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Abstract—Time-domain reflectometry (TDR) is one of the by eye or using automated software, for signal variatiorsedu
standard methods for diagnosing faults in electrical wiring by potential faults.

and interconnect systems, with a long-standing history focused Wiring fault detection using TDR has a long history.

mainly on hardware development of both high-fidelity systems . . . . S
for Ia{)oratory use and poFr)tabIe hand-heldgdevicesy fo% field where the detection of chafing is considered significantly

deployment. While these devices can easily assess distance tgore difficult than hard failures such as opens and shorts
hard faults such as sustained opens or shorts, their ability to [3]. Over the last decade, many time-domain reflectometry
assess subtle but important degradation such as chafing remains (TDR), frequency-domain reflectometry (FDR) and time- and
an open question. This paper presents a unified framework for frequency-based investigations [4] were published. Among

TDR-based chafing fault detection in lossy coaxial cables by th . tigati d th th . hani
combining an S-parameter based forward modeling approach ese Investgatons and many others thé primary mechanism

with a probabilistic (Bayesian) inference algorithm. Results for automated fault detection is the application of a slidin
are presented for the estimation of nominal and faulty cable correlator, or matched filter, to detect fault location aiwks

parameters from laboratory data. [3]-[8]. In addition, knowledge of the wire material paraes
Index Terms—S-parameters, TDR, wiring, Bayesian, fault SUch as permittivity and conductivity along with measuratme
detection setup and impedance matching conditions are usually either
assumed known in advance, or fixed from baseline measure-
ments.
I. INTRODUCTION Unfortunately, these methods generally fail to detect smal

HE Federal Aviation Administration (FAA), Naval Sys_faults_ in practice for at least a_couple reasons. First, When
: . .~ baseline measurements are available, they are often aiple|i
tems Air Command (NAVAIR) and National Aeronautic . . X
_“because of the constantly changing material properties and

and Space Administration (NASA) have all identified wire " ; ’ ,
' T .- . Mmeasurement conditions in the field. Second, matched filter
chafing as the largest factor contributing to electricalingr

and interconnect system failures in aging aircraft [1]__Fubased detection techniques are optimal only after charac-

thermore, the detection of wire chafing is important becaua%nzmg and accounting for the channel. For the wire fault

) R tection problem, the channel depends not only on the same
it leads to more significant problems such as opens anﬁ . : . .
changing material properties and measurement conditloats t

zir:)onrts(,).f -[2;811I{asrtlizli(taia?lrOVIggﬁsse:jecirTn[lg? lg’n e;tir;c\j\;ed e(f]sefu ffect the baseline, but also on the location of the faulerEv
yp 9 igh quality cable exhibits loss and dispersion effects tha

method for characterizing wiring chafe detectability LgsinSi nificantly chanae the shape of the propagating sianabway
time domain reflectometry (TDR). Our approach combinedd y g b propagating sig

ohysics-based modeling for signal propagation through fsa function of the propagation distance. In essence, cee do

system and fault, with a probabilistic inference method fonr()t reliably know ahead of time the correct matched filter to

recovering key system parameters, including fault locasind use. Finally, because correlation based detection mettailds

size, from measured data. The method further provides cl tgraccurately account for these effects, they also fail

uncertainty information regarding the estimated pararmsete asic angly3|s trade-space questions such as fault defiggta
versus distance.

W.ithOUt _re_lying on linear model approximatiqn technigyes. The method presented in this article overcomes the diffi-
nggy’n']tessﬂregrf;tegg#(ﬁgot:saggg ;?b;r;/g”iitgu?fiovg?gculties with traditional approaches highlighted in thevioas
tion s}gnals ' paragraph. We b_egin in section Il by developing a framework
TDR i o dustry standard method for di ing f Ibased onscattering parametergor S-parameters) to build
_'PRS an Industry standard method for diagnosing aug computationally simple yet effective forward model for
in wiring systems. Intuitively, it works by applying an inpu how chafed shielding affects signal propagation, and thas t

S|g(;1al te.gt’ Stﬁp’h Gau35|art1 pulse, pseudo;nms;a% tc;l thev\\'lv'trr?easured TDR response. This model includes the key param-
under test, which propagatés as a wave along the fine. Brs contributing to signal loss and dispersion effectshsu

the main wavefront passes over a fault on the line, part dielectric permittivity, finite conductor conductivitand

It is refleé:teFo_I aﬂd ELaveIs back (;0 the mput_ V\(/jhere I é:dan t_?ﬁput source impedance mismatch. In section lll, this fadva
measured. Finally, the measured response Is diagnossel il e is then combined with a general Bayesian probalailisti

_ , inversion procedure, which enables robust fault parameter
The authors are with NASA Ames Research Center, Moffett Fi€ld, . . . . s
94035 USA e-mail: stefan.r.schuet@nasa.gov. estimation in the presence of measurement noise and initial
Manuscript submitted June, 2010. model parameter uncertainty.g.,, uncertainty in permittivity,
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conductivity, impedance mismatch, etc). In fact, this rodth
simultaneously estimates not only fault location and size, 7z Zs

but an entire set of key parameters affecting the measured !t — Lz
TDR response along with the corresponding joint uncerngaint Vi s V2
information, which in turn enables a reliable characterira

of trade-space issues. Finally, in section IV example tssul Fig. 1: Impedance Step.
characterizing fault detectability in RG58 coaxial cable a
presented.
To keep the presentation clear and concrete, our methotiere
is explained in terms of a simple example involving a single 1 weg (11
chafing fault in coaxial cable. However, it should be clear k(w) ~ wy/po€a + W’/F (a + b) N )

throughout that this example is easily generalized to handl
a wide variety of wire types and fault conditions, simply byn (3), a andb respectively denote the radius of the core and
replacing the individual S-parameter models for the cdaxithe (inner) radius of the shield, both of which are assumed to
case, with the S-parameter models required for the genehalve a (finite) conductivity., while ¢; denotes the permittiv-
case. In addition, a new effective TDR hardware model ity of the insulator separating the two conductors, andis

derived that may be common to many systems. the vacuum permeability. We will also need the characierist
Finally, before moving on, we admit up front that the faultimpedance of the cable, which is given by

parameter retrieval method presented here is not intenoled f In(b/a) k(w)

practical application in the field, because it is computsity Zyg= ——>-—=. 4)

far too slow. However, the method is important because it 2m wea

enables a general characterization of fault detectability = The above formulation relates the key cable parametsys (
a wide variety of wiring systems using virtually any TDRand Z,) directly to the “constitutive” parameters( and eg),
hardware measurement setup and input interrogation sigreiid is therefore preferable to the distributed RLCG paramet
As such, it establishes fundamental limits on fault detecti model that is more commonly found in textbook treatments.
performance in advance of further hardware and software

development cost. B. Impedance Step

In this section a model for an impedance step in the system
is derived. Figure 1 illustrates the problem in a generitirsgt
This section describes our systematic approach to building he task is then to determirig, givenI's, Z,, and Z;. First
computationally efficient forward model for the interroget we define the reflection coefficient caused by the impedance
of a chafed coaxial cable using TDR. The modeling methalep (for waves moving to the right):
of choice is theS-parameter formalism; the reader is referred _
to [9], [10] for a refresher. Specifically, each cable segmen I, = Z22-2 - [Vl] )
is treated as a two-port device with 2ax 2 matrix of S- 21+ 2y Vi v, =0
parameters. Thesg-parameters are then combined in cascaq?S

: . ing a voltage loop it is easy to see that the transmission
to obtain the overall response of the system. In this process .> . e
. ) coefficient must then bé + I';. Combining these two facts
one is aided by the formula:

we can write the following two equations for the voltage wave

Il. FORWARD MODEL FORTDR

r [ iti i :
Iy =S+ S1259112 , 1) entering and exiting the impedance step
1 — 50T V- - Tt _
. . . . . 1 - s¥1 + (1 - FS)‘/Q
which relates the reflection coefficients seen looking into Vit = (14T )V —Tv
port 1 (';) and out of port 21) of a two-port device within 2 8L STz
a network (see Figure 2). and from these two equations the desired result is easily
obtained: rooT
s T
A. Coaxial Cable I = TFFQQ (5)
For nominal {.e., unfaulted) segments of the cable, one has
Su=>5» = 0, C. Chafing Fault

S12= 51 = Soll), A simple yet accurate model for th8-parameters of a

where the dependence of the relevafiparameters on the chafed coaxial cable is now presented using an approactsthat
cable lengthl has been indicated explicitly for later conve-9€neralizable to other types of wiring. The situation oemst
nience. Adopting the standard textbook model for a coaxisl depicted in Figure 2, where a segment of lengtind width

transmission line (see, for instance, [11], p. 551) oneinbta & 1S chafed on a coaxial cable with characteristic impedance
' S Zo. The chafed segment is modeled as having a constant (

So(l) = eIk (2) z- andw-independent) characteristic impedangg.
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Fig. 2: (Left) A constant-impedance model for a chafed cable

segment. (Right) Cross section of chafed coax.

Fig. 3: Source Connection.

To deriveSy; of the chafe, we conceptually match the coax VW€ must next relate the hitherto unknown parametérs
impedance on the right and define and v, to the geometry of the chafe’s cross section shown

in Figure 2. This geometry depends on the conductor radius
_ Zo — ZF a, inside shield radiu$, and outside shield radius which
Zo+ Zp’ are considered known (but cable type dependent) constants.

as the reflection coefficient for a wave traveling into the-sedhe fault impedanceZ» and velocity of propagatiom, are
ond impedance discontinuity. Any wave transmitted througdpPth functions of principally the chafe width and dielectric
this discontinuity will never return because the impedand€rmittivity e;. These functions are determined numerically
is matched. Now, if we movel meters to the left of the by building lookup tables using a standard finite difference
second impedance discontinuity to a position just after tHeethod to solve foiZ andw, over a grid of different values

first impedance discontinuity the input reﬂection Coefﬁnie for w andEd. The theoretical Underpinnings and the numerical
will be: implementation of this approach are presented in {1%ye

[pe i 2ta, have found that this simple rectangular chafe geometry and
lookup table based approach are remarkably accurate for

wheret, is the one-way travel time from the first to the seconghodeling practical chafes, which are typically ellipticial
discontinuity @t; seconds pass as the incident wave traveshape.
this distance, reflects from the second discontinuity, aakts
back). Clearly,ty = d/v,, wherev, is the wave propagation
velocity inside the fault, which for our model will equal the
propagation velocity of the nominal cable. The only remaini  In this section a simple source connection model is derived.
step is to cross the first impedance discontinuity. To do thihe situation is presented in Figure 3. Using the equations

2

D. Source Connection

we use equation (5) frorfll-B, whereT'; = —T'5. Thus, shown on the schematic and a little algebra it is easy to show:
1’*2(67]‘0.)225(1 — 1) V- Zol'
Syp=T1 ==/ 6 — = 9
U T T2e—iw2ta © Vs Zo(14+T1)+ Zs(1—T) ©
where the first equality follows because the output impedanc ¥V _ <1 + F) V- _ Zo(1+T) (10)
is matched. Vs r Vs Zo(1+T)+Zs(1-T)

Next we derive an approximation fdi;, by simply noting A important subtlety is the net voltage is measured in

(1-I') times the incident voltage wave is transmitted througye characteristic impedanc, after any possible impedance
the first impedance discontinuity, delayedfay and (1 +1I'2)  mismatch with the source. Since most TDR systems measure
is transmitted through the second discontinuity. Thus, voltage with respect to the source impedance rather than the
Sop A (1 — [2)edwt, @) line _impedance, this important case is treated in the next
section.
This is an approximation because there are additional reflec
tions that ring within the fault.
The exact expression is derived by tracing the voltage waves TPR Hardware

as they reflect within the fault, and adding the transmiti@dsp A general model for the TDR hardware is shown in Figure 4.
of the delayed reflections together in an infinite seriessThin this figure, the “down-stream network” represents any
procedure produces, wiring system that is defined by a characteristic impedance
1 T2)e—iwta Zy and a reflection coefficienf, at the system input. The
(#, (8) goalis to determine the experimentally measured volfdge

S O in terms of the TDR source voltagés.
Note, this exact expression does produce noticeably better
results when the fault magnitudes are also small (and thee\i'\‘(_’te the method presented in [12] assumegsis equal to the nominal
usually are). Finally, since this chafe model is symmetie, velocity of propagation on the cable, whichds1/,/uoeq. While this isnot

theoretically true, the assumption seems to work reasonabllyiw practice
haveS11 = S22, andSy; = Sia. for the small chafe faults considered in this paper.

Sa1 =
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Good models for TDR hardware should incorporate thr&@ombining equations (12), (13), and (14) produces the TDR
practical effects: (1) the frequency-dependent impedanise hardware model given by (11) after multiplying by the system
match between the source and the cable, (2) a measurengain factorG.
delay time needed to account for signal propagatiathin
the TDR unit, and (3) a gain factor to account for a typicallg \jodel Synthesis

small mis-calibration between the modeled and measured TDR]_h i i d ratelv above are now put together
response voltages. The equation below for the net transfer € pieces discussed separalely above are now put togethe

function captures these effects: to obtain the sy_stem model sh_own in Figure 5. The model is
analyzed from right to left, starting with the load reflectico-
Hiw) = Vu _ G Ps+To0 oty (11) efficientl’, = (Z, — Zy)/(Z1, + Zy). By repeated application
YTV T2 1+ sl ’ of equation (1), we obtain

whereT's = (Zy — Zs)/(Zo + Zs) accounts for the port Iy = S2(u)Ty, (15)

impedance mismatchi,, represents the one-way internal I - g 5125919 (16)
delay, andG is the gain factor used to account for possible R A

calibration issues. The key parameters for the TDR unit are Ly = STy, (17)
thus seen to be the source impedaugg the internal delay o o

tur, and gain factolG. where Sy(1) is given in (2), andS;; are given in (6) and (8).

Equation (11) is derived by processing the schematic from Inserting these equations into (11), we obtainaaalytical
right to left. To start, we need to deal with the fact ttigt relationship between the TDR input and output signals, whic
is specified with reference t&,, while the TDR voltage €XPlicitly contains the various physical system and faualt p
measurement is made with respect Zg. In other words, rameters discussed above. (The derivation is straightfatw
there is a possible impedance mismatch between the TIH the resultis too unwieldy to include here.) Rewriting X1
port and the downstream network. This is easily accomptish the time domaify we have
by using the impedance step model presented earlier with 't , o
I's = (Zo — Zs)/(Zo + Zs). The updated reflection transfer v (t) = / h(t =150) vs(t') dt’, (18)
function after the impedance step is then: 0

I — I's + Ty

where the dependence of the impulse responsm the set
_ 12) 6 of key model parameters has been indicated to motivate
07 14Tl the discussion irglll. Typically, equation (18) is computed

The next step is to incorporate the delay block which refiumerically using the Fast Fourier Transform (FFT) aldorit
resents a time lag between the voltage measurement and th&/¢ Note in passing that this modeling approach can be

TDR port. This is also easy to do using the fact that a delay §¢neralized readily to a cable with chafes (or other kinds of
faults) at multiple locations, and in fact to arbitrary wigi

time is equivalent to the following in the frequency domain: : o )
networks. Most importantly, as the number of wiring and in-
[y = Dpe dw2im, (13) terconnect components grows, the computational efforeee

_ ) B to evaluate the model grows only linearly, and the memory
Finally, we need to conveit,, which specifies the transfer resources needed stays rougfiked

function between the forward and reverse voltage waves into
the transfer function between the net source sigizahnd the
measured net response signal,. With respect to Figure 3, G. Full S—para'meter Mo'del _

T is the reflection coefficient looking into the charactecsti [N the previous section we showed how to derive the
impedanceZ,. Since equation (12) already took care of th&equency dependent input reflection coefficient for a fedilt

TDR port impedance mismatch,, is looking intoZg, so we
P P M 9 S 2In taking the inverse Fourier transform &f (w) to obtaink(t), one must

can setZ, = Zg for this final step '_n our deve|0pm?m Of therespect the frequency dependence of the varipsrameters and impedances
TDR hardware model. Thus equation (10) above simplifies tia:the model, which has been suppressed throughout for andtsimplicity.

\%Yi . 14Ty (14)
Vs 2
TDR Hardware| coax ‘ chafe ‘ coax
1 1 1 1
P i ' 3% d ly z
| TDR hardware v/, | z=of
—jwt : :U: —
Zg }—Qe M}—ﬁﬂi vt(w,0) B
3 down-stream network ry
I = ¥ TDR Hardwarel T S0, Zo L1 | S [ 250 %
v+t v+ vV _
- ZO DA T

Fig. 4: TDR hardware model. Fig. 5: S-parameter representation of a chafed coaxial cable.
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vt(w, 0 ‘ ‘ ‘ ‘ ‘ vt(w, 1)
SR e N e mo | om n |k
V= (w,0) VT (w, 1)
Fig. 6: Block representation of a faulted coax cable. Z1 Zo S Zo Z2
Zl bl a2 az
wire with a source input impedance discontinuity. In this = 22 I, = Z2=%
section, we derive the full S-parameter model for the same ot _ 2o
setup. Fig. 7: Block representation of a faulted coax cable.
Let us begin with the setup shown in Figure 6, which
represents a fault with two sections of possibly lossy coax Sor(1+T1)(1+T)

cable attached to it. To derive the S-parameters for thiegys S21 = (24)
the chain scattering matrix approach is used [10]. With this

approach the chain scattering matrix for the systém. is 5 Sog — 'y — 12511 + (S11522 — S12521)T1 25)

14 8111 — S9ol's — (811522 — S12521)'1 T2

readily specified as: 1+ 8111 — S2oT'y — (S11892 — 512821112
T (Ag1 Fp1 Bop) ™! — Ay Foy By Foit To verify the equation forgl}, consider the case where
sys A21F2232—11F2—11 Ag1 By (F3, — F222)F2‘11 ’ 'y =Ty andl'; = 0. After substituting these values, equation

~ (22) becomes:
whereA,,.,., Fiun, and B,,,, are the S-parameters for the first

section of cable, the fault, and the second section of cable, Sy =S+ M7
respectively. Converting the chain scattering parameigys 1= 5T
back to S-parameters we get: which is the same as equation (1) for the input reflection

A2 Foo Ao Fou B _coefficient given load impedanc&; and matched source
Says = { A F21Bz2 21F21B%1 ] _ (19) impedance (as it should be). o
2522l 252 Finally, with these system S-parameters it is easy to de-
Now that we have the S-parameters for the faulted cabl&€ the input/output voltage relationships with mismatdh
the next step is to derive expressions for the S-parameté@dirce and load impedances. This case occurs frequently in
after source and load impedance discontinuities. Thetiitua Practice whenever the wire impedance mismatches the source
is shown in Figure 7. By definition of the S-parameters fdmpedance. Since the mismatch is now taken carevittin

the system inside the impedance discontinuities we have: the S-parameter block we can consider attaching the source
and load tomatchedimpedances. This means we can simply

by = Siia; + Sizae write:
by = So1a1 + Sazaz. (20) .
. . V()" = (1/2)Vs (sinceZ; = Zs)

The goal is to derive the S-parameters for the outer system 1 o
defined by: V() = VO)y"+Vv(0) = 5(1 +511)Vs

by = Sy1a; + Siodo V(I)~ = 0 (sinceZy = Zy)

_ —_ _ 1

by = Soia1+ Szeas, Vi) = VI)T+V()” = 5521Vs

given we know the S-parameters for the internal system dnd al

characteristic impedancéd%), Z; and Z,. To do this we make Ill. PROBABILISTIC INVERSION
use of the following boundary conditions for the voltage e&v 5 Bayesian Framework

traveling into and out of the impedance discontinuities othb

sides of the internal system: In this section, a probabilistic framework is presented for

inferring the fault parameters from measured TDR data.tStar

ay = (1+Ty)a; — iy as = (1 —Tg)as — Taby ing with a sampled version of (18), the measurement process
by = (1-T1)by + 1@ by = (1 + )by — aas. is modeled in the usual way as
(21)
Note, these are the same boundary conditions derivgt-B. y=F(z;0)+v, (26)

To solve for the S-parameters of the outer system we Staffere » € R” is the interrogation signal injected by the
by solving equations (21) fotiy, az, b1, andb; in terms of TDR unit into the cable under tesf, € R™ is the set
ai, a2, by, andb,. Next, these results are substituted into thgf ynknown model i(e., systemand fault) parameters, the
equations for the internal S-parameters (20), and solved f@nction F(z;6) : R” x R™ — R" represents the forward

the external S-parameters to give: model, v € R™ is a vector of additive random measurement
_ Si1 + T — 113855 — (11522 — S12551)Ts noise, andy € R™ is a time series of voltage samples forming
S = (22)  the measured TDR signal.

145111y — Soal'y — (S11S22 — S12521)['1 T2

Sy = S12(1 —T1)(1 —Ty)
14+ 51T — S20T2 — (811522 — S12521)T1T'2

Two probability distributions functions (pdf) are now iatr
duced for the construction of a Bayesian inversion framéwor
(1) theprior distribution Pr(6), which describes our state of

(23)
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knowledge regarding the unknown model parameters befaeamples include the meaf(#) = 6, and variancef(0) =

any measurements are made, and (2)ltkadihood distribu- (0 — E[0])2.

tion Pr(y|#), which specifies the probability of observing a There are many different MCMC-based algorithms one
particular measurement for a given set of model parametensight implement to achieve the above sampling. The results
Bayes’ theorem then gives thmosterior distribution ford in  presented ir§lV were obtained using a relatively new method

the form [13] called nested samplingThis algorithm is a natural fit for
Pr(y|0) Pr(6) solving the estimation problem posed by equations (27) and
Pr(fly) = (27)  (28), while also estimating other relevant quantities sash

J Pr(y|6r) (@) do” the integral in the denominator of (27), which can be used
The maximuma posteriori estimated™ is found by solving for model selectionife., choosing the best among competing
the optimization problem forward-modeling schemes). Like many other MCMC meth-
. ods, this one also tends to be slow: it took around 8-10 hours
maximize Pr(6|y). (28) oo . : .
to solve the estimation examples discussegllihon a 32-bit
Furthermore, the shape and the spread of the posterioibdistr 1.8-GHz Linux PC. The interested reader is referred to [13]
tion aroundd* indicate how confident we are in this estimatefor details on the nested-sampling algorithm.
There are two typical approaches to quantifying this shape f
general distributions likéPr(6|y), which depends heavily on IV. RESULTS

the nonlinear forward model (among other things). The f8sti Thjs section presents a couple example results on system
to assume the distribution is approximately Gaussian atouparameter estimation and chafing fault detection fof-@

the optimal estimaté@*, and to use the inverse of the Hessia[bng RG58 coaxial cable with an open load conditidre.(

of —logPr(¢*[y) as an approximation for the covariancez;, — ) along with a simulated result highlighting the more

matrix which quantifies the spread of the distribution [18. C complex nature of detecting particularly small faults.
3]. The second approach relies on the remarkable fact that

one can sample random vectors directly from the posterigr
distribution Pr(f|y), and use the spread of the samples to
guantify the distribution shape, without making any aduitl
Gaussian assumptions. This is the approach we take up in
next section.

Problem Setup

Laboratory measurements were obtained using an Agilent

ﬁﬁlg54A digital TDR unit. The elements of the measurement

noise vector were assumed to be independent and identically

distributed normal random variables with zero mean and a

standard deviation ofr;; = 1 mV, a value roughly equal to

the residual error standard deviation between the measured
Finding the optimal estimate and quantifying the uncetyaindata and the optimal model fit. Under these assumptions the

associated with it are computationally challenging taskenv [ikelihood distribution is

the forward modelF is nonlinear ind, as in the present case. 1

Furthermore, in cases where the forward model is an algarith Pr(y|0) = (2m07,)~"/% exp {—20”@ — F(z; 9)|2} :

(rather than a closed-form expression), it can be prohiiti M (31)

expensive to compute the gradient and the Hessian of the 6ggkre § = (i, d,w,eq, 00, Zs,1,ta, G) is our vector of

function, which are needed to solve the optimization problekey model parameters, all of which were carefully defined

(28) using traditional methods. Thus, a natural approach fghroughout section 1.

this type of problem is the application of Markov-Chain Ment  The prior information is summarized in Table I, where

Carlo (MCMC) methods to obtain a set of random sampleg(z, ) denotes the uniform distribution on the interyal y,

drawn directly from the posterior distribution, which arsed and At (., o) denotes the normal distribution restricted to
to estimate the desired quantities by applying the law @fdar positive values with pdf,

numbers. The underlying premise for this approach is tloat, f

B. Markov-Chain Monte Carlo Estimation

e—(@—p) /202
sufficiently largeN, a set of samples Fx(@) = { W;?, x>0 (32)
O ~Pr(ly), i=1.2,...,N, (29) 0, otherwise,

. where ®(z) represents th f of ndard normal random
adequately captures the essential features of the posterloe e &(z) represents the cdf of a standard normal rando

S o - variable. This prior specification represents informatmd
dfgg{fgfgiiﬁfﬂ%ﬁ,al'yr’of,?ge:arfsp%nﬁhi mlg)lglanl}lzes :ir:ﬁatjrncertainty regarding the known wire material propertiad a
pos ) P 9 y op DR equipment specifications in r@asonableway. For ex-
estimate, while the spread of thé samples around; may

be taken as a measure of our uncertainty about this estim%@.ple the nominal values of. ande, are typically sgpplled
) Y the cable manufacturer, but the parameters pédicular
More generally the law of large numbers guarantees:

cable may deviate appreciably from the “batch” values, & fac

1 & captured by the specified prior probability distributiors1d

N > fOx) —Ef(0) = /f(9) Pr(fly)dd,  (30) the same argument holds for the TDR hardware parameters as
k=1 well.

as N — oo. Thus, the samples can be used to estimateBefore any measurements are made, our prior knowledge
the expected value of almost any event or function. Standasfieach key parameter is assumed independent of the other
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TABLE I: Parameter Prior Information TABLE II: Parameter Estimates 1 Standard Deviation
Param. | Distribution Description Param. | Estimate Param. | Estimate
I U(0,1) m distance to fault 1 6.010 £+ 0.036 m d 14.5 £2.9 mm
U(0,50) mm fault length w 2.714+0.14 mm €d 2.242 + 0.027
U(0,2b) mm fault width Oc 3.019 £ 0.016 x 107 S/m Zs 48.9+ 0.3 ©
€4 N7t (2.25,0.2) relative dielectric permittivity l 7.02+£0.04 m tm 0.552 +0.01 ns
o N*(3,2) x 107 S/m | conductor conductivity G 0.991 + 0.000
Zs NT(50,2) Q source impedance
l NH(7,0.1) m cable length
tm N71(0.5,0.2) ns measurement time delay
G NTt(1,0.1) system gain ‘
QL4 frim e —— e =
038l secondary chafe reflection/ ““’\“---,\ |
0.36 *: [ 5% A ]
parameters, except for fault locatida and cable length o3 ) 2'394 / NG
which are jointly distributed according to > 032K [ nnutsource ' . ]
= 0.3 measured response 97 %8 9 100 g
Pr(ly,1) = Pr(l;|) Pr(l) =U(0,1) x N*(7,0.1). (33) T oz [ mosae ]
Thus, the pdf of the prior parameter vec®r(6) is simply zzil orimary chafe rfiection |
the product of the distributions listed in Table I. With the 022! .

likelihood and prior pdfs now defined, equation (27) pro- o2~ '
vides the posterior distribution. Note, even though stasda 20 40 60 80 oo 120 140 160 180
likelihood and prior distributions were assumed, the e tns

nature of the model function makes the posterior distrdputi Fig- 9: Model fit to the measured TDR signal using the
nonstandard: not Gaussian, uniform, or any other typicgptlmal estimate for. .The fit captures the. variation in the
distribution. In fact the general posterior distributioanche Measured signal to within a standard deviation0ef3 mv,
multi-modal, and this fact has important consequencesaalt f and includes _both the primary and the secondary reflections
detection. The final section provides an example. from the chafing fault.

B. Chafing Fault Detection Example

As an example, our estimation procedure is applied to
simultaneously retrieve all parameters from a single mesasu shown in Figure 8, the posterior samples in that case are
TDR response collected from the m long RG58 coaxial well modeled by a multivariate Gaussian distribution; and
cable with a singlel0 x 3 mm chafe at a distance ¢ m thatis the standard treatment for a posterior distribution built
from the sourcé The optimal estimates are shown in Tabl@round general nonlinear models, as is the present case. Thi
I, along with their corresponding standard deviationss@\l approach however, is not always appropriate. For example,
Figure 8 characterizes joint estimation performance betweFigure 10 presents the posterior samples fromsiraulated
pairs of parameters. Note, the correlation between faudtiwi TDR response to @ x 2 mm fault located2 m from the
and fault length is expected since changing these parasneggurce. In this case, the fault signature is buried in the
in the forward model have roughly the same effect on the TDReasurement noise (not shown), and the estimation progedur
response. The model also explains the very strong comelatyields posterior samples that cluster around various ptessi
between cable lengthand dielectric permittivitye, since both fault locations along the cable. Clearly, these samples are
affect the total propagation time through the cable.(e; not well described by a multivariate Gaussian distributien
affects propagation velocity). the standard approach would yield very misleading results.

Finally, with all the key model parameters inferred fromfhus, we can conclude the standard method is inaccurate for
data, we now use the optimal parameter estimates and @ssessing fault detectability at or near the limits of diétec
known source voltage profileg(t) to compute the model- N N
predicted TDR signaly (t). The( r)esult presented in Figure 9 The MCMC parameter estimation approach presented in this

. article naturally reveals the proper multi-modal disttibn
shows near perfect agreement with the laboratory measue- : he full I del with furth .
ment, thus validating the effectiveness of the forward nhode Y t_reatlng ¢ e TUll noniinear mode without further approx
' mation. In this particular case, Figure 10 shows the primary
. mode of the distribution provides good estimates for thdtfau
C. A Multl-modal. Example _ S location and length, but that is not known in advance. Given
The example in the previous section highlighted a casiee available measured data, prior information, and man,
where the fault signature was small, but visible by eye. Asan conclude only that the most likely fault is2amn, but other
3 _ _ locations are also somewhat probable. In fact, that is junsttw
Lab measurements were made using a tape measure for distafazdtto- . .
and cable length, and digital calipers for fault length antitiv These the pospenor samples provide: a set of probable parameter
measurements are all subject to some inaccuracy values given the assumed model and measured data.
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fault length vs. location

fault width vs. length
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Fig. 8: Example parameter estimation results and uncéytainalysis. The star marks the most probable estimate evthé
confidence ellipse is the minimum area ellipse enclosing @%e most likely samples from the posterior distribution.
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optimal fault detection and performance characterizatising
MCMC based techniques. Although this method is computa-
tionally slow, it handles general nonlinear models withfout

ther approximation; and this leads to an accurate chaiaater
tion of estimation uncertainty that traditional methods ¢ail

to provide. The results section highlighted this effecttigh

two simple chafing fault detection examples. Furthermdris, t
method is optimal in the sense that given the measured TDR
response, no other detection method can find a more likely
fault location and size, under equivalent conditions.(same
measurement hardware, input signal, noise, wiring system
etc.). Finally, the inversion approach is easily geneealizo
handle a variety of parametric models, since the modelfitsel

Fig. 10: A small chafing fault detection example. In this case viewed simply as an input to the inversion procedure. Thus
the posterior samples, which represent possible fault-loose have presented a truly generalized framework applicable
tions and lengths, reveal an underlying multi-modal paster to the characterization of TDR based fault detection for a
distribution. While the most likely estimate, marked by théarge variety of TDR hardware, wiring types, and network

star, provides a good estimate of fault location and size, ttopologies.

posterior samples indicate a number of other possibilitias
can not be ruled out given the measured TDR data.

V. CONCLUSION

This article presented an effective forward model for thd?!
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