
Extended Abstract:
General Purpose Data-Driven System Monitoring for Space Operations

for the InfoTech@AeroSpace 2009 Special focus session on Integrated System Health
Management chaired by Fernando Figueroa

David Iverson,  Rodney Martin, Mark Schwabacher,  Lilly Spirkovska - NASA Ames
Research Center
Ryan Mackey – California Institute of Technology, Jet Propulsion Laboratory
J. Patrick Castle  - Mission Critical Technologies
William Taylor - NASA Ames Research Center

As modern space propulsion and exploration systems improve in capability and
efficiency, their designs are becoming increasingly sophisticated and complex.
Determining the health state of these systems using traditional parameter limit checking,
model-based, or rule-based methods is becoming more difficult as the number of sensors
and component interactions grow.  Data-driven monitoring techniques have been
developed to address these issues by analyzing system operations data to automatically
characterize normal system behavior.  System health can be monitored by comparing
real-time operating data with these nominal characterizations, providing detection of
anomalous data signatures indicative of system faults or failures.

Data-driven techniques have a number of advantages over other methods for monitoring
complex space vehicles. Unlike model-based systems, the developer does not need to
understand or encode the internal operation of the system. The knowledge required to
monitor the system is automatically derived from archived data from system operation.
Unlike rule-based systems, data-driven systems do not require system analysts to define
nominal relationships among sensors. Analysts can and often do determine these
relationships for a system with few sensors; it is more difficult to analytically determine
the nominal relationship among a large number of sensors. Data-driven techniques are
not limited to low-dimensional spaces and work as effectively with dozens of parameters
as they do with a few. Knowledge bases formed by data-driven techniques are also easy
to update. As the operating envelope of the monitored system is expanded, data-driven
techniques can be quickly retrained to incorporate the new behavior into the knowledge
base. The expertise and time-consuming process of updating a model or rule base to
maintain consistency with the new operation is not required.

The Inductive Monitoring System (IMS) is a data-driven system health monitoring
software tool that has been successfully applied to several aerospace applications. IMS
uses a data mining technique called clustering to analyze archived system data and
characterize normal interactions between parameters.  This characterization, or model, of
nominal operation is stored in a knowledge base that can be used for real-time system
monitoring or analysis of archived events.  System data is compared with the nominal
IMS model to produce a measure of how well current system behavior matches the
normal behavior defined by the training data.  Significant deviations from the nominal



system model can provide alerts to system malfunctions or precursors of significant
failures.
The scope of IMS based data-driven monitoring applications continues to expand with
current development activities.  Successful IMS deployment in the International Space
Station (ISS) flight control room to monitor ISS attitude control systems has led to
applications in other ISS flight control disciplines, such as thermal control.  It has also
generated interest in data-driven monitoring capability for Constellation, NASA’s
program to replace the Space Shuttle with new launch vehicles and spacecraft capable of
returning astronauts to the moon, and then on to Mars.  Several projects are currently
underway to evaluate and mature the IMS technology and complementary tools for use in
the Constellation program. These include an experiment on board the Air Force TacSat-3
satellite, and ground systems monitoring for NASA’s Ares I-X and Ares I launch
vehicles.

The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to
integrate fault and anomaly detection algorithms and diagnosis tools with executive and
adaptive planning functions contained in the flight software on-board the Air Force
Research Laboratory TacSat-3 satellite. The TVSM software package will be uploaded
after launch to monitor spacecraft subsystems such as power and guidance, navigation,
and control (GN&C).  It will analyze data in real-time to demonstrate detection of faults
and unusual conditions, diagnose problems, and react to threats to spacecraft health and
mission goals. The experiment will demonstrate the feasibility and effectiveness of
integrated system health management (ISHM) technologies with both ground and on-
board experiments. Initially, the TVSM software will run open loop, providing system
health information and recommendations to ground operators, without automatically
performing fault-mitigating corrective actions. After the end of the satellite’s mission,
closed loop tests combining TVSM monitoring and diagnosis with reactive capabilities
by the flight software will be performed. In addition to monitoring for long periods of
actual operation, the experiment will include fault injection into TacSat-3 data as well as
commanded operations to test and evaluate automatic ISHM monitoring and recovery
under controlled conditions.

The ongoing Ares I-X Ground Diagnostics Prototype project is evaluating the same set of
software tools as the TVSM project.  They will be used for detecting and diagnosing
faults in the Ares I-X first-stage solid rocket booster (SRB) thrust-vector control (TVC)
system and associated ground support equipment.  These tools will be used at the
Kennedy Space Center (KSC) during Ares I-X vehicle integration and testing activity in
the vehicle assembly building (VAB) and while the vehicle is on the launch pad. IMS
will be integrated with two other software tools: TEAMS, a model-based reasoning tool
from Qualtech Systems Inc., and SHINE (Spacecraft Health Inference Engine), a rule-
based expert system from the Jet Propulsion Laboratory (JPL). SHINE rules will be used
to determine TVC system operating modes. IMS will have a dedicated knowledge base
for specific operational modes or tests, and will dynamically load the appropriate
knowledge base when SHINE reports a mode change.  Since the Ares I-X TVC systems
are expected to be very similar to Space Shuttle systems, IMS knowledge bases will be
constructed using historic SRB data from the Shuttle program. Anomalies detected by



IMS in the monitored Ares I-X systems will be used to corroborate and possibly identify
precursors to anomalies detected by the TEAMS tool, which will use system dependency
models hand coded by NASA engineers to diagnose the cause of those anomalies.  The
three tools will be interfaced with live data from the Ares I-X vehicle and ground
hydraulics. The outputs of the tools will be provided to Ares I-X mission controllers
located at KSC.

We are also evaluating IMS for continued use after the Ares I-X mission to monitor
vehicle and ground systems for the Constellation program. We are developing a
prototype IMS application to monitor the liquid hydrogen (LH2) ground support
equipment (GSE) required to fuel the Ares I launch vehicle. In addition to proving
feasibility, one goal of that effort is to perform a trade study to determine what types of
systems lend themselves well to a data-driven approach. Another goal is to document the
effort (time and cost) required for building an IMS application. Because the Constellation
vehicles and much of the supporting ground equipment are still under development,
archived data is not currently available. Working with existing equipment to determine
the characteristics of suitable systems and the effort required to build an application will
allow us to effectively plan future deployments of IMS and similar data-driven systems.
Lessons learned from IMS application to Ares I-X systems will also provide valuable
insight for determining effective uses of data-driven techniques in the Constellation
program.

The data-driven approach can also be applied to fleet supportability tasks. Fleet
supportability is typically associated with large fleets of similar equipment, for example,
a fleet of F/A-18 aircraft. The operating characteristics of the fleet are used to develop a
failure distribution. This profile can then be used to predict the failure of an individual
component on similar instances of the fleet type. Thus, we can infer that a fuel pump may
fail in as few as 500 hours or as many as 2000 hours but the majority of pumps fail at
1000 hours. This information can be used to extend (or shorten) maintenance periods to
maintain a desired in-service failure rate. The fleet size of the Constellation program will
be much smaller than the typical aircraft fleet. Rather than evaluating the performance of
components in thousands of instances, a data-driven approach, like IMS, can also be used
to evaluate the performance of reusable (limited iterations) and expendable components.
Performance-degrading conditions can occur throughout a component’s lifetime, from
design through launch and reentry to refurbishment. Performance of new components can
be adversely affected during design, manufacturing, transport, or prelaunch activities.
Performance of recovered components can be adversely affected during any previous
launches, reentry and recovery, or refurbishments. Numerous prelaunch tests verify
compliance with expected performance. We anticipate that IMS can complement these
tests by detecting that the performance on a test is still within limits but is different than
on previous tests either on this system or on previous systems of the same type. It may
also be possible to train IMS on data used to construct fleet supportability failure
distributions. In this way, a supervised machine learning paradigm can be used in lieu of
the standard unsupervised machine learning paradigm, where IMS is trained only on
nominal data.



In summary, as a common thread of discussion in this paper we will employ the evolution
of a candidate data-driven technique, IMS, as related to several ISHM elements.
Thematically, the projects listed will be used as case studies. We will demonstrate the
maturation of IMS via projects where it has already been deployed, or is currently being
integrated to aid in fault detection. We will also show how IMS can be used to
complement a suite of other ISHM tools, providing initial fault detection support for
diagnosis.


