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NASA Data Systems

• Earth and Space Science

– Earth Observing System generates ~21 TB of data 

per week.

– Ames simulations generating 1-5 TB per day

• Aeronautical Systems

– Distributed archive growing at 100K flights per 

month with 2M flights already.

• Exploration Systems

– Space Shuttle and International Space station 

downlinks about 1.5GB per day.



Developing Virtual Sensors
• Virtual Sensors predict the value of one 

sensor measurement by exploiting the 
nonlinear correlations between its values 
and other sensor readings.

• Useful for emulating sensors back in time 
or estimating the value of one sensor 
based on other sensor measurements

Earth and Space Sciences
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Virtual Sensors in the Earth Sciences
• Detecting change in cloud cover

• New sensors on the MODIS system can detect clouds over snow and ice in the 1.6µm band (circa 1999).

• Difficult over snow and ice-covered surfaces because of low contrast in visible and thermal infrared wavelengths.

• Older sensors from the AVHRR system do not detect cloud cover over snow and ice because of poor contrast.

• Predict 1.6µm channel using a Virtual Sensor
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•Detecting land cover change using surface reflectance measurement
• Predict missing surface reflectance data in one sensor channel using observations from a combination of other 

channels.

• Create a high quality complete data record for use in new Earth science analysis and explorations.

• Study the residual pattern of the prediction algorithm across years in order to make significant conclusions 

regarding change in land cover across the globe.
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A. N. Srivastava, N. C. Oza, and J. Stroeve, “Virtual Sensors: Using Data Mining Techniques to Efficiently Estimate Remote Sensing Spectra,” Special Issue on 
Advanced Data Analysis, IEEE Transactions on Geoscience and Remote Sensing, March 2005.



Prediction Method

• Build a prediction model that offers

– Interpretability

– Confidence in the prediction

– Scalability

• Choices• Choices

– Linear regression

– Quadratic & cubic regression

– Polynomial regression

– Neural networks

– KD trees & Bayesian classification approaches

– Support vector machines & Gaussian Process regression



Gaussian Process Regression

• Gaussian Process regression uses Bayesian inferencing under additive 

Gaussian noise assumption to learn a function on a given data set with 

some confidence

,                               ,   where 

• Likelihood function: • Likelihood function: 

• Gaussian prior over parameters:

• Inference is the posterior distribution over the weights     given by

• Predictive distribution is:

,  where 



Gaussian Process Regression

Training dataTraining data

• data matrix of observations – n x d

• y vector of target data – n x 1

Test data

• X* matrix of new observations – n* x d

Covariance function

Model building

• Train hyperparameters on a sample of X

• Compute covariance matrix K (n x n)

Prediction

• Compute cross covariance matrix K* (n* x n)

• Compute mean prediction on y* using

Covariance function

Goal

• Predict y* corresponding to X*

• Compute variance of prediction using

Algorithm AnalysisAlgorithm Analysis

• Storage Complexity: Storing covariance matrix O(n2) 

• Time Complexity: Computing matrix inversion O(n3) 



Real-life Data Sets
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Gaussian Process Regression - Illustration

• Size of training data : 102

Classical Gaussian Process

regression can be computed 

in memory



Gaussian Process Regression - Illustration

• Size of training data: 106

Large Scale Gaussian Process:

need a supercomputer with a 

LOT of RAM and processing power



Low-rank Approximations

• Numerical approximation techniques exist such as Subset 
of Regressors, Q-R decomposition, V method

– Numerical instability can be a problem

• Solution:  Stable GP (V formulation using Cholesky 
decomposition with pivoting)decomposition with pivoting)

• The V-Formulation provides an extremely scalable and 
numerically stable method to compute Gaussian Process 
Regression for arbitrary kernels.



Computational Challenges

•Subset of Regressors (Wahba, 1990)

where,

•Memory: Storing covariance matrix – O(nm)

•Time: Solving linear systems – O(nm2)

•Numerical stability:???



Cures for Numerical Instability
Approach

1. Select columns to make 

K1 well conditioned

2. Use stable technique for 

least squares problem 

Column Selection

1. Use Cholesky factorization 

with pivoting to partially 

factor K

2. selects appropriate columns least squares problem 

such as

• QR factorization

• V method

3.  Requirement: maintain 

O(nm) memory use and 

O(nm2) efficiency.

2. selects appropriate columns 

for K1

3. K1 will be well conditioned if 

cond(K1) is O(condition of 

optimal low rank 

approximation).



Stable GP

•Approximate                     by Cholesky factorization where     is 

is             and      is mn×

V

11V mm×

•Predicted mean can be rewritten as

•Inverting               instead of             matrixmm× nn×

•Method is numerically stable

•Method can be faster and needs less memory

L. Foster,  A. Waagen, N. Aijaz, M. Hurley, A. Luis, J. Rinsky, C. Satyavolu, M. J. Way, P. Gazis, and A. N. Srivastava, “Stable and Efficient Gaussian Process 
Calculations,”  Journal of Machine Learning Research, 10(Apr):857--882, 2009.
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GP–V formulation Results

Analysis on simulated data

10
2

10
3

10
4

10
5

10
6

10
7

0

50

100

Data points (log scale)

R
u
n
 t
im
e 
(s
ec
o
n
d
s)

 

Input data dimension =5

No. of sample points = 3 million 

Run time = time to build the model + time to evaluate 500 test points

Maximum rank = 25 (used for GP-V)

Hyper parameters are trained on 100 sample points
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Stable GP Results

• Accuracy Based on 100 runs on NH3 laser data

d = 34, n = 1166, maximum rank = 340

Samples for hyperparameter training = 300 

GP GP−V B−MLP k−NN
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With low-rank matrix inversion approximation using pivoting Stable GP 

performed close to standard GP.

A. N. Srivastava,  S. Das. (2009).“Detection and prognostics on low-dimensional systems,” Transactions of Systems, Man and Cybernetics Part C 39, 1, 2009.



Mixture of Gaussian Process Experts

• Numerical approximations do not work for 

multimodal data

• Solution: Mixture of Gaussian Process Experts 

[1,2][1,2]

– Gating network decides which point is best 

predicted by each expert

– Expectation Maximization based algorithm for 

computing the gating network

– Scales up to the order of 103 data observations
[1]       V. Tresp. Mixtures of Gaussian processes. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing 

Systems 13, pages 654–660. MIT Press, 2001.

[2]      C. E. Rasmussen and Z. Ghahramani. (2002). Infinite Mixtures of Gaussian Process Experts. In Advances in Neural Information Processing Systems 14. The MIT 

Press, 2002.



Mixture of Experts: Blocks
• Size of training data: 106

Complement 

set



Real-life Data Sets: Multimodality
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GP-B Regression

• Identify inherent multi-modality of data and partition data 

based on the number of observed modes – most earth 

science data sets are multimodal

• Build Gaussian Process experts on each data subset 

• Make final prediction a weighted combination of the • Make final prediction a weighted combination of the 

prediction of the individual experts

GP-B Algorithm has 3 steps:

1. Partitioning the data set.

2. Training the models based on the partitions

3. Predicting unknown data using the model built



GP-B Regression – Data Partitioning

1. Based on domain knowledge and exploratory data analysis, 

identify the number of clusters in the data. Let number of 

clusters = k.

2. Use spectral clustering for partitioning the data into k 

clusters.clusters.

– Nyström approximation with s samples [1]: O(nds)

– t-nearest neighbor based parallel spectral clustering [2]: O(n2d) + 

O(n2 log t)

– Fast spectral clustering (KASP) [3]: Can scale upto 106 elements

[1]     C. Fowlkes, S. Belongie, F. Chung, J. Malik. (2004). Spectral grouping using the Nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26, 214–225.

[2]     W. Chen, Y. Song, H. Bai, C. Lin, E. Chang. (2010). Parallel Spectral Clustering in Distributed Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence

[3]     D. Yan, L. Huang, M. Jordan. (2009). Fast Approximate Spectral Clustering Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and

data mining. 907-916



GP-B Regression: Training

1. Input: Result of data clustering

2. Fit a mixture of Gaussian distributions to the data clusters.

3. Compute entropy of each data point based on the 

distribution parameters.

4. Identify high entropy points and remove all those points 4. Identify high entropy points and remove all those points 

from each of the clusters to form a separate cluster with 

those points.

5. Recompute distribution parameters for each of the k existing 

distributions and the new (k+1st) cluster

6. Train hyperparameters and covariance matrices for each of 

these Gaussian Process experts.



GP-B Regression: Testing

• Input: Test points, Gaussian process expert model

• Output: Prediction of target corresponding to each input

• Final prediction is given by the following equation:

where                                               and

is the weight of the expert prediction calculated as the 

cluster membership probability of the test point.



GP-B Performance Analysis

• For number of modes k and 

number of observations n, 

prediction is 

– Higher scalability

– Decomposability for 

106

106

– Decomposability for 

distributed computation

– Higher interpretability as 

different models predict 

different geographical regions 

accurately

106

106

106

Use numerical approximation technique for 

each of the experts individually



GP-B Empirical Evaluation

• Experimental Setup

Data set Modes Size Details

Tanh
1

2 900 x 3

D
2

4 16,000 x 2 Computer generated univariate time series describing motion of a 

damped driven particle in an asymmetric 4-d four-well potential

California
3

10** 150,000,000 x 4 MODIS 8 day surface reflectance  BRDF-adjusted from Terra and 

Aqua measured in 7 different  wavelengths

• Experimental Setup

– Centralized experiments: 64-bit 2.33 GHz quad core Dell Precision 690 desktop 

running Red Hat Enterprise Linux version 5.4 having 20GB of physical memory. 

– Parallel experiments: 64-bit Linux cluster consisting of 16 slave nodes; each node is 

a dual processor 1-U server containing two, quad-core Intel Xeon processors @ 2.66GHz 

totaling 128 cores and 128GB Ram (1Gb/Core).

– The algorithms were implemented in Matlab and run on version R2010a.

1 A. Weigend, M. Mangeas, and A. Srivastava, “Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting,” Int. J. Neural Syst., 

vol. 6, pp. 373–399, 1995.

2      The Santa Fe Time Series Competition data. http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html#setD

3       USGS Land processes Distributed Active Archive Center https://lpdaac.usgs.gov/lpdaac/products/modis_products_table

** http://casoilresource.lawr.ucdavis.edu/drupal/files/images/GIS_veg1.jpg



GP-B Results

• Accuracy: Plot of Normalized Mean Squared Error

The NMSE for the first 2 data sets  for GP-B is comparable with that of  classical GP.  The 

NMSE for the last data set for GP-B is comparable to that of GP-V. All results are average of 

50 trials.



GP-B Results

GP-B

NMSE: 0.0269

GP-V

NMSE: 0.0362

Frequency

Number of fill values: 477836

o GP-B

+ GP-V

Color map of normalized residual for prediction of band 6 using bands 1, 2 and 5 of California 

MODIS surface reflectance data. 

Histogram of error distribution



GP-B Results
Top 5% cases where GP-B performed better

Top 5% cases where GP-V performed better

1. Is the model not good enough?
• Performs well for other areas of cluster 1

2. Is the data noisy?
• Poor data quality will yield better accuracy  

values for loose model

3. Has the model evolved over time?

California color coded into 10 clusters based on surface reflectance. 

• Training on 2001 and prediction on 2002

1. Less accurate model due to insufficient  

training samples for hyperparameters?
• Smaller clusters (cluster 5, 9, 10) not well 

represented due to uniform sampling for 

hyperparameter training in GP-V

1. Too many clusters? 
• Region corresponds to cluster 5

• Only 2% data points in cluster 5



Conclusion

• New Gaussian Process regression algorithm for Virtual 

Sensors in Earth Science data

• Scalability dependent on
– Number of dimensions of input data

– Number of modes in input  data

– Choice of clustering algorithm

• Accuracy dependent on
– Choice of covariance function

– Choice of number of clusters and entropy threshold

– Sparsity in the covariance matrix constructed from the data


