SC approach gives a better analysis of the original model,
a safe subset of Java. while analyzing the generated production code can give as-
A different code printer can translate SFC into C code, surances about the executable code that will be deployed in
which satisfies the requirements of the MISRA[15] guide- the final system.
lines, a coding standard for embedded C code.
A separate tool translates Stateflow models into an5 Model Analysis
equivalent statechart (SC) representation in Java, deitab
for analysis by the Java Path Finder (JPF). This translation We use the Java PathFinder (JPF) model checker for

is a simple text generation from the model, as the gener-p,,qq| analysis. JPF also provides an adaptable, highly op-
ated Java code here is a hierarchical collection of classes;.i-oq state chart (SC) framework that we use for trans-
representing the states, and methods representing tee sta}ating models written using various state-chart formaism

transitions (see Section 5.2). We describe here both JPF and the SC framework.

4.4. Model Analysis during Transformation 5.1. Java PathFinder

We note here that the model transformation compo-  JpF s an explicit state software model checker for Java
nent can perform several preliminary analyses on the im-pytecode programs, and includes its own Java Virtual Ma-
ported models, which are complementary to the analyseschine (JVM) implementation that supports state storing and
performed by JPF and SPF. Specifically, we validate thatmatching. Given the well known scalability problem of
the models follow the MAAB guidelines [13] that constrain - software model checking, JPF is focused on finding defects
the models to make them suitable for generating safe andand producing and analyzing respective error traces. De-
efficient embedded code. We also analyze the call graph offects can refer to non-functional properties like deadéock
the generated code and Verify that there is no infinite recur-gnd data races, or can be defined by user-provided, app"ca_
sion (Wthh would lead to unbounded stack grOWth duriﬂg tion or domain Speciﬁc property modules.
execution, thus a catastrophic failure). The analysisstake  The primary design goal of JPF is its extensibility, es-
advantage of the fact that recursive calls (if generatethata pecially to achieve the required scalability. In addition t
are always protected with conditions. Other verification ac mechanisms like partial order reduction and heap symme-
tivities are also pOSSibIe, as the tool chain is built USipgm try, JPF provides an array of extension mechanisms to de-
interfaces, and XML is used for interchanging information fine alternative search strategies, implement complex-prop

between the elements of the toolchain. erties, abstract standard libraries using the Model Java In
terface (MJl), observe system-under-test execution, eefin
4.5. Semantics of the Translated Models state space branches, and to implement different bytecode

execution semantics. For details see, e.g., [6].
We describe briefly here the semantics of the translated
models, for the two abstract representations (.java and SC)5.2. The JPF State-chart (SC) Framework
The translated Simulink/Stateflow .java models strictly
follow the semantics as specified in the language documen- JPF includes a framework to analyze state machine mod-
tation from Mathworks. For the Simulink models we follow els. The framework supports a broad range of state ma-
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Figure 4. JPF's state-chart extension Table 1. JPF SC features

Based on this assumption, the our framework supports

chine types and execution environments. The major goalnumerous state machine features (Table 1), in particular:
of this framework is to provide an execution semantics for Hierarchical State Composition. Complex models often
a given state machine. This is achieved by translating theexceed the size that can be displayed in one diagram. A
model into Java code that intuitively reflects the state ma- standard technique to solve this problem is to use hierar-
chine structure, and builds upon a layer of extensible li- chical composition into super- and sub-states, keeping the
brary classes that encapsulate concrete execution sesianti details of composed states in separate diagrams. UML is
By choosing different driver applications, the resultimgp  the most prominent example of a hierarchical state machine
gram can be run either under the JPF model checker, or imotation, but almost all other systems (like Stateflow) do
stand alone simulation. support them. The SC framework implements state hierar-

The SC framework is implemented using JPF’s exten- chies by means of class nesting, leaving class inheritance t
sion mechanisms and it consists (Figure 4) (i) a transla-be available for model domain specific state categorization
tion scheme from state machine models into SC specificEnvironments. The framework allows to separate the re-
Java classes, (ii) basic building blocks lilgt at e and active part of the system (the state machine) from the event
SCEvent s, and (iii) a speciabt at eMachi ne class that  generator (the environment). Environments can be either
provides adriver that captures execution semantics of a script based or use Java reflection to compute events. The
given modeling language (like UML). script language is mostly declarative, but provides also si

The model-to-Java translation scheme is primarily aimed ple control structures like bounded and unbounded loops.
at representing the original diagram structure in a read-This mode is mostly useful for simulation, or to guide ex-
able form, i.e., without adding execution related overhead ecution into specific states before deeper model analysis is
which obfuscates the hierarchical composition and transi- started. The reflection based environment represeunts-a
tional structure of the model. It translates diagrams into a versal environmenthat computes all events which could
set of nested classes. Each class represents a Sicaleg, possibly cause transitions or actions, given a set of active
defining methods for all events/triggers this state cantreac states. This environment type is especially useful for rhode
to. Transition guards are Java boolean expressions insidehecking.
trigger methods, while various actions are ordinary Java ex Prioritized Event Queues. Some state machine languages
pressions inside trigger methods. Details of the trarmsiati do not assume environments, but rely on explicit modeling
rules are outside the scope of this paper, and can be founaf event generation. For such languages, the JPF framework
in [14] (for UML state machines). provides asendEvent () method, which is the front end

Albeit the framework is flexible in terms of state ma- for state-specific, prioritized event queues. It is everspos
chine types and execution policies, it assumes one funda-ble to mix environments and explicitly sent events, theslatt
mental constraint: state composition and transitionsrare i ones taking priority over environment generated events.
variant (i.e., there is no dynamic creation of states and/or Concurrent State M achine Execution. Following the con-
transitions). This is reflected by the structure of classes a cept of orthogonal regions in UML, the framework can
the set of defined methods per class, which both cannot benodel non-preemptive parallel execution of state machines
changed at runtime. The main reason for this constraint isThis is achieved by composite states with more than one
to enable deep analysis of the state machine structure bynitial state, executing within the composite state uniil a



regions are in their respective end states. While this is suf-[ 11 if ((pressure < pressure_nin) |[]|

ficient to implement orthogonal regions, it should be noted [ 2] (pressure > pressure_max)) {
that this concurrency model is coarse, and would require[ 3] ... /* abort x/

additional verification capabilities to detect race coiodis } else {

and deadlocks. This feature is therefore mostly used tol4] ... /* continue */

model truly independent automata, or state machines that }
only communicate via sending events.

Event Based Synchronization. Some languages for con-
current state machines do require explicit synchroninatio
mechanisms, which can be seen as dynamic guards over
input alphabets of active states. For this purpose, the JPF
framework includes a generic receiveEvent(eventName)6.1. Symbolic Execution
that populates state specific wait sets, effectively sudpen

ing event processing of this state until an event from the

wait set becomes available. Symbolic execution [12] is a form of program analysis
Extensible Execution Semantics. JPF's state machine that uses symbolic values instead of actual data as inputs
framework can be adapted to different execution seman-and symbolic expressions to represent the values of program
tics by extending itsSt at eMachi ne class (thest ep variables. As a result, the outputs computed by a program
method). are expressed as a function of the symbolic inputs. The
Model execution semantics are implemented in the state of a symbolically executed program includes the (sym-
St at eMachi ne class that is used for analysis or simula- bolic) values of program variables, a path conditiét(Y),
tion. St at eMachi nes have to provide aun() method and a program counter. The path condition is a boolean
that implements a driver for the state machine, that usually formula over the symbolic inputs, encoding the constraints
loops until appropriate end conditions are detected. Thewhich the inputs must satisfy in order for an execution to
driver maintains a set of active states and a set of enablingfollow the particular associated path. These conditioms ca
events, and it systematically goes through the set of eventde solved (using off-the-shelf constraint solvers) to gatee
to advance the state machines to the next set of active statesest cases (test input and expected output pairs) guacantee
using thest ep method. One can obtain different execu- to exercise the analyzed code. The paths followed during
tion semantics by customizing this driver. Off-the-shiig the symbolic execution of a program are characterized by a
framework includes two implementations. The first one is symbolic execution tree
suitable for model checking, and_is designed tq keep model To illustrate the difference between concrete and sym-
and program statgs as closely aligned as possm_)le. The S€Golic execution, consider the example in Figure 5. The code
ond implementation allows star_1d a_Ione ex_ecutlo_n OUt"f“"dechecks if the value of pressure (input variapleessure)
JPF, and can be used for - possﬂgly mtergctwe - 5|mu!at|0n. is within min and max allowed values (input variables
JPF can be used for checking various properties Ofpressure,min andpressure_max). In concrete execution

the translated statecharts, such as built-in Java preperti (e.g. testing) one executes the code on given concrete in-

(e.g., no unhandled execeptions), modeling language SP€huts. For example, fasressure = 460, pressure_min =

cific properties (e.g., check f_or ambiguous transitior_myi & 640, pressure.mazr = 960, only one path through the
more general safety properties, encoded as assertions or 4g,de will be executed, corresponding to the first disjunct

Figure 5. Example for symbolic execution.

safety monitors (using JPF's Listeners). inthei f statement being true. In contrast, symbolic execu-
tion starts with symbolic input valuegiessure = Syml,
6. Test Case Generation pressure_min = MIN andpressure_mar = MAX).

Symbolic execution will analyze three paths through the

program and it will generate three path conditions, accord-
For model based test case generation we use Symboligng to different possibilities in the code:

Patthder [17],.a recent extenspn to :JPF that combmesPCl . Symy < MIN,
symbolic execution and constraint solving for automated
test case generation. Symbolic PathFinder implements g C2 : Symy > MAX,
symbolic execution framework for Java byte-code. It can £ €3 Sy = MIN A Symy < MAX
handle mixed integer and real inputs, as well as multi- Concrete values for the inputs that satisfy ("solve”) the
threading and input pre-conditions. We describe symbolic path conditions are then found with the help of a constraint
execution, the Symbolic PathFinder tool, and its exterssion solver and those solutions are used as concrete test inputs

for model based test case generation in more detail below. that are guaranteed to give full path coverage for this code.



6.2. Symbolic PathFinder

Symbolic PathFinder implements a non-standard inter-
pretor for byte-codes on top of JPF. The symbolic informa-
tion is stored in attributes associated with the prograra dat
and it is propagated on demand, during symbolic execution.
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The analysis engine of JPF is used to systematically gener-
ate and explore the symbolic execution tree of the program.
JPF is also used to systematically analyze thread interleav
ings and any other forms of non-determinism that might
be present in the code; furthermore JPF is used to check
properties of the code during symbolic execution. Off-
the-shelf constraint solvers/decision procedeiesco and

| ASol ver [3] are used to solve mixed integer and real
constraints. We handle loops by putting a bound on the
model-checker search depth and/or on the humber of con-
straints in the path conditions. Furthermore we have ex-
tended Symbolic PathFinder to handle input arrays of fixed
size (in addition to inputs of primitive type).

stage1Sep()
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lasJettison()

stage2Sep()
L

EarthOrbit
L

Figure 6. Model of the Ascentand EarthOrbit
flight phases of a spacecraft
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6.3. Test Vectors and Test Sequences

6.5. Example
By default, Symbolic PathFinder generates vectors of
test cases, each test case representing input-outputr vecto

pairs. In order to test looping, reactive systems, such as e jllustrate model based test case generation using the
the state-chart models in our model-based framework, westate-machine model of th&scentand EarthOrbit flight
have extended Symbo“c PathFinder to also generate test quhases of a Spacecraft (Figure 6), where transitions are la-
quences (i.e., sequences of test vectors) that are guedante peled with both events and guards on event parameters. The
to cover states or transitions in the models (other covarage model has an error: there is an ambiguous transition going
such as condition, or user-defined are also possible). Thisrom stateFirst Stageon anabort event when the value of
works by instructing Symbolic PathFinder to generate and the altitudeis exactlyl. 2e5. Exposing this error requires
explore all the possible test sequences up to some user preg test sequencgblgnition(); abort(1.2e5}hat depends on
specified depth (or until the desired coverage is achieved)yoth event and parameter choice, i.e., it is not amenable to
and to use symbolic, rather than concrete, values for the in-sjmulation testing (that would fix the the event sequence
put parameters. apriori), to random testing, or to purely explicit state rabd
Per default, Symbolic PathFinder prints the generated checking techniques (that can not “guess” the exact value of
test vectors and test sequences in a tabular HTML formatthe abort parameter that leads to error). However, the com-
and as text. We have also customized SPF to print the genpination of explicit state model checking (to systematical
erated test cases in terms of test drivers (for testing ttee au  explore all the methods sequences up to a given depth) with
generated code) and in terms of simulation scripts; SPF'ssymbolic execution (to discover the right partitions oninp
output can be customized easily for such purposes. values) allows us to discover such sequences automatically
We believe that the analysis of every realistically complex
reactive model with a data acquisition part requires such
combined analysis tools.

6.4. Modeling Math Functions and External
Function Calls

The models that we need to analyze perform complex o
mathematical computations. To generate test cases for thenf- Applications
Symbolic PathFinder uses JPHiative peeramechanisms
for modeling native libraries, i.e., to captumat h library
calls and to send them to the constraint solvers. The same In this section, we will present some results of a case
mechanism can be used to handle native code embedded istudy, which applied our framework on safety-critical mod-
the models. els for NASA flight software.
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{
booloan T sf guardl
if (af jumct? DWork.is active cl af junct2 == 0) {
af_ junct2 DWork.is active cl sf junctl = 1U;
af_junct2 DWork.is_ el af_ junct? = {uint® T)sf junct2 IN CHECE;

} elas | -

= false;

7.1. Analysis of a Sampling Port

We illustrate some of the features of our framework with
a simple Stateflow example (see Figure 7). This model is a
simplified version of one of the flight software components
that we have analyzed. This diagram implements a sam-
pling port. At each cycle of execution, the component first
checks to see if a new message({ == 0) is present. If
not, the outputdgm) is set to a default messagén{) and
the component waits for the next cycle. If a new message is
present and it is valid, the output is set to the new message
data pm = nm). If the new message is not valid, we incre-
ment variablehad (representing the port status) and set the
output to the default message.

Although very simple, this example illustrates some of
the problems discovered during the analysis of the realtfligh

af guardi = false;
if (af_junct? U.Inl == 0.0 {
Af (sl Jupct2 U.In2 == 1.0) {
8f_junctl B.om = sf_ junctl P.Constantd Value;
} else if (af junct? U.In2 [= 1.0) {
af_junctl B.om = gf_junctl P.Constant? Value;
8f_junctZ B.bad = (uintlé: T)(sf_junct2 B.bad + 1);

} olas {
af guardl = truo;

}

if (af guardl == triae) {
if (af Jupctd U.Ial 1= 0.0) {
8f_junctl D.om = af junctl P.Constant? Value;
¥
}
'

software component. We used JPF to perform simulations '}
of the model and to check for properties, extracted from the
informal documentation provided by the developers of the
models. For example, JPF runs out of memory on this small
example, the reason being that varialie is unbounded,
since itis being incremented without ever being reset. Thus
eventually an integer overflow error can occur. Interest-
ingly, several other models that we have analyzed exhibited7-2. Analysis of Flight Software

similar problems of missing resets.

We also used SPF to generate test cases for this model. We have applied our framework to several flight software
Table 2 shows the test cases that are generated to achiewsomponents written in Matlab’s Simulink/Stateflow. These
branch coverage. models were built for the Launch Abort System (LAS) —one

In order to run the test cases from Table 2, we used Re-of the mostimportant safety features of the new Orion space
alTime Workshop to generate code and used a simple testapsule and the ARES rocket. In particular, we analyzed
harness. Code coverage was measured ugimy, which the Guidance, Navigation, and Control (GN&C) part of the
is a part of the GNU C compiler. While running these test software that will be flight tested in the near future.
cases on the code did not reveal any discrepancies between The entire GN&C software has been modeled using
code and model in terms of expected output, we did dis- Mathwork’s Simulink/Stateflow system, and large por-
cover some code statements that were not covered (Figure 8ions of the flight code are automatically generated us-
unreachable statement is highlighted). Such examples ofing Mathwork's RealTime Workshop. This model has a
unreachable code in general poses a big problem in the dehighly hierarchical structure and contains Stateflow dia-
velopment of flight code, as no dead code is allowed. grams, Simulink blocks for continuous calculations and sig

Figure 8. Measuring coverage on generated
code
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large SF diagrams, which contain embedded Matlab code
and which synchronize by recursive calls (Figure 10) as
well as other advanced Simulink/Stateflow features, like
buses.
Figure 9. Simulink Model For these models, we analyzed properties encoded as as-
sertions; these assertions were derived from the informal
. ) model documentation (e.g., “On entry to sté@&rachute
nal routing, as well as some embedded Matlab scripts. Thegssert that the Reaction Control System (RCS) control is
entire system consists of roughly 25,000 Simulink blocks, gisabled”). In addition to the problems related to integer
100 Stateflow diagrams of various sizes and complexity andoyerflow and unreachable code described above, our anal-
more than 200 embedded Matlab scripts. ysis revealed several errors in the models (e.g. assertion
Since none of the tools (inhouse and commercial) could violation for the above property due to underconstrained en
handle the entire system at once, we selected a number ofironment).
representative subsystems for this case study. These exam- |t still remains for us to study the interaction between
ples included pure Simulink parts (to analyze the tool's ca- heterogeneous models and we are working with the devel-
pabilities for handling continuous and hybrid parts and sig opers of the code to define such interactions. However, we

nal flow), Stateflow diagrams (Statecharts), and subsystemsgelieve that our framework will provide good support for
with embedded Mathscript. The extraction of the subsys- this study.

tems under consideration proved to be far from trivial, be-

cause data types and signal dimensions were not encode

with all signals of the model; rather they were automati- g Related Work

cally inferred by the Simulink system. In total, we applied _ ) )

our analysis and test case generation tools to 6 selected 1he work related to this paper is vast and for brevity, we

small subsystems (Simulink, Stateflow, embedded Math-©Only highlight here some of the most relevant one.

script) and two larger subsystems, which mainly consisted The automatic —generation of test cases from

of mode logic modeled by several Stateflow statecharts. ForSimulink/Stateflow is the subject of several approaches. In
each of the models, we generated test vectors and test sgarticular, we have performed some experiments to inves-

quences (where applicable) with the goal of obtaining state tigate the applicability of two commercial tools, T-VEC
transition, and path coverage. and Design Verifier, in the context of our case study. The

Figure 9 shows one of the analyzed Simulink models, tool T—VEC3'is a commercial to'ol for test.case generatiop
which encodes some mathematical operations on quater-base_’d on Simulink/Stateflow diagrams; it uses constraint
nions with 5 inputs and 4 outputs. Besides various math- solving technology. We had been able to run the submodels
ematical operations (e.g., inverse, square root), thisaiod TOM our case study through T-VEC. Although T-VEC
contains several if-then-else and merge blocks. With agang SUPPOItS @ large subset of Simulink blocks and Stateflow,
restriction on the inputs df-50, . . ., 50], our tool generated the translator has problems with processing large diagrams

11 testcases (and in several cases our constraint solver ga\f’md complex statecharts, and unlike our framevvprk, it does
warnings that it could not find solutions). not support embedded Matlab. Furthermore, in order to

. ._produce test sequences, T-VEC has to work with multiple
When executing these testcases on the correspondm@o ies of the diagram, thus severely limiting its scal&pili
generated code, only a code coverage of appr. 95% was P Y ' y 9

obtained (analysis of the coverage revealed un-reachable Desu_gn Verifier IS a tool by Mgthworks, which is even
code) closer integrated with the Simulink/Stateflow system. It
' N . also translates the models into a logic representation and
We analyzed several Simulink/Stateflow diagrams, rang-
ing from the simple model in the previous section to two  3http://www.t-vec.com
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In the future, we plan to make the framework more ro-
bust and to apply it further to the analysis of heterogeneous
models.
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