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Abstract—Time-domain reflectometry (TDR) is one of the
standard methods for diagnosing faults in electrical wiring
and interconnect systems, with a long-standing history focused
mainly on hardware development of both high-fidelity systems
for laboratory use and portable hand-held devices for field
deployment. While these devices can easily assess distance to
hard faults such as sustained opens or shorts, their ability to
assess subtle but important degradation such as chafing remains
an open question. This paper presents a unified framework for
TDR-based chafing fault detection in lossy coaxial cables by
combining an S-parameter based forward modeling approach
with a probabilistic (Bayesian) inference algorithm. Results
are presented for the estimation of nominal and faulty cable
parameters from laboratory data.

Index Terms—S-parameters, TDR, wiring, Bayesian, fault
detection

I. I NTRODUCTION

T HE Federal Aviation Administration (FAA), Naval Sys-
tems Air Command (NAVAIR) and National Aeronautics

and Space Administration (NASA) have all identified wire
chafing as the largest factor contributing to electrical wiring
and interconnect system failures in aging aircraft [1]. Fur-
thermore, the detection of wire chafing is important because
it leads to more significant problems such as opens and
shorts. This article provides a technically extended discus-
sion of results initially published in [2] on a new general
method for characterizing wiring chafe detectability using
time domain reflectometry (TDR). Our approach combines
physics-based modeling for signal propagation through the
system and fault, with a probabilistic inference method for
recovering key system parameters, including fault location and
size, from measured data. The method further provides clear
uncertainty information regarding the estimated parameters,
without relying on linear model approximation techniques.
Finally, it is flexible enough to apply to a variety of wiring
types, measurement conditions, and arbitrary input interroga-
tion signals.

TDR is an industry standard method for diagnosing faults
in wiring systems. Intuitively, it works by applying an input
signal (e.g., step, Gaussian pulse, pseudo-noise) to the wire
under test, which propagates as a wave along the line. When
the main wavefront passes over a fault on the line, part of
it is reflected and travels back to the input where it can be
measured. Finally, the measured response is diagnosed, either
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by eye or using automated software, for signal variation caused
by potential faults.

Wiring fault detection using TDR has a long history,
where the detection of chafing is considered significantly
more difficult than hard failures such as opens and shorts
[3]. Over the last decade, many time-domain reflectometry
(TDR), frequency-domain reflectometry (FDR) and time- and
frequency-based investigations [4] were published. Among
these investigations and many others the primary mechanism
for automated fault detection is the application of a sliding
correlator, or matched filter, to detect fault location and size
[3]–[8]. In addition, knowledge of the wire material parameters
such as permittivity and conductivity along with measurement
setup and impedance matching conditions are usually either
assumed known in advance, or fixed from baseline measure-
ments.

Unfortunately, these methods generally fail to detect small
faults in practice for at least a couple reasons. First, when
baseline measurements are available, they are often unreliable
because of the constantly changing material properties and
measurement conditions in the field. Second, matched filter
based detection techniques are optimal only after charac-
terizing and accounting for the channel. For the wire fault
detection problem, the channel depends not only on the same
changing material properties and measurement conditions that
affect the baseline, but also on the location of the fault. Even
high quality cable exhibits loss and dispersion effects that
significantly change the shape of the propagating signal wave
as a function of the propagation distance. In essence, one does
not reliably know ahead of time the correct matched filter to
use. Finally, because correlation based detection methodsfail
to accurately account for these effects, they also fail to answer
basic analysis trade-space questions such as fault detectability
versus distance.

The method presented in this article overcomes the diffi-
culties with traditional approaches highlighted in the previous
paragraph. We begin in section II by developing a framework
based onscattering parameters(or S-parameters) to build
a computationally simple yet effective forward model for
how chafed shielding affects signal propagation, and thus the
measured TDR response. This model includes the key param-
eters contributing to signal loss and dispersion effects such
as dielectric permittivity, finite conductor conductivity, and
input source impedance mismatch. In section III, this forward
model is then combined with a general Bayesian probabilistic
inversion procedure, which enables robust fault parameter
estimation in the presence of measurement noise and initial
model parameter uncertainty (i.e., uncertainty in permittivity,
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conductivity, impedance mismatch, etc). In fact, this method
simultaneously estimates not only fault location and size,
but an entire set of key parameters affecting the measured
TDR response along with the corresponding joint uncertainty
information, which in turn enables a reliable characterization
of trade-space issues. Finally, in section IV example results
characterizing fault detectability in RG58 coaxial cable are
presented.

To keep the presentation clear and concrete, our method
is explained in terms of a simple example involving a single
chafing fault in coaxial cable. However, it should be clear
throughout that this example is easily generalized to handle
a wide variety of wire types and fault conditions, simply by
replacing the individual S-parameter models for the coaxial
case, with the S-parameter models required for the general
case. In addition, a new effective TDR hardware model is
derived that may be common to many systems.

Finally, before moving on, we admit up front that the fault
parameter retrieval method presented here is not intended for
practical application in the field, because it is computationally
far too slow. However, the method is important because it
enables a general characterization of fault detectabilityin
a wide variety of wiring systems using virtually any TDR
hardware measurement setup and input interrogation signal.
As such, it establishes fundamental limits on fault detection
performance in advance of further hardware and software
development cost.

II. FORWARD MODEL FORTDR

This section describes our systematic approach to buildinga
computationally efficient forward model for the interrogation
of a chafed coaxial cable using TDR. The modeling method
of choice is theS-parameter formalism; the reader is referred
to [9], [10] for a refresher. Specifically, each cable segment
is treated as a two-port device with a2 × 2 matrix of S-
parameters. TheseS-parameters are then combined in cascade
to obtain the overall response of the system. In this process,
one is aided by the formula:

Γ1 = S11 +
S12S21Γ2

1 − S22Γ2
, (1)

which relates the reflection coefficients seen looking into
port 1 (Γ1) and out of port 2 (Γ2) of a two-port device within
a network (see Figure 2).

A. Coaxial Cable

For nominal (i.e., unfaulted) segments of the cable, one has

S11 = S22 = 0,

S12 = S21 ≡ S0(l),

where the dependence of the relevantS-parameters on the
cable lengthl has been indicated explicitly for later conve-
nience. Adopting the standard textbook model for a coaxial
transmission line (see, for instance, [11], p. 551) one obtains

S0(l) = e−jk(ω)l, (2)
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Fig. 1: Impedance Step.
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In (3), a andb respectively denote the radius of the core and
the (inner) radius of the shield, both of which are assumed to
have a (finite) conductivityσc, while ǫd denotes the permittiv-
ity of the insulator separating the two conductors, andµ0 is
the vacuum permeability. We will also need the characteristic
impedance of the cable, which is given by

Z0 =
ln(b/a)

2π

k(ω)

ωǫd
. (4)

The above formulation relates the key cable parameters (S0

andZ0) directly to the “constitutive” parameters (σc and ǫd),
and is therefore preferable to the distributed RLCG parameter
model that is more commonly found in textbook treatments.

B. Impedance Step

In this section a model for an impedance step in the system
is derived. Figure 1 illustrates the problem in a generic setting.
The task is then to determineΓ1 given Γ2, Z2, andZ1. First
we define the reflection coefficient caused by the impedance
step (for waves moving to the right):

Γs =
Z2 − Z1

Z1 + Z2
=

[

V −
1

V +
1

]

V −

2 =0

.

Using a voltage loop it is easy to see that the transmission
coefficient must then be1 + Γs. Combining these two facts
we can write the following two equations for the voltage waves
entering and exiting the impedance step:

V −
1 = ΓsV

+
1 + (1 − Γs)V

−
2

V +
2 = (1 + Γs)V

+
1 − ΓsV

−
2 ,

and from these two equations the desired result is easily
obtained:

Γ1 =
Γs + Γ2

1 + ΓsΓ2
. (5)

C. Chafing Fault

A simple yet accurate model for theS-parameters of a
chafed coaxial cable is now presented using an approach thatis
generalizable to other types of wiring. The situation of interest
is depicted in Figure 2, where a segment of lengthd and width
w is chafed on a coaxial cable with characteristic impedance
Z0. The chafed segment is modeled as having a constant (i.e.,
z- andω-independent) characteristic impedanceZF .
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Fig. 2: (Left) A constant-impedance model for a chafed cable
segment. (Right) Cross section of chafed coax.

To deriveS11 of the chafe, we conceptually match the coax
impedance on the right and define,

Γ2 =
Z0 − ZF

Z0 + ZF
,

as the reflection coefficient for a wave traveling into the sec-
ond impedance discontinuity. Any wave transmitted through
this discontinuity will never return because the impedance
is matched. Now, if we moved meters to the left of the
second impedance discontinuity to a position just after the
first impedance discontinuity the input reflection coefficient
will be:

Γ2e
−jω 2td ,

wheretd is the one-way travel time from the first to the second
discontinuity (2td seconds pass as the incident wave travels
this distance, reflects from the second discontinuity, and travels
back). Clearly,td = d/vp, wherevp is the wave propagation
velocity inside the fault, which for our model will equal the
propagation velocity of the nominal cable. The only remaining
step is to cross the first impedance discontinuity. To do this
we use equation (5) from§II-B, whereΓs = −Γ2. Thus,

S11 = Γ1 =
Γ2(e

−jω2td − 1)

1 − Γ2
2e

−jω2td
, (6)

where the first equality follows because the output impedance
is matched.

Next we derive an approximation forS21 by simply noting
(1−Γ2) times the incident voltage wave is transmitted through
the first impedance discontinuity, delayed bytd, and(1 + Γ2)
is transmitted through the second discontinuity. Thus,

S21 ≈ (1 − Γ2
2)e

−jωtd . (7)

This is an approximation because there are additional reflec-
tions that ring within the fault.

The exact expression is derived by tracing the voltage waves
as they reflect within the fault, and adding the transmitted parts
of the delayed reflections together in an infinite series. This
procedure produces,

S21 =
(1 − Γ2

2)e
−jωtd

1 − Γ2
2e

−jω2td
. (8)

Note, this exact expression does produce noticeably better
results when the fault magnitudes are also small (and they
usually are). Finally, since this chafe model is symmetric,we
haveS11 = S22, andS21 = S12.
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Fig. 3: Source Connection.

We must next relate the hitherto unknown parametersZF

and vp to the geometry of the chafe’s cross section shown
in Figure 2. This geometry depends on the conductor radius
a, inside shield radiusb, and outside shield radiusc which
are considered known (but cable type dependent) constants.
The fault impedanceZF and velocity of propagationvp are
both functions of principally the chafe widthw and dielectric
permittivity ǫd. These functions are determined numerically
by building lookup tables using a standard finite difference
method to solve forZF andvp over a grid of different values
for w andǫd. The theoretical underpinnings and the numerical
implementation of this approach are presented in [12]1. We
have found that this simple rectangular chafe geometry and
lookup table based approach are remarkably accurate for
modeling practical chafes, which are typically ellipticalin
shape.

D. Source Connection

In this section a simple source connection model is derived.
The situation is presented in Figure 3. Using the equations
shown on the schematic and a little algebra it is easy to show:

V −

VS
=

Z0Γ

Z0(1 + Γ) + ZS(1 − Γ)
(9)

V

VS
=

(

1 + Γ

Γ

)

V −

VS
=

Z0(1 + Γ)

Z0(1 + Γ) + ZS(1 − Γ)
.(10)

An important subtlety is the net voltageV is measured in
the characteristic impedanceZ0, after any possible impedance
mismatch with the source. Since most TDR systems measure
voltage with respect to the source impedance rather than the
line impedance, this important case is treated in the next
section.

E. TDR Hardware

A general model for the TDR hardware is shown in Figure 4.
In this figure, the “down-stream network” represents any
wiring system that is defined by a characteristic impedance
Z0 and a reflection coefficientΓ0 at the system input. The
goal is to determine the experimentally measured voltageVM

in terms of the TDR source voltageVS .

1Note the method presented in [12] assumesvp is equal to the nominal
velocity of propagation on the cable, which is≃ 1/

√
µ0ǫd. While this isnot

theoretically true, the assumption seems to work reasonably well in practice
for the small chafe faults considered in this paper.
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Good models for TDR hardware should incorporate three
practical effects: (1) the frequency-dependent impedancemis-
match between the source and the cable, (2) a measurement
delay time needed to account for signal propagationwithin
the TDR unit, and (3) a gain factor to account for a typically
small mis-calibration between the modeled and measured TDR
response voltages. The equation below for the net transfer
function captures these effects:

H(ω) =
VM

VS
=

G

2

(

1 +
ΓS + Γ0

1 + ΓSΓ0
e−j2ωtM

)

, (11)

where ΓS = (Z0 − ZS)/(Z0 + ZS) accounts for the port
impedance mismatch,tM represents the one-way internal
delay, andG is the gain factor used to account for possible
calibration issues. The key parameters for the TDR unit are
thus seen to be the source impedanceZS , the internal delay
tM , and gain factorG.

Equation (11) is derived by processing the schematic from
right to left. To start, we need to deal with the fact thatΓ0

is specified with reference toZ0, while the TDR voltage
measurement is made with respect toZS . In other words,
there is a possible impedance mismatch between the TDR
port and the downstream network. This is easily accomplished
by using the impedance step model presented earlier with
ΓS = (Z0 − ZS)/(Z0 + ZS). The updated reflection transfer
function after the impedance step is then:

Γ′
0 =

ΓS + Γ0

1 + ΓSΓ0
. (12)

The next step is to incorporate the delay block which rep-
resents a time lag between the voltage measurement and the
TDR port. This is also easy to do using the fact that a delay in
time is equivalent to the following in the frequency domain:

ΓM = Γ′
0e

−jω2tM . (13)

Finally, we need to convertΓM which specifies the transfer
function between the forward and reverse voltage waves into
the transfer function between the net source signalVS and the
measured net response signalVM . With respect to Figure 3,
Γ is the reflection coefficient looking into the characteristic
impedanceZ0. Since equation (12) already took care of the
TDR port impedance mismatch,ΓM is looking intoZS , so we
can setZ0 = ZS for this final step in our development of the
TDR hardware model. Thus equation (10) above simplifies to:

VM

VS
=

1 + ΓM

2
. (14)
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Fig. 4: TDR hardware model.

Combining equations (12), (13), and (14) produces the TDR
hardware model given by (11) after multiplying by the system
gain factorG.

F. Model Synthesis

The pieces discussed separately above are now put together
to obtain the system model shown in Figure 5. The model is
analyzed from right to left, starting with the load reflection co-
efficientΓL = (ZL−Z0)/(ZL +Z0). By repeated application
of equation (1), we obtain

Γ2 = S2
0(l2)ΓL, (15)

Γ1 = S11 +
S12S21Γ2

1 − S22Γ2
, (16)

Γ0 = S2
0(l1)Γ1, (17)

whereS0(l) is given in (2), andSij are given in (6) and (8).
Inserting these equations into (11), we obtain ananalytical

relationship between the TDR input and output signals, which
explicitly contains the various physical system and fault pa-
rameters discussed above. (The derivation is straightforward,
but the result is too unwieldy to include here.) Rewriting (11)
in the time domain2, we have

vM (t) =

∫ t

0

h(t − t′; θ) vS(t′) dt′, (18)

where the dependence of the impulse responseh on the set
θ of key model parameters has been indicated to motivate
the discussion in§III. Typically, equation (18) is computed
numerically using the Fast Fourier Transform (FFT) algorithm.

We note in passing that this modeling approach can be
generalized readily to a cable with chafes (or other kinds of
faults) at multiple locations, and in fact to arbitrary wiring
networks. Most importantly, as the number of wiring and in-
terconnect components grows, the computational effort needed
to evaluate the model grows only linearly, and the memory
resources needed stays roughlyfixed.

G. Full S-parameter Model

In the previous section we showed how to derive the
frequency dependent input reflection coefficient for a faulted

2In taking the inverse Fourier transform ofH(ω) to obtainh(t), one must
respect the frequency dependence of the variousS-parameters and impedances
in the model, which has been suppressed throughout for notational simplicity.

V +(ω, 0)

V −(ω, 0)

S0, Z0S0, Z0

ZL

ZL

ΓL
Γ2Γ1Γ0

z = 0+
l1 l2d

chafe

S

coaxcoax

TDR Hardware

TDR Hardware

m

Fig. 5: S-parameter representation of a chafed coaxial cable.
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V +(ω, 0)

V −(ω, 0)

V +(ω, l)

V −(ω, l)

A, Z0 B, Z0F

Fig. 6: Block representation of a faulted coax cable.

wire with a source input impedance discontinuity. In this
section, we derive the full S-parameter model for the same
setup.

Let us begin with the setup shown in Figure 6, which
represents a fault with two sections of possibly lossy coax
cable attached to it. To derive the S-parameters for this system,
the chain scattering matrix approach is used [10]. With this
approach the chain scattering matrix for the systemTsys is
readily specified as:

Tsys =

[

(A21F21B21)
−1 −A−1

21 F22B21F
−1
21

A21F22B
−1
21 F−1

21 A21B21(F
2
21 − F 2

22)F
−1
21

]

,

whereAmn, Fmn, andBmn are the S-parameters for the first
section of cable, the fault, and the second section of cable,
respectively. Converting the chain scattering parametersTsys

back to S-parameters we get:

Ssys =

[

A2
21F22 A21F21B21

A21F21B21 F22B
2
21

]

. (19)

Now that we have the S-parameters for the faulted cable,
the next step is to derive expressions for the S-parameters
after source and load impedance discontinuities. The situation
is shown in Figure 7. By definition of the S-parameters for
the system inside the impedance discontinuities we have:

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2.
(20)

The goal is to derive the S-parameters for the outer system
defined by:

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2,

given we know the S-parameters for the internal system and all
characteristic impedancesZ0, Z1 andZ2. To do this we make
use of the following boundary conditions for the voltage waves
traveling into and out of the impedance discontinuities on both
sides of the internal system:

a1 = (1 + Γ1)a1 − Γ1b1 a2 = (1 − Γ2)a2 − Γ2b2

b1 = (1 − Γ1)b1 + Γ1a1 b2 = (1 + Γ2)b2 − Γ2a2.
(21)

Note, these are the same boundary conditions derived in§II-B.
To solve for the S-parameters of the outer system we start

by solving equations (21) fora1, a2, b1, and b2 in terms of
a1, a2, b1, andb2. Next, these results are substituted into the
equations for the internal S-parameters (20), and solved for
the external S-parameters to give:

S11 =
S11 + Γ1 − Γ1Γ2S22 − (S11S22 − S12S21)Γ2

1 + S11Γ1 − S22Γ2 − (S11S22 − S12S21)Γ1Γ2
(22)

S12 =
S12(1 − Γ1)(1 − Γ2)

1 + S11Γ1 − S22Γ2 − (S11S22 − S12S21)Γ1Γ2
(23)

a1

b1 a2

b2a1

b1 a2

b2

Z1 Z0Z0 Z2

Γ1 = Z0−Z1
Z0+Z1

Γ2 = Z2−Z0
Z2+Z0

S

Fig. 7: Block representation of a faulted coax cable.

S21 =
S21(1 + Γ1)(1 + Γ2)

1 + S11Γ1 − S22Γ2 − (S11S22 − S12S21)Γ1Γ2
(24)

S22 =
S22 − Γ2 − Γ1Γ2S11 + (S11S22 − S12S21)Γ1

1 + S11Γ1 − S22Γ2 − (S11S22 − S12S21)Γ1Γ2
(25)

To verify the equation forS11, consider the case where
Γ2 = ΓL andΓ1 = 0. After substituting these values, equation
(22) becomes:

S11 = S11 +
S12S21ΓL

1 − S22ΓL
,

which is the same as equation (1) for the input reflection
coefficient given load impedanceZL and matched source
impedance (as it should be).

Finally, with these system S-parameters it is easy to de-
rive the input/output voltage relationships with mismatched
source and load impedances. This case occurs frequently in
practice whenever the wire impedance mismatches the source
impedance. Since the mismatch is now taken care ofwithin
the S-parameter block we can consider attaching the source
and load tomatchedimpedances. This means we can simply
write:

V (0)+ = (1/2)VS (sinceZ1 = ZS)

V (0) = V (0)+ + V (0)− =
1

2
(1 + S11)VS

V (l)− = 0 (sinceZ2 = ZL)

V (l) = V (l)+ + V (l)− =
1

2
S21VS

III. PROBABILISTIC INVERSION

A. Bayesian Framework

In this section, a probabilistic framework is presented for
inferring the fault parameters from measured TDR data. Start-
ing with a sampled version of (18), the measurement process
is modeled in the usual way as

y = F (x; θ) + ν, (26)

where x ∈ Rn is the interrogation signal injected by the
TDR unit into the cable under test,θ ∈ Rm is the set
of unknown model (i.e., systemand fault) parameters, the
function F (x; θ) : Rn × Rm → Rn represents the forward
model, ν ∈ Rn is a vector of additive random measurement
noise, andy ∈ Rn is a time series of voltage samples forming
the measured TDR signal.

Two probability distributions functions (pdf) are now intro-
duced for the construction of a Bayesian inversion framework:
(1) theprior distributionPr(θ), which describes our state of
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knowledge regarding the unknown model parameters before
any measurements are made, and (2) thelikelihood distribu-
tion Pr(y|θ), which specifies the probability of observing a
particular measurement for a given set of model parameters.
Bayes’ theorem then gives theposterior distribution for θ in
the form [13]

Pr(θ|y) =
Pr(y|θ)Pr(θ)

∫

Pr(y|θ′)Pr(θ′) dθ′
. (27)

The maximuma posteriori estimateθ∗ is found by solving
the optimization problem

maximize Pr(θ|y). (28)

Furthermore, the shape and the spread of the posterior distribu-
tion aroundθ∗ indicate how confident we are in this estimate.
There are two typical approaches to quantifying this shape for
general distributions likePr(θ|y), which depends heavily on
the nonlinear forward model (among other things). The first is
to assume the distribution is approximately Gaussian around
the optimal estimateθ∗, and to use the inverse of the Hessian
of − log Pr(θ∗|y) as an approximation for the covariance
matrix which quantifies the spread of the distribution [13, Ch.
3]. The second approach relies on the remarkable fact that
one can sample random vectors directly from the posterior
distribution Pr(θ|y), and use the spread of the samples to
quantify the distribution shape, without making any additional
Gaussian assumptions. This is the approach we take up in the
next section.

B. Markov-Chain Monte Carlo Estimation

Finding the optimal estimate and quantifying the uncertainty
associated with it are computationally challenging tasks when
the forward modelF is nonlinear inθ, as in the present case.
Furthermore, in cases where the forward model is an algorithm
(rather than a closed-form expression), it can be prohibitively
expensive to compute the gradient and the Hessian of the cost
function, which are needed to solve the optimization problem
(28) using traditional methods. Thus, a natural approach for
this type of problem is the application of Markov-Chain Monte
Carlo (MCMC) methods to obtain a set of random samples
drawn directly from the posterior distribution, which are used
to estimate the desired quantities by applying the law of large
numbers. The underlying premise for this approach is that, for
sufficiently largeN , a set of samples

θk ∼ Pr(θ|y), i = 1, 2, . . . , N, (29)

adequately captures the essential features of the posterior
distribution. Specifically, the sampleθk that maximizes the
posterior distribution provides us with a globally optimal
estimate, while the spread of theN samples aroundθk may
be taken as a measure of our uncertainty about this estimate.
More generally the law of large numbers guarantees:

1

N

N
∑

k=1

f(θk) → E f(θ) =

∫

f(θ)Pr(θ|y) dθ, (30)

as N → ∞. Thus, the samples can be used to estimate
the expected value of almost any event or function. Standard

examples include the meanf(θ) = θ, and variancef(θ) =
(θ − E [θ])2.

There are many different MCMC-based algorithms one
might implement to achieve the above sampling. The results
presented in§IV were obtained using a relatively new method
called nested sampling. This algorithm is a natural fit for
solving the estimation problem posed by equations (27) and
(28), while also estimating other relevant quantities suchas
the integral in the denominator of (27), which can be used
for model selection (i.e., choosing the best among competing
forward-modeling schemes). Like many other MCMC meth-
ods, this one also tends to be slow: it took around 8-10 hours
to solve the estimation examples discussed in§IV on a 32-bit
1.8-GHz Linux PC. The interested reader is referred to [13]
for details on the nested-sampling algorithm.

IV. RESULTS

This section presents a couple example results on system
parameter estimation and chafing fault detection for a7-m
long RG58 coaxial cable with an open load condition (i.e.,
ZL = ∞), along with a simulated result highlighting the more
complex nature of detecting particularly small faults.

A. Problem Setup

Laboratory measurements were obtained using an Agilent
54754A digital TDR unit. The elements of the measurement
noise vectorν were assumed to be independent and identically
distributed normal random variables with zero mean and a
standard deviation ofσM = 1 mV, a value roughly equal to
the residual error standard deviation between the measured
data and the optimal model fit. Under these assumptions the
likelihood distribution is

Pr(y|θ) = (2πσ2
M )−n/2 exp

{

− 1

2σM
‖y − F (x; θ)‖2

}

,

(31)
where θ = (l1, d, w, ǫd, σc, ZS , l, tM , G) is our vector of
key model parameters, all of which were carefully defined
throughout section II.

The prior information is summarized in Table I, where
U(x, y) denotes the uniform distribution on the interval[x, y],
and N+(µ, σ) denotes the normal distribution restricted to
positive values with pdf,

fX(x) =

{

e−(x−µ)/2σ2

Φ(µ/σ)
√

2πσ2
, x ≥ 0

0, otherwise,
(32)

whereΦ(z) represents the cdf of a standard normal random
variable. This prior specification represents informationand
uncertainty regarding the known wire material properties and
TDR equipment specifications in areasonableway. For ex-
ample the nominal values ofσc and ǫd are typically supplied
by the cable manufacturer, but the parameters of aparticular
cable may deviate appreciably from the “batch” values, a fact
captured by the specified prior probability distributions;and
the same argument holds for the TDR hardware parameters as
well.

Before any measurements are made, our prior knowledge
of each key parameter is assumed independent of the other
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TABLE I: Parameter Prior Information

Param. Distribution Description

l1 U(0, l) m distance to fault

d U(0, 50) mm fault length

w U(0, 2b) mm fault width

ǫd N+(2.25, 0.2) relative dielectric permittivity

σc N+(3, 2) × 107 S/m conductor conductivity

ZS N+(50, 2) Ω source impedance

l N+(7, 0.1) m cable length

tM N+(0.5, 0.2) ns measurement time delay

G N+(1, 0.1) system gain

parameters, except for fault locationl1 and cable lengthl
which are jointly distributed according to

Pr(l1, l) = Pr(l1|l)Pr(l) = U(0, l) ×N+(7, 0.1). (33)

Thus, the pdf of the prior parameter vectorPr(θ) is simply
the product of the distributions listed in Table I. With the
likelihood and prior pdfs now defined, equation (27) pro-
vides the posterior distribution. Note, even though standard
likelihood and prior distributions were assumed, the nonlinear
nature of the model function makes the posterior distribution
nonstandard: not Gaussian, uniform, or any other typical
distribution. In fact the general posterior distribution can be
multi-modal, and this fact has important consequences for fault
detection. The final section provides an example.

B. Chafing Fault Detection Example

As an example, our estimation procedure is applied to
simultaneously retrieve all parameters from a single measured
TDR response collected from the7 m long RG58 coaxial
cable with a single10 × 3 mm chafe at a distance of6 m
from the source3. The optimal estimates are shown in Table
II, along with their corresponding standard deviations. Also,
Figure 8 characterizes joint estimation performance between
pairs of parameters. Note, the correlation between fault width
and fault length is expected since changing these parameters
in the forward model have roughly the same effect on the TDR
response. The model also explains the very strong correlation
between cable lengthl and dielectric permittivityǫd since both
affect the total propagation time through the cable (i.e., ǫd

affects propagation velocity).
Finally, with all the key model parameters inferred from

data, we now use the optimal parameter estimates and the
known source voltage profilevS(t) to compute the model-
predicted TDR signal,vM (t). The result presented in Figure 9
shows near perfect agreement with the laboratory measure-
ment, thus validating the effectiveness of the forward model.

C. A Multi-modal Example

The example in the previous section highlighted a case
where the fault signature was small, but visible by eye. As

3Lab measurements were made using a tape measure for distance-to-fault
and cable length, and digital calipers for fault length and width. These
measurements are all subject to some inaccuracy

TABLE II: Parameter Estimates± 1 Standard Deviation

Param. Estimate Param. Estimate

l1 6.010 ± 0.036 m d 14.5 ± 2.9 mm

w 2.71 ± 0.14 mm ǫd 2.242 ± 0.027

σc 3.019 ± 0.016 × 107 S/m ZS 48.9 ± 0.3 Ω

l 7.02 ± 0.04 m tM 0.552 ± 0.01 ns

G 0.991 ± 0.000
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Fig. 9: Model fit to the measured TDR signal using the
optimal estimate forθ. The fit captures the variation in the
measured signal to within a standard deviation of0.43 mV,
and includes both the primary and the secondary reflections
from the chafing fault.

shown in Figure 8, the posterior samples in that case are
well modeled by a multivariate Gaussian distribution; and
that is the standard treatment for a posterior distribution built
around general nonlinear models, as is the present case. This
approach however, is not always appropriate. For example,
Figure 10 presents the posterior samples from asimulated
TDR response to a3 × 2 mm fault located2 m from the
source. In this case, the fault signature is buried in the
measurement noise (not shown), and the estimation procedure
yields posterior samples that cluster around various possible
fault locations along the cable. Clearly, these samples are
not well described by a multivariate Gaussian distribution, so
the standard approach would yield very misleading results.
Thus, we can conclude the standard method is inaccurate for
assessing fault detectability at or near the limits of detection.

The MCMC parameter estimation approach presented in this
article naturally reveals the proper multi-modal distribution
by treating the full nonlinear model without further approxi-
mation. In this particular case, Figure 10 shows the primary
mode of the distribution provides good estimates for the fault
location and length, but that is not known in advance. Given
the available measured data, prior information, and model,one
can conclude only that the most likely fault is at2 m, but other
locations are also somewhat probable. In fact, that is just what
the posterior samples provide: a set of probable parameter
values given the assumed model and measured data.
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Fig. 8: Example parameter estimation results and uncertainty analysis. The star marks the most probable estimate, while the
confidence ellipse is the minimum area ellipse enclosing 95%of the most likely samples from the posterior distribution.
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Fig. 10: A small chafing fault detection example. In this case
the posterior samples, which represent possible fault loca-
tions and lengths, reveal an underlying multi-modal posterior
distribution. While the most likely estimate, marked by the
star, provides a good estimate of fault location and size, the
posterior samples indicate a number of other possibilitiesthat
can not be ruled out given the measured TDR data.

V. CONCLUSION

This article presented an effective forward model for the
TDR response of chafed cable, given the input signal and a
set of model parameters. The novelty in our approach lies
not in the application of S-parameter based signal modeling
or electromagnetics, but in the identification of the important
model parameters and system structure needed to accurately
represent the actual hardware measured TDR response in the
simplest possible way. This was in fact the direct result of
a long process of trial and error with lab measured data –
a full description of which the reader has been spared. The
resulting model incorporates key effects caused by practical
non-idealities such as source impedance mismatch, measure-
ment delays, signal loss and dispersion, changing material
properties, and even some degree of mis-calibration. These
issues are not specific to the coaxial chafing fault detection
example this article focused on, and are all important to
the general application of TDR based wiring fault detection
methods in the field.

The forward model was then combined with a Bayesian
inversion framework to formulate and solve the problem of

optimal fault detection and performance characterizationusing
MCMC based techniques. Although this method is computa-
tionally slow, it handles general nonlinear models withoutfur-
ther approximation; and this leads to an accurate characteriza-
tion of estimation uncertainty that traditional methods can fail
to provide. The results section highlighted this effect through
two simple chafing fault detection examples. Furthermore, this
method is optimal in the sense that given the measured TDR
response, no other detection method can find a more likely
fault location and size, under equivalent conditions (i.e., same
measurement hardware, input signal, noise, wiring system
etc.). Finally, the inversion approach is easily generalized to
handle a variety of parametric models, since the model itself
is viewed simply as an input to the inversion procedure. Thus,
we have presented a truly generalized framework applicable
to the characterization of TDR based fault detection for a
large variety of TDR hardware, wiring types, and network
topologies.
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