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ABSTRACT

Distributed fault diagnosis solutions are becom-
ing necessary due to the complexity of modern
engineering systems, and the advent of smart
sensors and computing elements. This paper
presents a novel event-based approach for dis-
tributed diagnosis of abrupt parametric faults in
continuous systems, based on a qualitative ab-
straction of measurement deviations from the
nominal behavior. We systematically derive dy-
namic fault signatures expressed as event-based
fault models. These models are used for design-
ing local event-based diagnosers for the system
based on global diagnosability analysis. The lo-
cal diagnosers each generate globally correct di-
agnosis results locally, without a centralized co-
ordinator, and by communicating a minimal num-
ber of measurements between themselves. The
proposed approach is applied to a multi-tank sys-
tem, and results demonstrate a marked improve-
ment in scalability compared to a centralized ap-
proach.

1 INTRODUCTION
The complexity of modern engineering systems war-
rants the adoption of fault diagnosis capabilities to en-
sure system safety, reliability, and availability. Faults
must be quickly isolated so that corrective actions may
be taken while the system is still in operation and loss
of function minimized. As systems become more com-
plex, it is correspondingly more difficult to develop
and deploy centralized diagnosis solutions. Further,
such centralized schemes have single points of failure,
do not scale as the size of systems increases, and have
large computational and memory requirements. This,
along with the increased pervasiveness of distributed,
networked components, fuels the need for distributed
diagnosis frameworks.

In previous work, we have developed a centralized
framework for qualitative event-based diagnosis for
parametric faults in continuous systems (Daigle et al.,
2009). Deviations of measured behavior from pre-
dicted nominal behavior, termed fault signatures, are

captured qualitatively using magnitude and slope sym-
bols, forming the basis of the qualitative fault isolation
scheme (Mosterman and Biswas, 1999). The orders in
which these deviations manifest, termed relative mea-
surement orderings, are also used for fault isolation,
thus forming event-based descriptions of fault-induced
behavior. This diagnostic information may be com-
puted from the system model and used to build event-
based diagnosers similar to those used for discrete-
event systems (Sampath et al., 1996). However, this
approach, being centralized, scales poorly, because as
the number of faults and measurements increases, the
possible number of event traces increases as well.

To address the problems of centralized diagnosis,
we apply the distributed diagnoser design methodol-
ogy presented in (Roychoudhury et al., 2009a) to the
formal event-based framework developed in (Daigle
et al., 2009). This distributed diagnoser design ap-
proach of (Roychoudhury et al., 2009a) is based on
global diagnosability analysis, where the local diag-
nosers generated are designed to provide globally cor-
rect diagnosis results through local analysis, without
a centralized coordinator, and by communicating the
minimal number of measurements among themselves.
The approach does not incorporate measurement or-
derings, but the addition of measurement orderings im-
proves diagnosability, allowing the local diagnosers to
be more efficient.

This paper presents, using a multi-tank system as a
case study, how a global event-based diagnoser may
be decomposed into several independent local event-
based diagnosers, each of which leverage measure-
ment orderings for diagnosis. Distributed diagnoser
design results demonstrate the vast reduction in diag-
noser size that may be obtained using this approach,
resulting in, for each subsystem, a small, compact lo-
cal diagnoser capable of providing globally correct di-
agnoses of local faults. Results demonstrate the im-
proved scalability of the distributed approach.

The paper is organized as follows. Section 2 for-
mulates the diagnosis problem. Section 3 reviews
qualitative fault isolation and event-based fault mod-
eling. Section 4 defines diagnosability in the event-
based framework. Section 5 describes the distributed
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Figure 1: Tank system schematic.

diagnoser design problem. Section 6 discusses the
global and local diagnoser construction, and Section 7
demonstrates the approach in simulation, and provides
scalability results. Section 8 concludes the paper.

2 PROBLEM FORMULATION
We consider the problem of single fault diagnosis in
continuous systems. We assume the system, S, is de-
scribed by

ẋ(t) = f(x(t),θ(t),u(t)) + v(t)
y(t) = h(x(t),θ(t),u(t)) + n(t),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is
the parameter vector, u(t) ∈ Rnu is the input vec-
tor, v(t) ∈ Rnv is the process noise vector, assumed
to be zero-mean Gaussian, f is the state equation,
y(t) ∈ Rny is the output vector, n(t) ∈ Rnn is the
measurement noise vector, assumed to be zero-mean
Gaussian, and h is the output equation.

We denote a measurement as m, which is a time-
varying signal of y(t) obtained from an associated sen-
sor. A measurement set is denoted as M .

We consider single, abrupt, parametric faults, where
faults are modeled as unexpected step changes in sys-
tem parameter values. We name faults by the asso-
ciated parameter and the direction of change, i.e., θ+
denotes a fault defined as an increase in the value of
parameter θ, and θ− denotes a fault defined as a de-
crease in the parameter value. We denote a fault as f
and a set of faults as F .

The diagnosis problem is to isolate single faults of F
using the measurements of M . In distributed diagno-
sis, the problem is decomposed into smaller subtasks
to achieve this overall goal.

Throughout the paper, we will use a multi-tank sys-
tem as a running example. The tanks are connected
serially as shown in Fig. 1, and we will consider a vari-
able number of tanks. For tank i, ui denotes the input
flow, Ci denotes the capacitance, and Ri denotes the
drain pipe resistance. For tanks i and j, Rij denotes
the resistance of the connecting pipe. For an n-tank
system, the pressure of tank i = 1 is described by

ṗi =
1
Ci

(
ui −

1
Ri

(pi)−
1

Ri,i+1
(pi − pi+1)

)
,

of tanks i = 2, . . . , n− 1 by

ṗi =
1
Ci

(
ui +

1
Ri−1,i

(pi−1 − pi)

− 1
Ri

(pi)−
1

Ri,i+1
(pi − pi+1)

)
,

and of tank i = n by

ṗi =
1
Ci

(
ui −

1
Ri

(pi)−
1

Ri−1,i
(pi−1 − pi)

)
.

The complete fault set consists of F =
{C−i , C+

i , R
−
i , R

+
i : i = 1, . . . , n}∪{R−i,i+1, R

+
i,i+1 :

i = 1, . . . , n − 1}. The complete measurement set
is defined as M = {qi : i = 1, . . . , n}, where qi
describes the output flow of tank i, i.e.,

qi =
1
Ri

(pi).

3 QUALITATIVE EVENT-BASED DIAGNOSIS
FRAMEWORK

We develop an event-based, qualitative diagnosis
framework. Faults are viewed as unobservable events,
manifesting as abrupt changes in system parameter
values. These faults cause transients in the system be-
havior, causing deviations in observed measurement
values from nominal measurement values. In this
section, we first review the theoretical framework for
qualitative fault isolation, followed by a formal frame-
work for event-based fault modeling.

3.1 Qualitative Fault Isolation
Measurement deviations from nominal values caused
by faults are abstracted using qualitative +, -, and
0 values to form fault signatures (Mosterman and
Biswas, 1999). Fault signatures represent these devi-
ations as the immediate change in magnitude and the
first nonzero derivative change.
Definition 1 (Fault Signature). A fault signature for a
fault f and measurement m is the qualitative magni-
tude and slope change in m caused by the occurrence
of f , and is denoted by σf,m ∈ Σf,m.

In general, ambiguities may exist in the fault signa-
tures, so σf,m may not be unique.

In addition to fault signatures, we also capture the
temporal order of measurement deviations, termed rel-
ative measurement orderings (Daigle et al., 2007c),
based on the intuition that fault effects will manifest
in some parts of the system before others. Measure-
ment orderings are based on analysis of the transfer
functions from faults to measurements (Daigle et al.,
2007c).
Definition 2 (Relative Measurement Ordering). If
fault f manifests in measurement mi before measure-
ment mj , then we define a relative measurement or-
dering between mi and mj for fault f , denoted by
mi ≺f mj . We denote the set of all measurement
orderings for f as Ωf,M .

The fault signatures and measurement orderings can
be computed manually or from a system model. One
method is to use a temporal causal graph (TCG) repre-
sentation that is derived from the system model, along
with a forward propagation algorithm to predict quali-
tative effects of faults on measurements and their pos-
sible sequences of deviations (Mosterman and Biswas,
1999; Daigle, 2008). TCGs can be derived automati-
cally from a bond graph model of the system (Moster-
man and Biswas, 1999; Narasimhan, 2002).
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Table 1: Signatures and Measurement Orderings for
the Three-tank System

Fault q1 q2 q3 Measurement Orderings
C−1 +- 0+ 0+ q1 ≺ q2, q1 ≺ q3, q2 ≺ q3
C−2 0+ +- 0+ q2 ≺ q1, q2 ≺ q3
C−3 0+ 0+ +- q2 ≺ q1, q3 ≺ q1, q3 ≺ q2
R+

1 -+ 0+ 0+ q1 ≺ q2, q1 ≺ q3, q2 ≺ q3
R+

2 0+ -+ 0+ q2 ≺ q1, q2 ≺ q3
R+

3 0+ 0+ -+ q2 ≺ q1, q3 ≺ q1, q3 ≺ q2
R+

12 0+ 0- 0- q2 ≺ q3
R+

23 0+ 0+ 0- q2 ≺ q1

The fault signatures and measurement orderings for
a three-tank system with F = {C−1 ,C−2 ,C−3 ,R+

1 ,R+
2 ,

R+
3 ,R+

12,R+
23} and M = {q1, q2, q3} are shown in Ta-

ble 1. For example, a decrease in the capacitance of
tank 1, denoted C−1 , causes a discontinuous increase
in the tank 1 output flow, q1, followed by a smooth
decrease. This measurement deviation manifests first.
This is followed by smooth increases in q2 and then
q3. The tanks provide natural delays of the propaga-
tion of fault effects, which manifest in the computed
measurement orderings.

3.2 Event-based Fault Modeling
Fault signatures combined with relative measurement
orderings provide event-based information for diagno-
sis. For a given fault, the combination of all fault sig-
natures and measurement orderings yields all the pos-
sible ways a fault can manifest in the measurements.
We denote each of these possibilities as a fault trace.
Definition 3 (Fault Trace). A fault trace for a fault f
over measurements M , denoted by λf,M , is a string of
length≤ |M | that includes, for every m ∈M that will
deviate due to f , a fault signature σf,m, such that the
sequence of fault signatures satisfies Ωf,M .

Note that the definition implies that fault traces are
of maximal length, i.e., a fault trace includes devia-
tions for all measurements affected by the fault. We
group the set of all fault traces into a fault language.
The fault model, defined by a finite automaton, con-
cisely represents the fault language.
Definition 4 (Fault Language). The fault language of
a fault f ∈ F with measurement set M , denoted by
Lf,M , is the set of all fault traces for f over measure-
ments M .
Definition 5 (Fault Model). The fault model for a fault
f ∈ F with measurement set M , is the finite au-
tomaton that accepts exactly the language Lf,M , and
is given by Lf,M = (S, s0,Σ, δ, A) where S is a set of
states, s0 ∈ S is an initial state, Σ is a set of events,
δ : S × Σ → S is a transition function, and A ⊆ S is
a set of accepting states.

The finite automata representation allows for the
composition of the fault signatures and relative mea-
surement orderings into fault models. The possi-
ble fault signatures and measurement orderings can
be composed automatically to form the fault models

q0+
3

q+−
2

q0+
1

q0+
3 q0+

1

(a) L
C−2

q0+
3

q−+
2

q0+
1

q0+
3 q0+

1

(b) L
R+

2

q0+
2

q0−
3

q0+
1

q0−
3

q0+
1

q0−
3

q0+
2

(c) L
R+

23

Figure 2: Fault models for some faults of the three-
tank system.

based on the synchronization operation (Daigle et al.,
2007a).

Selected fault models for a three-tank system are
shown in Fig. 2. For example, as seen inLC−

2
, the fault

C−2 may manifest as the fault traces are q+−2 q0+1 q0+3

and q+−2 q0+3 q0+1 , as implied by the fault signatures and
measurement orderings.

4 DIAGNOSABILITY
With the formal fault isolation framework defined, we
may now establish the notions of distinguishability and
diagnosability in this framework. Using these defini-
tions, we can then formally define the distributed di-
agnoser design problem. Distinguishability between
faults is characterized as follows.
Definition 6 (Distinguishability). With measurments
M , a fault fi is distinguishable from a fault fj , denoted
by fi �M fj , if fi always eventually produces effects
on the measurements that fj cannot.

Under our framework, one fault will be distinguish-
able from another fault if it cannot produce a fault trace
that is a prefix (denoted by v) of a trace that can be
produced by the other fault1. If this is not the case,
then when that trace manifests, the first fault cannot
be distinguished from the second. This is established
with the following lemma (Daigle et al., 2009).
Lemma 1 (Distinguishability). For meausrements M ,
a fault fi ∈ F is distinguishable from a fault fj ∈
F , if there does not exist a pair of fault traces
λfi,M ∈ Lfi,M and λfj ,M ∈ Lfj ,M , such that
λfi,M v λfj ,M .

We define a system in our framework as follows.
Definition 7 (System). A system S is tuple
(F,M,LF,M ), where F = {f1, f2, . . . , fn} is a
set of faults, M is a set of measurements, and
LF,M = {Lf1,M , Lf2,M , . . . , Lfn,M} is the set of
fault languages.

1A fault trace λi is a prefix of fault trace λj if there is
some (possibly empty) sequence of events λk that can extend
λi such that λiλk = λj .
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If a system is diagnosable, then we can make guar-
antees about the unique isolation of every fault in the
system.
Definition 8 (Diagnosability). A system S =
(F,M,LF,M ) is diagnosable if (∀fi, fj ∈ F )fi 6=
fj =⇒ fi �M fj .

If the system is diagnosable, then every pair of
faults is distinguishable using the measurements inM .
So, each sequence of measurement deviations we ob-
serve can be eventually linked to exactly one fault, if
measurement deviation events are generated correctly.
Hence, we can uniquely isolate all faults of interest. If
the fault set is not diagnosable, then ambiguities will
remain after fault isolation, i.e., after all possible mea-
surement deviations have been observed.

5 DISTRIBUTED DIAGNOSER DESIGN
Given a system that is diagnosable, our objective is to
decompose the overall diagnosis task into smaller sub-
tasks performed by local diagnosers with the following
properties: (i) all single faults of interest in the system
can be diagnosed, and (ii) the local diagnosis results
are globally correct2. These two properties eliminate
the need for a centralized coordinator.

The system S = (F,M,LF,M ) is split into n sub-
systems, S1, S2, . . ., Sn, where the fault set is parti-
tioned among subsystems such that the complete set
of faults F = F1 ∪ F2 ∪ . . . ∪ Fn. Each subsystem Si
is also assigned a subset of M , Mi for isolation of Fi,
i.e., Si = (Fi,Mi, LFi,Mi

).
Subsystems may be locally diagnosable. A locally

diagnosable subsystem is one in which its own faults
can be uniquely isolated using its own measurements.
Definition 9 (Local Diagnosability). A subsystem
Si = (Fi,Mi, LFi,Mi

) is locally diagnosable if (∀fi ∈
Fi, fj ∈ Fi) fi 6= fj =⇒ fi �Mi fj . We say two
faults fi ∈ Fi and fj ∈ Fi are locally distinguishable
if fi �Mi

fj .
Local diagnosability is not sufficient for local di-

agnosers to achieve globally correct diagnoses. The
problem is that for Si, there may be some fi ∈ Fi and
for Sj , some fj ∈ Fj , such that fj produces the same
effects onMi as fi does. The result is that, if fj occurs
local diagnoser i will say that fi has occurred. In gen-
eral, we may have faults in a subsystem that are distin-
guishable from faults local to the subsystem, but which
may not be distinguishable from faults outside the sub-
system. For the local diagnosers to achieve globally
correct local diagnoses, the subsystems must satisfy a
notion of global diagnosability.
Definition 10 (Global Diagnosability). A subsystem
Si = (Fi,Mi, LFi,Mi) belonging to system S =
(F,M,LF,M ) is globally diagnosable if (∀fi ∈
Fi, fj ∈ F )fi 6= fj =⇒ fi �Mi

fj . We say two
faults fi ∈ Fi and fj ∈ F are globally distinguishable
if fi �Mi

fj .

2If the system S is not diagnosable, we can define aggre-
gate faults, where an aggregate fault is a set of faults that are
indistinguishable from each other. The diagnosis methodol-
ogy can be applied to the modified fault set that includes the
aggregate faults (Roychoudhury et al., 2009a).

That is, a subsystem Si is globally diagnosable if
all the faults Fi are distinguishable from every other
fault f ∈ F using only the measurements in Mi. If the
subsystems can be structured such that each subsystem
Si is globally diagnosable, then each local diagnoser
can independently generate local diagnoses which are
globally correct.

For example, consider the three-tank system defined
earlier, with F = {C−1 ,C−2 ,C−3 ,R+

1 ,R+
2 ,R+

3 ,R+
12,

R+
23} and M = {q1, q2, q3}. Let us define a subsys-

tem for each tank, where for i = 1, . . . , n − 1, Si is
defined by Fi = {C−i , R+

i , R
+
i,i+1} and Mi = {qi},

and for i = n, Si is defined by Fi = {C−i , R+
i } and

Mi = {qi}. Consider tank 1. If 0+ is observed for q1,
then that may be the result of local fault R+

12 or any of
the remote faults (see Table 1). Clearly, S1 is not glob-
ally diagnosable. Note that it is locally diagnosable, as
the three local faults each produce a different effect on
the sole measurement of the subsystem, q1.

Different design problems may be defined which de-
termine partitions of the fault set F and/or the assign-
ment of measurements to subsystems (Roychoudhury
et al., 2009a). In each case, the end result must be a set
of subsystems, each of which are globally diagnosable.
In this paper, we focus on the problem where the sys-
tem is already partitioned into subsystems, where each
subsystem may not be globally diagnosable. We define
the distributed diagnoser design problem as the prob-
lem of determining, for each subsystem, the minimal
number of measurements to pull in from other subsys-
tems to achieve global diagnosability. Formally, the
problem can be defined as follows.
Problem (Partitioned System Diagnoser Design).
Given n subsystems, where Si = (Fi,Mi, LFi,Mi

),
construct, for each subsystem, a measurement set
Mi

+ ⊆ M such that (i) M+
i − Mi is minimal, and

(ii) S ′i = (Fi,M
+
i , LFi,M

+
i

) is globally diagnosable.

This problem is a variation of the measurement se-
lection problem (Narasimhan et al., 1998), which is an
instance of the set covering problem, which is known
to be NP-complete. Our goal, while designing the lo-
cal diagnosers, is to minimize the sharing of measure-
ments across subsystems in order to limit the size of
the local diagnosers and communication requirements
between them. We simplify the measurement search
using measurement orderings as a guide, based on the
intuition that measurements that deviate before others
are more helpful. Further, these measurements provide
the fastest diagnosis. To do this, for each fault that is
not globally distinguishable, we determine the mea-
surements that deviate first by looking at the measure-
ment orderings, and this set of measurements over all
the faults forms the current working measurement set,
i.e., measurements with which we try to resolve global
diagnosability. This heuristic simplifies the search pro-
cess, but the algorithm is still exponential in the gen-
eral case. Additional heuristics may also be used, e.g.,
the subsystem distance heuristic presented in (Roy-
choudhury et al., 2009a).

The distributed diagnoser design procedure is given
as Algorithm 1. For a diagnosable system S, for each
subsystem Si, we first determine, using diagnosability
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Algorithm 1 Distributed Diagnoser Design
Input: S = {Si = (Fi,Mi, LFi,Mi) : i = 1, . . . , n
for all Si ∈ S do

identify F ∗i = {f∗i ∈ Fi : fi �Mi fj for fj ∈ F}
M+

i ←Mi

while F ∗i 6= ∅ do
for all f∗i ∈ F ∗i do
Mf∗i

← {m : (m′ ≺ m) /∈ Ω
f∗i ,M−M+

i
}

end for
identify minimal M∗i ⊆ {Mf∗i

: f∗i ∈ F ∗i } such
that M+

i ∪M
∗
i isolates maximal F ′i ⊆ F ∗i

M+
i ←M+

i ∪M
∗
i

F ∗i ← F ∗i − F ′i
end while
construct D

Fi,M
+
i

end for

analysis, the set of faults F ∗i ⊆ Fi which are not glob-
ally distinguishable using Mi. At each iteration, for
each fault that is not globally distinguishable using the
current measurement set, M+

i , we compute the set of
measurements out of M −M+

i that may deviate first
for the fault, as Mf∗i

. We then find the minimal set
of measurements to add to M+

i from the set of mea-
surements found in this way over all f∗i , and add these
to M+

i . The process repeats until Si is globally diag-
nosable, resulting in the local diagnoser DFi,M

+
i

. We
will describe the construction of DFi,M

+
i

in the next
section.

We apply this algorithm to the n-tank system, where
for i = 1, . . . , n − 1, Si is defined by Fi =
{C−i , R+

i , R
+
i,i+1} and Mi = {qi}, and for i = n,

Si is defined by Fi = {C−i , R+
i } and Mi = {qi}. For

tank 1, R+
12 is not globally distinguishable. From the

measurement orderings, q2 will deviate before q3, so
M∗i = {q2}. This measurement alone is sufficient to
add to M+

i to obtain global diagnosability, so no fur-
ther iteration is necessary. For tank 2, R+

23 is not glob-
ally distinguishable, and either q2 or q3 may deviate
next. Measurement q3 alone is sufficient to achieve
global diagnosability. For tank 3, the subsystem is
already globally diagnosable. The new measurement
sets are therefore M1 = {q1, q2}, M2 = {q2, q3}, and
M3 = {q3}.

6 DIAGNOSER IMPLEMENTATION
In this section we describe the construction of the
event-based diagnosers. The goal of the event-based
diagnoser is, given a sequence of measurement devi-
ation events, to determine which faults are consistent
with the observed sequence. We define formally a di-
agnosis and a diagnoser in our framework (Daigle et
al., 2009).
Definition 11 (Diagnosis). A diagnosis d ⊆ F is a set
of faults, each of which is consistent with the observa-
tions.
Definition 12 (Diagnoser). A diagnoser for a fault
set F and measurement set M is a tuple DF,M =

q0+
3

q+−
2

q0+
1

q0+
3 q0+

1

{C−2 }

{C−2 }

∅

{C−2 }

{C−2 }

(a) D
C−2

q0+
3

q−+
2

q0+
1

q0+
3 q0+

1

{R+
2 }

{R+
2 }

∅

{R+
2 }

{R+
2 }

(b) L
R+

2

q0+
2

q0−
3

q0+
1

q0−
3

q0+
1

q0−
3

q0+
2

{R+
23}

{R+
23}

∅

{R+
23}

{R+
23}

{R+
23}

(c) D
R+

23

Figure 3: Diagnosers for some individual faults of the
three-tank system.

(S, s0,Σ, δ, A,D, Y ) where S is a set of states, s0 ∈ S
is an initial state, Σ is a set of events, δ : S × Σ → S
is a transition function, A ⊆ S is a set of accepting
states, D ⊆ 2F is a set of diagnoses, and Y : S → D
is a diagnosis map.

A diagnoser is a finite automaton extended by a set
of diagnoses and a diagnosis map. It takes events as in-
puts, which, as with fault models, correspond to mea-
surement deviations. From the current state, a mea-
surement deviation event causes a transition to a new
state. The diagnosis for that new state represents the
set of faults that are consistent with the sequence of
events seen up to the current point in time. So, like tra-
ditional DES diagnosers, the diagnoser states provide
estimates of the system condition, but only after a fault
has occurred.

The accepting states of the diagnoser correspond to
a fault isolation result. We say that a diagnoser isolates
a fault if it accepts all possible valid traces for the fault
and the accepting states map to diagnoses containing
the fault.
Definition 13 (Isolation). A diagnoser DF,M isolates
fault f ∈ F if DF,M accepts all λf,M ∈ Lf,M and for
each s ∈ A that accepts some λf,M , f ∈ Y (s).

We also would like to achieve unique isolation of
faults, which corresponds to system diagnosability.
We say that a diagnoser uniquely isolates a fault if each
accepting state maps to the single fault.
Definition 14 (Unique Isolation). A diagnoser DF,M
uniquely isolates fault f ∈ F if DF,M accepts all
λf,M ∈ Lf,M and for each s ∈ A that accepts some
λf,M , {f} = Y (s).

Ultimately, we would like to systematically con-
struct a diagnoser for a system S that isolates all
f ∈ F . Further, we would like to show that if S is
diagnosable, then this diagnoser uniquely isolates all
f ∈ F . This procedure has been developed in previ-
ous work (Daigle et al., 2009). Here, we briefly review
the main points.

First, we construct a diagnoser for each fault f that
isolates f , i.e., D{f},M . These are shown in Fig. 3 for
some of the faults of the three-tank system. They are
constructed directly from the fault models Lf,M , c.f.
Fig. 2. Because the fault model Lf,M accepts the fault
language Lf,M , it is easy to show that this diagnoser
isolates f .
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Figure 4: Three-tank system centralized diagnoser for F = {C−1 , C−2 , C−3 , R+
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Figure 5: Local diagnosers for the three-tank system for F1 = {C−1 , R+
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+
23}, M2 = {q2, q3}, F3 = {C−3 , R+

3 } and M3 = {q2, q3}.

A composition operator is then defined that com-
poses two diagnosers, such that if each diagnoser iso-
lates its own set of faults, the composed diagnoser will
isolate the combined set of faults. We may then com-
pose the individual diagnosers into a global diagnoser
that isolates the complete set of system faults. We have
shown that the system defined by F andM is diagnos-
able if and only if the diagnoser constructed in this way
uniquely isolates all faults in F (Daigle et al., 2009).

The resulting global diagnoser for the three-tank
system described in the earlier sections is given in
Fig. 4. It is clear from this figure that the system is
diagnosable, as each accepting state has a unique diag-
nosis. In this case, a unique diagnosis is even known
after only a single measurement deviation. The re-
sulting diagnoser may be pruned to reduce diagnoser
size by removing states and transitions occuring after
a unique diagnosis is known (Daigle, 2008).

6.1 Local Diagnoser Implementation
The design of local diagnosers follows the same pro-
cedure as the global diagnoser, i.e., given Fi and Mi
for subsystem Si, we construct DFi,Mi

. The local di-
agnosers for the distributed diagnoser design example
from the previous section are given in Fig. 5. Note that
each local diagnoser except the third needs only two
measurements, whereas the global diagnoser needs all
3. As n increases, each local diagnoser (except the
third) still needs only two measurements, whereas the
global diagnoser needs all n measurements, signifi-
cantly increasing its size.

In terms of scalability, the distributed diagnosis
scheme clearly improves on the centralized diagnosis
approach. In the worst case, the size of a diagnoser

increases factorially with the number of measure-
ments (Daigle et al., 2009). Therefore, the fewer the
measurements associated with a diagnoser to achieve
local and global diagnosability, the smaller a diagnoser
will be. By creating local diagnosers such that each di-
agnoser uses only a limited number of measurements,
each local diagnoser can be significantly smaller than
the centralized diagnoser, and the combined size of all
local diagnosers can be smaller also.

The distributed diagnosis approach works as fol-
lows. Each local diagnoser starts in its initial state. A
measurement deviation event is received by all subsys-
tems that include that measurement in their measure-
ment set. If there is a matching event from the current
state, a local diagnoser will follow that path to the next
state, and remain active. If not, the local diagnoser will
block, and its diagnosis result will be ∅. The process
continues until a local diagonser reaches an accept-
ing state. At this point, a globally correct diagnosis is
known, if each subsystem was designed to be globally
diagnosable. If so, no other local diagnoser may reach
an accepting state. Therefore, a globally correct diag-
nosis result is achieved without the use of a centralized
coordinator. If the subsystems are not globally diag-
nosable, then two or more local diagnosers may both
reach an accepting state and a coordinator is needed.

A globally correct diagnosis result may be declared
earlier if a local diagonser has not yet reached an ac-
cepting state, but has a unique diagnosis, only if all
other local diagnosers have blocked. A globally cor-
rect diagnosis result may otherwise only be declared
when all measurements for a subsystem have deviated
(i.e., an accepting state is reached). These conditions
correspond directly to those outlined in (Roychoud-
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Figure 6: Six tank predicted and observed flow out-
puts.

hury et al., 2009a) in the absence of the event-based
framework.

7 RESULTS
As an example to demonstrate online diagnosis in this
framework, consider a six-tank system, with R+

23 oc-
curring at time 10.0. The plots of q2 and q3 are shown
in Fig. 6. At time 10.3 a 0- is detected in q3, using the
symbol generation mechanism described in (Biswas et
al., 2003). Both the local diagnosers for S2 and S3
use this measurement and compute this symbol. Par-
tial diagnosers (with some faults omitted) for these di-
agnosers are shown in Fig. 7. The S2 diagnoser moves
to a state with R+

23 as the sole candidate, and the S3

diagnoser moves to a state with R−34 as the sole candi-
date. At time 10.4, a 0+ is detected in q2. The S2 diag-
noser moves to an accepting state with R+

23 as the sole
candidate. The S3 diagnoser does not use this mea-
surement so takes no action. Because the S2 diagnoser
reached an accepting state, a global diagnosis has been
achieved.

7.1 Scalability
Here, we consider n-tank systems where for i =
1, . . . , n−1, Fi = {C−i , C+

i , R
+
i , R

−
i , R

+
i,i+1, R

−
i,i+1}

and for i = n, Fi = {C−i , C+
i , R

+
i , R

−
i }. The same

measurement assignment occurs with the distributed
diagnoser design algorithm, except tank n needs an
additional measurement, i.e., each subsystem pulls in
a measurement from an adjacent subsystem. The local
diagnoser for i = 1, . . . , n− 1 is always 13 states with
14 transitions for the non-pruned version, and 11 states
and 10 transitions for the pruned version. For local di-
agnoser n, both the non-pruned and pruned versions
have 7 states and 6 transitions.
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Figure 7: Some partial local diagnosers for the six-tank
system

Table 2: Scalability Results for the Multi-tank System
Not Pruned Pruned

Tanks |S| |δ| Σ|Si| Σ|δi| |S| |δ| Σ|Si| Σ|δi|
2 19 20 20 20 17 16 18 16

3 69 96 33 34 37 28 29 26

4 113 148 46 48 55 42 40 36

5 205 284 59 62 73 76 51 46

6 335 484 72 76 91 96 62 56

7 579 840 85 90 109 116 73 66

8 845 1264 98 104 127 136 84 76

9 1181 1812 111 118 145 156 95 86

10 1595 2500 124 132 163 176 106 96

The results demonstrating the scalability of the ap-
proach as compared to a centralized approach are
shown in Table 2. For both non-pruned and pruned
diagnosers, we report the number of states, |S|, and
number of transitions, |δ|. For the local diagnosers, we
sum the number of states over each diagnoser, Σ|Si|,
and the number of transitions, Σ|δi|. The sum of the lo-
cal diagnoser sizes increase linearly, whereas the size
of the centralized diagnoser increases exponentially,
demonstrating a clear improvement in scalability. In
the case of the pruned diagnosers, the centralized diag-
noser size increases linearly as well, although its size
is still larger than for the local diagnosers. This result
is not general but arises here because of the structure
imposed by the measurement orderings.

8 CONCLUSIONS
We developed a formal framework for event-based
qualitative diagnosis of continuous systems. Global
and local diagnosers are automatically derived from
fault signatures and relative measurement orderings,
which, in turn, may be derived automatically from a
system model. This results in a distributed diagnosis
framework that eliminates the single point of failure
associated with centralized diagnosis frameworks or
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distributed frameworks that require the use of a cen-
tralized coordinator, while the local diagnosers still
obtain globally correct diagnoses. The approach may
be naturally applied to systems with clear subsystem
boundaries. The distributed approach also scales well
with an increase in the number of subsystems, particu-
larly in comparison to a centralized diagnoser.

The event-based framework presented here has
clear connections to discrete-event diagnosis methods,
e.g., (Sampath et al., 1996; Zad et al., 2003), and
also distributed discrete-event diagnosis methods such
as (Debouk et al., 2000). Our particular approach
may be viewed as an implementation of Protocol 3
in (Debouk et al., 2000), in which we solve the design
problem to achieve the conditions for a coordinator-
free approach. The use of measurement orderings is
also similar to the work of (Meseguer et al., 2008;
Puig et al., 2005), where signatures are derived from
analytical redundancy relations (ARRs) and do not uti-
lize the rich symbol framework for fault signatures
used here. In (Bayoudh et al., 2006), a similar ap-
proach is applied to hybrid systems, where the events
are defined as changes in ARR values due to mode
changes.

In future work, we will be extending the approach
to multiple faults based on previous work in (Daigle
et al., 2007b), and to hybrid systems, based on pre-
liminary results presented in (Roychoudhury et al.,
2009b). We will also investigate alternative distributed
design algorithms.
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