
Formal Testing for Separation Assurance

Dimitra Giannakopoulou1, David H. Bushnell2, and Johann Schumann3

1 CMU / NASA Ames
2 TRACLabs / NASA Ames

3 SGT / NASA Ames

Abstract. In order to address the rapidly increasing load of air traffic
operations, innovative algorithms and software systems must be devel-
oped for the next generation air traffic control. Extensive verification of
such novel algorithms is key for their adoption by industry. Separation as-
surance algorithms aim at predicting if two aircraft will get closer to each
other than a minimum safe distance; if loss of separation is predicted,
they also propose a change of course for the aircraft to resolve this po-
tential conflict. In this paper, we report on our work towards developing
an advanced testing framework for separation assurance. Our framework
supports automated test case generation and testing, and defines test
oracles that capture algorithm requirements. We discuss three different
approaches to test-case generation, their application to a separation as-
surance prototype, and their respective strengths and weaknesses. We
also present an approach for statistical analysis of the large numbers of
test results obtained from our framework.

1 Introduction

The Federal Aviation Administration (FAA) and industry forecast that air traffic
operations are expected to increase 150 to 250 percent over the next two decades
[1]. The Next Generation Air Transportation System (NextGen) is a NASA
research program contributing to a larger NextGen program of the FAA and
the Joint Planning and Development Office (JPDO). NextGen addresses the
increasing load on the air traffic control system through innovative algorithms
and software systems. The seminal work produced by this program should ideally
be in the form of reference artifacts that can be adopted by industry.

It would be desirable for the algorithms developed to be in some abstract, se-
mantically clear, and implementation independent form. Abstract specifications
concentrate on the key aspects of algorithms, so it is easier to argue about their
correctness. They also allow freedom of implementation, which is important since
algorithms may be deployed in different contexts. However, in our experience,
reference artifacts often take the form of executable programs that implement
the intended functionality of the algorithms. These programs are written in lan-
guages such as Java, C/C++, or Python, that unavoidably include lower level
details that may interfere with the analysis. On the other hand, developers are
more familiar with them and it is easier to capture a fine level of detail in such
languages.

This paper reports on collaborative work between the Robust Software En-
gineering (RSE) group and the NextGen group at the NASA Ames Research
Center. This work aims at the development of techniques and processes to en-
sure creation of robust software prototypes for separation assurance algorithms.
More specifically, we have focused our initial efforts on testing for the Tacti-
cal Separation Assisted Flight Environment (TSAFE) component of NextGen.
TSAFE is the part of NextGen which seeks to predict and resolve loss of sepa-
ration between aircraft in the 30 second to 3 minute time horizon. Although our
efforts currently target separation assurance, our long term goal is to demon-
strate that our techniques are applicable to several classes of air traffic control
software.

We have developed a testing framework for automatically generating and
executing test suites for separation assurance, and have identified test oracles
that capture correctness requirements against which the algorithms are tested.
Developing such a testing framework for separation assurance algorithms is a
challenging task. One of the characteristics of air traffic applications is that
they involve complex inputs. For example, in the separation assurance prototype
that we study [2], inputs include position, velocity, and direction of multiple
aircraft, as well as whether they are eligible for change in course as directed by
air traffic controllers. It is extremely hard to manually create enough realistic
inputs to thoroughly exercise these applications. For this reason, developers and
researchers typically use airport data recordings as test inputs. Their correctness
and safety claims are based on demonstrating that the software does not exhibit
errors while running with real inputs for a certain amount of time. However, as
a loss of separation between aircraft occurs rarely, most airport data recordings
only represent nominal scenarios that do not cover enough parts of the code that
handles off-nominal cases.

On the other hand, confidence in the system depends on how it reacts to such
unexpected scenarios, leading to the question of how much testing is required
to achieve this confidence. In practice, and depending on the System under Test
(SuT), a system is tested until some degree of test coverage is established. The
coverage criterion depends on the V&V process that needs to be followed, which
may involve compliance to standards defining minimum coverage requirements.
For example, flight software is tested to achieve some predetermined degree of
Modified Condition/Decision Coverage (MCDC) [3]. Other examples of relevant
metrics are the more simple statement coverage, or the potentially expensive
path coverage. The more stringent a coverage criterion, the more test cases are
typically needed to satisfy it. The required number of test cases to achieve certain
coverage can easily exceed what can be created manually.

Another challenging task in the verification of separation assurance algo-
rithms is the identification of test oracles. For example, it is very difficult to
characterize what is expected of an algorithm that proposes a change of course
for aircraft that may lose separation. The purpose of such algorithms is not sim-
ply to select some course that will ensure avoidance of loss of separation, but

to select the best possible solution based on a set of criteria. Formulating test
oracles for such optimization problems is a non-trivial task.

This paper reports on our approach to addressing the afore-mentioned chal-
lenges for a component of TSAFE1 that is responsible for computing solutions
when loss of separation is detected. More specifically, the paper is structured
as follows. Some background on the verification of SA algorithms is provided
in (Section 2). We then present three different approaches to generating test
cases automatically. The first approach is based on symbolic execution of the
prototype code, and is discussed in Section 3. The second approach, presented
in Section 4 is based on the use of a model checker for generating tests for the
application as a black box. The third approach, described in Section 5 is a com-
binatorial testing approach that tries to cut down on the combinations of input
values, for scalability. Our approach to formulating requirements as well as the
requirements that we identified for TSAFE are presented in Section 6. The prac-
tical framework that we have set up for testing TSAFE is discussed in Section 7,
followed by the results obtained from our testing, and the relative strengths and
weaknesses of our proposed approaches in Section 8. An alternative approach
for examining the results of the large amount of date generated from our test-
ing process is presented in Section 9. Finally, Section 10 closes the paper with
conclusions and plans for future work.

2 Verification of Separation Assurance

Advanced verification and validation (V&V) techniques play a central role in
ensuring important characteristics for the reference artifacts that will be deliv-
ered to the NextGen program. Our approach to verification and validation aims
at the development of V&V processes and techniques to:

– Ensure creation of robust software prototypes for key algorithms.
– Provide quantifiable criteria for automated conformance verification of pro-

duction code with these prototypes.

Fig. 1. Targeted testing framework for TSAFE

1 For conciseness, we will often refer to our targeted component as TSAFE in the rest
of the paper.

Fig. 2. Using prototypes for conformance testing

To achieve these goals, we aim at developing test suites and test oracles
against which the prototypes will be checked for correctness (see Figure 1). Test
suites are sets of test cases (i.e., test inputs) aimed at exercising the behavior
of the system under test. A quality test suite also provides a good criterion for
conformance testing, since it can be used to check whether production code and
reference prototypes have matching results on the tests included in the suite
(see Figure 2). Test oracles are the “properties” or “requirements” set by the
algorithms and expected from the prototypes.

Algorithm and input space. The basic separation assurance problem involves
two aircraft that may lose separation within a few minutes of flight. The prob-
lem of course becomes significantly more complicated when multiple aircraft are
involved. The approach taken in the latter case is to still target the loss of sep-
aration problem for two airplanes (called “primary”), but to solve the problem
in the presence of secondary aircraft. The way the algorithms work in this case
is to select, among a number of potential solutions, not the one that is necessar-
ily best for the primary aircraft, but one that also avoids, as much as possible,
creating loss of separation with secondary aircraft.

Our approach to verification of separation assurance has been to start by
thoroughly analyzing the basic problem involving only the two primary aircraft,
and then gradually introducing secondary aircraft, one at a time. Some of the
requirements may of course change for the basic and extended version of the
problem. However, since the extended version depends on correct operation of
the basic version, it makes sense to spend a significant amount of the effort on
analyzing the basic case.

The particular code that we have been analyzing also tries to resolve horizon-
tal loss of separation on a two dimensional space. It is customary for horizontal
and vertical loss of separation to be resolved separately. Our targeted code there-
fore involves the following inputs for each aircraft (primary or secondary): its
X and Y coordinate values, velocity and its direction of flight. Moreover, for
the primary aircraft, because air-traffic controllers may or may not be allowed
to advise a change of course, a boolean variable is also used that reflects turn
eligibility.

Test input generation. Testing may be carried out in a systematic or ran-
dom fashion, the latter one using randomly generated test inputs to exercise the
code. Research shows that random test input generation can have good coverage.
However, a random approach may not be able to drive a program through spe-

cific paths, and tends to generate many redundant test cases. In the context of
NextGen applications such as TSAFE, random testing may also generate inputs
that are not meaningful. For example, it could produce a trajectory that cannot
be flown by a real airplane. Systematic testing, on the other hand, tries to gen-
erate an efficient set of test cases that will achieve the desired testing goal. As
discussed in Section 1, the size and expected quality of test suites easily exceeds
what humans can deliver without the support from automated tools. Our ap-
proach therefore consists of generating test cases in a systematic and automated
fashion.

In particular, we investigate and apply three different approaches for this
purpose. The first approach, based on symbolic execution of the prototype code,
generates ideal test suites, when successful. By ideal we mean that it avoids
redundancy while ensuring the coverage criterion that is required of the test suite.
The second approach is based on the use of a model checker to systematically
generate the interesting combinations of inputs for a particular problem, where
interesting in our case is defined by the developers of the algorithms. Clearly,
as more secondary aircraft are introduced into the problem, the combinations of
inputs becomes too large to explore exhaustively. We therefore also investigate a
third approach, which tries to limit the size of a test suite through combinatorial
testing, a technique that generates only some combinations on the input space,
while trying to maintain the quality of a test suite.

In the following sections, the three approaches are discussed in detail. A main
component in some of these approaches is the JavaPathfinder model checker,
which we briefly describe below.

JavaPathfinder (JPF). JPF [4, 5] is an open source verification framework
developed by the RSE group at NASA Ames. It has been started as an explicit
state model checker for Java bytecode. A model checker explores all the possible
states that a program may be in and the transitions between these states, in a
systematic and intelligent manner [6]. The focus of JPF is on finding bugs, such as
concurrency related bugs (deadlocks, races, missed signals, etc.), runtime related
bugs (e.g., unhandled exceptions), and others. JPF can also check for violations
of user-specified assertions that encode application specific requirements. JPF
uses a variety of scalability enhancing mechanisms, such as user-extensible state
abstraction and matching, on-the-fly partial order reduction, configurable search
strategies, and user definable heuristics (searches, choice generators).

Related Work. The NextGen program relies heavily on innovative algorithms
and software systems that will require rigorous certification and assurance. Sev-
eral efforts have been performed towards the specification and verification of
such algorithms and systems.

Leveson et al. [7] present an approach to writing requirements specifications
for process-control systems,and apply this approach to an industrial aircraft colli-
sion avoidance system (TCAS II). Their focus is on using a specification language
that is readable and reviewable by applications experts who are not computer sci-
entists or mathematicians. Writing specifications of a system in easily readable,
yet formal, languages is an important step towards achieving rigorous implemen-

tations. Detailed specifications may be analyzed by automated tools and could
potentially be used as the references that guide the actual implementations by
contractors. They capture the key functionality of a system, and are independent
of implementation platform / language. However, the state of the practice is that
researchers tend to develop their prototypes in programming languages. Writ-
ing specifications require abstraction skills and familiarity with languages that
developers may not have the time to acquire. Betin-can and Bultan [8] present
a design for verification approach where they propose patterns of synchroniza-
tion to be used in concurrent programs in order to facilitate verification through
model checking. They have applied their approach in the analysis of a concurrent
implementation of TSAFE within a test-bed for experimenting with approaches
to achieving high dependability systems. The implementation of TSAFE that we
are working with is not concurrent. Moreover, we focus our efforts on generating
tests, rather than verifying TSAFE exhaustively. As discussed earlier, tests may
be used both to establish robustness of a reference prototype, and as a way of
establishing conformance between software system.

There exists work on mathematically proving correctness of key algorithms
for air traffic control [9, 10]. Although theorem provers can semi-automate this
process, proving correctness in this way can only be done for select safety crit-
ical parts of a research prototype. The majority of the verification will still be
carried out through extensive testing. Automatic test case generation is crucial
to reducing the cost and increasing the efficiency of testing. Finally, some of
our early experimentation with symbolic execution in this domain for a different
TSAFE prototype is presented in [1].

3 White-Box Test-Case Generation with Symbolic
Execution

In this section, we discuss test-case generation techniques based on symbolic
execution. These are sophisticated and powerful techniques that theoretically
have the potential to automatically generate test inputs for reaching specific
locations in the prototype code. As such, they can be used to build quality
test suites for achieving desired types of structural / behavioral coverage of the
code. We briefly describe the basic idea behind these techniques, as well as their
practical limitations.
Symbolic Execution. Symbolic execution [11] is a program analysis technique
that uses symbolic values instead of actual data as inputs to the program to
be executed; symbolic expressions represent the values of program variables. As
a result, the outputs computed by a program are expressed as a function of
the symbolic inputs. The state of a symbolically executed program includes the
(symbolic) values of program variables, a path condition (PC), and a program
counter. The path condition is a boolean formula over the symbolic inputs,
encoding the constraints that the inputs must satisfy in order for an execution
to follow the associated path. Path conditions can be solved using off-the-shelf
constraint solvers, to generate test cases (pairs of test input and expected output)

that are guaranteed to exercise the analyzed code. The paths followed during the
symbolic execution of a program are characterized by a symbolic execution tree.
To illustrate the difference between concrete and symbolic execution, consider
the following example:

if ((xB0 > 0 && psiB > 0 && psiB < Math.PI) ||
(xB0 < 0 && psiB > Math.PI && psiB < 2.0 * Math.PI)) {

... /* handle aircraft diverging */
} else {
... /* handle aircraft converging or parallel */

}

This code checks whether the aircraft are diverging (headed away from each
other so there is no chance of a loss of separation) or converging (headed towards
each other so they might have a loss of separation).

In the TSAFE simulations, one aircraft is always placed at the origin with
a heading of 0 radians. In the above code example, xB0 is the second aircraft’s
initial x coordinate and psiB is its heading in radians. These two variables are
the inputs for this expression.

In concrete execution (i.e., in normal testing), code is executed on given
concrete inputs. For example, when xB0 = 20.0 and psiB = π/3, only one path
through the code will be executed, corresponding to the first disjunct in the if-
statement being true. In contrast, symbolic execution starts with symbolic input
values xB0 = SymX, and psiB = SymPsi. Symbolic execution will discover
eleven paths through the program, corresponding to the eleven different ways
the Boolean subformulas in the condition of the if-statement can be true or false
and will generate eleven path conditions, according to different possibilities in
the code:

psiB < 3.141592653589793 && xB0 < 0.0

3.141592653589793 == psiB && xB0 < 0.0
...
psiB > 3.141592653589793 && psiB > 0.0 && xB0 > 0.0

Note that symbolic execution is applied at the bytecode level, where all com-
plex logical expressions get decomposed into simple ones. This is why it will
generate path conditions for every combination of valuations of the expression’s
basic components. Concrete values for the inputs that satisfy (“solve”) the path
conditions are then found with the help of a constraint solver. Table 1 show
the eleven test cases for this example. These solutions are subsequently used
as concrete test inputs that are guaranteed to give full path coverage for this
code. Note that the coverage that can thus be achieved by symbolic execution
implies all other notions of structural coverage, including branch or MC/DC [3]
coverage. In the following, we describe the automated tools that the RSE has
developed for symbolic execution, and their application to TSAFE.

Number psiB xB0

1 1.5207958267948964 -10.0000005
2 3.141592653589793 -10.0000005
3 4.71238898038469 -10.0000005
4 6.283185307179586 -10.0000005
5 6.298893770447535 -10.0000005
6 don’t care 0.0
7 -0.0500005 10.0000005
8 0.0 10.0000005
9 1.5707963267948966 10.0000005

10 3.141592653589793 10.0000005
11 4.728097443652638 10.0000005

Table 1. Test cases as generated by SPF from the above example.

3.1 Symbolic PathFinder (SPF)

SPF [12] implements a non-standard interpreter for bytecodes on top of the JPF
model checker. The symbolic information is stored in attributes associated with
the program data, which are propagated on demand, during symbolic execution.
The analysis engine of JPF is used to systematically generate and explore the
symbolic execution tree of the program. JPF is also used to systematically an-
alyze thread interleavings and other forms of non-determinism that might be
present in the code. Furthermore, JPF is used to check properties of the code
during symbolic execution. Off-the-shelf constraint solvers and decision proce-
dures such as choco [13] and IASolver [14] are used to solve mixed integer and
real constraints. Loops are handled by putting a bound on the model-checker
search depth and/or on the number of constraints in the path conditions.

Previous experience with SPF has shown that the application of automated
test-case generation techniques may significantly improve the testing process [12].
For example, SPF was used to test a Java model of the Crew Exploration Vehi-
cle’s prototype ascent abort handling software, the On-board Abort Executive
(OAE). Manual testing of the component took more than 20 hours and did not
achieve the testing coverage desired by the developers. Random testing, on the
other hand, achieved very poor coverage due to the large input state space and
complex logic structure the code. In contrast, the symbolic execution framework
generated approximately 200 test cases to obtain full coverage in less than one
minute. The generated test cases helped to uncover subtle errors in the code,
which were later corrected by the developer.

3.2 Application of SPF to TSAFE

The TSAFE prototype that we analyzed has been developed in Java, so SPF
can be applied directly to it. On the other hand, the TSAFE code has many
characteristics that are challenging for symbolic execution. Most calculations

use floating point arithmetic and include highly non-linear operators involving
squaring, square roots, and trigonometric functions. Many of the calculations
involved cannot be handled by constraint solvers. Moreover, the code contains
nested loops. Finally, the TSAFE algorithm is implemented entirely in the class
constructors, which are consequently relatively large.

We therefore decided to first experiment with applying SPF to a small part
of TSAFE, namely the class Conflict probe. Conflict probe tests for conflicts
between two aircraft within a fixed time horizon. The two aircraft can be both
primary or one primary and one secondary. The aircraft can be flying level or
turning. If both are turning, they are assumed to turn for the same length of
time. Conflict probe is self-contained, and uses no other classes from TSAFE.
It involves trigonometric functions and nested loops. Therefore, even though
Conflict probe is a small part of the algorithm, it contains significant calculations,
and can be viewed as a representative component of the TSAFE prototype.

In order to apply SPF to Conflict probe, we needed to make the constructor’s
inputs symbolic and also limit the search depth for handling the loops. Moreover,
we needed to manually modify some of the involved mathematical functions into
equivalent code that could be handled by the constraint solvers. Despite these
efforts, even for this restricted part of TSAFE, SPF generates path conditions
that are too complex for the constraint solvers to solve. The principal problem
was the length of the code: the path conditions generated by many hundreds
of lines of code are inevitably complex. We did have some success, though, by
further modularizing the code. Part of the Conflict probe algorithm calculates the
time when the two aircraft will reach minimum separation. After extracting this
code into its own method we were able to successfully run SPF on it, generating
path conditions similar to:

(tt[0.0105] + CONST_0.0016666666666666668) < tc[0.05] &&
(tt[0.0105] + CONST_0.00125) < tc[0.05] &&
(tt[0.0105] + CONST_8.333333333333334E-4) < tc[0.05] &&
(tt[0.0105] + CONST_4.166666666666667E-4) < tc[0.05] &&
(tt[0.0105] + CONST_0.0) < tc[0.05] &&
tc[0.05] < tmst[50.0200005] &&
tc[0.05] > tt[0.0105]

The above path condition is illustrated as generated by the choco constraint
solver [13]. The inputs to the method that it provides solutions for are: tt, tmst
and tc, representing the time at the end of a turn, the time of minimum separa-
tion after a turn, and the lookahead time (how far in future to look for conflicts),
respectively. The proposed solution for each of these inputs is provided within
square brackets immediately following the input name. That is, for tt = 0.0105,
tmst = 50.0200005 and tc=0.05, this condition becomes true, and the corre-
sponding path will be executed. Notation CONST simply represents the fact
that the value that follows it is a constant.

We should be able to further modularize the code by extracting other parts
into their own methods and applying SPF to each method individually. Of course,

the challenge would still remain in combining the individual analyses to generate
inputs for the entire Conflict probe method. A similar process would then need
to be applied in order to eventually generate inputs for the TSAFE prototype
itself. Compositional symbolic execution [15, 16] aims at addressing the problem
of combining local solutions into solutions for larger pieces of code, but it is still
an open research area that we intend to further investigate in the future.

4 Black-Box Test-Case Generation with JavaPathfinder

In this section, we motivate and explain the use of the JPF model checker for
test-case generation based on the characteristics of the inputs to a program, and
without taking into account its source code, i.e., we consider the program as a
black box. In particular, we use the

Testing tools such as JUnit have become popular as they automate some test-
ing steps. However, currently adopted tools primarily automate test execution
and offer little support for test generation. The developers and testers often have
good intuition to determine what tests should be generated, but must manually
translate this intuition into actual tests. Such manual test generation is time-
consuming, and often results in test suites that have poor quality and are difficult
to reuse. This is especially the case for software that requires complex test inputs
or operates on complex data structures.

Several approaches have been proposed in the literature for generating tests
based on high-level descriptions of desired test suites. The key idea of such
approaches is that testers specify their tests at a higher level of abstraction, and
tools (e.g., the commercial T-VEC [17]) are then used to automatically generate
concrete tests according to the specified ones. This approach has the potential
to enable developers and testers to avoid manual test generation and focus on
the creative aspects of testing and development.

For example, for the targeted separation assurance code, we need to generate
coordinates for the primary and secondary airplanes involved, velocity, direction,
and whether they are eligible for turns, as discussed in Section 2. At a high
level, the developer should simply need to describe the ranges of values that
these inputs can take, rather than writing code that generates their possible
combinations. JPF provides support for such declarative descriptions of inputs
to a program. For our system under test, for example, we developed the code that
is illustrated in Listing 1.1. When this code is provided as input to JPF, JPF
will systematically explore all the possible combinations of the specified input
value ranges. The advantage is that the developer concentrates on specifying the
inputs of interest for the particular problem, leaving the generic part of creating
combinations to a tool that is designed for this purpose.

JPF has several features that facilitate test input generation in this fashion.
In order to provide strong support for random generation of values from several
domains (including integers, doubles, etc), the capability has been programmed
in JPF to support declarative statements such as those illustrated on Lines 3,
9, 14, and 16. For infinite domains such as doubles, the user specifies ranges

of values. In our example, these values were specified by the developers of the
algorithms. For example velocity of each plane ranges between 250 and 550
miles per hour, and we investigate all increments by 50 between these values
(see Lines 14 and 17). An additional feature supported by JPF is the possibility,
once ranges have been selected, to also create inputs for small perturbations of
the selected values, for example to offset each velocity selected by 10 miles per
hour on each direction. This can be very useful in assessing whether the current
set of values is representative, i.e., by checking whether small perturbations affect
the results obtained during testing.

1 double XA0 = 0 , YA0 = 0 ;
2

3 double XB0 =getDouble (new double [] { −20, −15, −10, −5, 0 ,
5 , 10 , 15 , 20 }) ;

4 double YB0 = getDouble (new double [] { −20, −15, −10, −5, 0 ,
5 , 10 , 15 , 20 }) ;

5

6 double Xdistance = Math . s q r t ((XB0∗XB0 + YB0∗YB0)) ;
7 Ver i fy . i g n o r e I f ((Xdistance < 2) | | (Xdistance > 20)) ;
8

9 boolean A e l i g i b l e = Ver i fy . getBoolean () ;
10 boolean B e l i g i b l e = Ver i fy . getBoolean () ;
11 Ver i fy . i g n o r e I f (! (A e l i g i b l e | | B e l i g i b l e)) ;
12

13 double PsiA0 deg = 0 ;
14 double vA = getDouble (new double [] { 250 , 300 , 350 , 400 ,

450 , 500 , 550 }) ;
15

16 double PsiB0 deg = getDouble (new double [] { 0 , 30 , 60 , 90 ,
120 , 150 , 180 , 210 , 240 , 270 , 300 , 330 }) ;

17 double vB = getDouble (new double [] { 250 , 300 , 350 , 400 ,
450 , 500 , 550 }) ;

18

19 boolean d ive rg ing = TestVector . i s A i r c r a f t D i v e r g i n g (XA0,YA0,
PsiA0 deg , vA, XB0, YB0, PsiB0 deg , vB) ;

20

21 TestVector . addMethodToJUnitFile (XA0, YA0, PsiA0 deg , vA,
XB0, YB0, PsiB0 deg , vB , A e l i g i b l e , B e l i g i b l e ,
d i v e rg ing) ;

Listing 1.1. Input program for JPF to generate separation assurance test cases

Another key capability is related to specifying tests that are of no interest.
Instead of generating a large number of tests, and subsequently filtering only
interesting cases among those, JPF allows us to filter values that are of not
interest during test generation. For example, Line 11 specifies that if neither of
the two planes is eligible for a turn, it does not make sense to test the algorithm.
Line 7 will reject all the tests where the two primary aircraft are too close or
too far (less than 2 miles apart or more than 20 miles apart) initially, because

the algorithm developers are not interested in such cases. If the aircraft are less
than 2 miles apart, for example, they are already in loss of separation (required
minimum separation is 5 miles), so there is not much that the algorithm can
do. If they are more than 20 miles apart, it is most likely that the problem will
always be resolved. Although running a few tests for such values is a good idea
in order to confirm the developers intuition about them, the main focus should
be on the more challenging cases, as identified by them. The advantage of the
proposed approach is that “ignoreIf” statements can easily be added or removed
from the test specification, and the generated tests will be updated accordingly.
Compare that to a process where the developer would have to explicitly program
nested loops that generate combinations of values and exclude some values. The
above specification makes the target tests clear, explicit, and easy to modify.

An advantage of filtering during the test input generation, as opposed to
filtering after the fact, is efficiency. In our example, we have included a filtering
statement at Line 7, immediately after selecting X and Y coordinates for the
two primary aircraft. For the values that are thus eliminated, we avoid the
generation of a very large number of combinations of those values with the
potential values for velocity and direction of flight for the two aircraft. In fact,
selecting good locations for the filtering statements can make a big difference in
efficiency. Recently, a high-level language and an associated framework have been
proposed that further facilitate the description and generation of tests [18]. The
language, called UDITA, provides several high-level constructs for describing
complex inputs and data structures. Through the implementation of features
such as delayed choice of primitive values, it achieves improved efficiency while
relying less on the quality of the test descriptions provided by the developer. We
plan on experimenting with UDITA in the future.

5 Combinatorial Testing

As the full combinatorial exploration of all possible values of input parameter
soon reaches infeasible numbers, we experimented with two alternative methods
of testcase generation: Monte Carlo testcase generation and n-factor combinato-
rial exploration.

The Monte Carlo (MC) testcase generation treats each input variable as a
statistical variable with a given probability density function, from which values
for the test cases are randomly drawn. In most applications, a Gaussian distri-
bution is assumed for all continuous inputs, whereby the mean usually is the
nominal value. For discrete or discretized variables, a uniform probability dis-
tribution is assumed. In our TSAFE example, all variables are discrete, or have
been discretized.

Monte Carlo (MC) test cases can be generated very easily. However, they
provide no guarantee whatsoever regarding uniqueness and coverage of the input
space. This means that for a reasonable coverage of the input space, a very large
number of MC cases have to be executed, again quickly reaching the limits on
what can be done practically. Even with a optimizations like discretization or

binning of variables, pre-filtering of test cases, or exploitation of domain-specific
features, like symmetry, only an overall probabilistic measure on the coverage
of the input space can be given. Thus, MC testcase generation can be used to
quickly get an overview of the test space, and to provide a reasonably dense
coverage in the vicinity of nominal conditions.

In real software programs, most errors are caused by a specific, single value
of one input variable. The case that a fault is triggered by a specific combination
of two variables is much less likely. Even more unlikely is the case that 3 input
variables must have specific values in order to trigger the failure; the involvement
of 4 or more variables can be, for most purposes, ignored. This observation (e.g.,
[19–21]) can be used to specifically tailor the generation of test cases, resulting
in a substantially smaller number of test cases (see Table 2). Nevertheless, these
cases completely cover all combination of variables up to a given bound n, hence
the method is called n-factor combinatorial exploration.

No AC No Vars comb 1-fact 2-fact 3-fact 4-fact

2 5 48 · 103 24 225 [<1s] 2,139 [1s] 15,095 [30s]
3 8 87 · 106 34 459 [<1s] 6,047 [19s] 66,176 [3900s]
4 11 160 · 109 34 612 [<1s] 9,784 [115s] –
5 14 294 · 1012 34 709 [<1s] 12,940 [425s] –

Table 2. Number of test cases generated with full exploration and n-factor exploration
for TSAFE.

A number of efficient algorithms for the n-factor combinatorial testcase gen-
eration can be found in the literature (e.g., [22]). For the experiments in this
paper, we used a tool developed at JPL [23] which extends the IPO algorithm
[24]. Although the tool features a number of extensions, we only use the core
algorithms to generate 3-factor combinatorial permutations for the discrete and
discretized input variables of the TSAFE system. For testcase generation with
continuous variables, this tool partitions the input space into discrete ranges,
from which values are drawn randomly in a Monte Carlo fashion. For details see
[23].

6 Extracting Requirements

As discussed in the introduction, a major challenge in testing separation assur-
ance is the identification of oracles used for checking whether the tested code
performs as expected. In other words, it is hard to express the conditions that
characterize a successful versus a failed test. These conditions could be simple
and generic, for example “no exception will be thrown”, but the more interest-
ing ones are application specific and are those that capture whether the program
performs its intended functionality. As mentioned, we call these “properties” or

“requirements”. Finding and eliciting the requirements of a complicated piece of
code like TSAFE is a non-trivial process.

We therefore took an interactive and iterative approach to extracting the
requirements for TSAFE. In discussions with the algorithm and prototype de-
velopers, we first elicited some basic properties to test the code against. We
started from rough, generic properties such as “none of the return values should
be NaN”. In fact, the code is supposed to compute some values in order to solve
the loss of separation problem. When such values are “NaN”, it means that the
code did not attempt to compute them, which indicates a problem.

Through such basic tests, the algorithm developers got familiarized with
our techniques, and we with their way of approaching the problem. We were
therefore able to collaborate to gradually formulate more refined properties.
This process often involved discussing properties that we all thought made sense,
obtaining violations that were not meaningful, and subsequently realizing that a
slightly modified or completely different property should be formulated instead.
Some properties even emerged as a result of studying the results obtained when
checking other properties. We will provide some examples in our presentation of
the properties that follows.

We thus gradually created a set of requirements for the algorithms that is
otherwise relatively hard to dig out of the code. These are also the requirements
that the reference prototype will be tested against for robustness. These prop-
erties are generic, and should be applicable to other approaches of the loss of
separation resolution problem.

Below is a list of the requirements that we have formulated so far and which
the code has been tested against:

1. The values that need to be computed by the algorithm should not remain at
their initial value, i.e., NaN.

2. In the absence of secondary aircraft, if two planes are diverging then the
algorithm should return no change in their direction of flight. In general,
a change of course to aircraft should only be advised if necessary for safety
reasons. Therefore, even for aircraft that have lost separation, if their current
courses are diverging, meaning that they are moving away from each other,
then their direction of flight should not be changed.

3. If a solution is returned for a specific bank angle, then loss of separation
will also be avoided if the pilot uses a larger bank angle. This is an important
property. It is typical, when a change of course is advised with a specific bank
angle, the pilot will slightly overcompensate on the bank angle when imple-
menting the change. Proposing a solution that is not robust to increasing
the bank angle would be dangerous.

4. The minimum separation achieved by the solution proposed by the algorithm
should always be larger than the minimum separation achieved if the aircraft
were to remain on their course of flight. This is a more generic version of
property 2 about diverging aircraft.

5. When only one / both primary aircraft are eligible for turning, the algorithm
should solve all cases for which the time to first loss of separation is larger

than 90 seconds, and 45 seconds, respectively. This property only applies in
the absence of secondary aircraft, since in the latter case the position of the
secondaries may always invalidate a good solution for the primaries. The
property captures the intuition that, if the loss of separation is to occur far
enough in the future, then there should be no cases that the algorithm could
solve, meaning that the algorithm will be able to propose a course that will
avoid loss of separation. Clearly, when the air traffic controller is able to
propose a change of course for both aircraft involved, the algorithm could
resolve cases for which the time to loss of separation is smaller (45 seconds,
as opposed to 90 seconds). Note that our testing showed that the algorithms
of our collaborators were able to resolve all cases for 85 seconds / 25 seconds,
respectively.

6. If the algorithm is able to resolve loss of separation for some input data,
then it should be able to also resolve loss of separation for different, but
symmetric input data. This requirement emerged while checking property 5,
where we were recording the number of tests for which the algorithm did
not achieve the required minimum separation as a function of the time to
first loss of separation. For the time to first loss of separation, we created
bins of 5 second intervals, for example [5, 10) seconds, [10, 15) seconds, etc.
Our outputs identified that for some cases the number of unresolved cases
was odd when we knew that our tests generated with JPF were symmetric.
This revealed a subtle bug in the code, and triggered the formulation of this
property.

7. If the algorithm is applied with secondary aircraft and extended turns en-
abled, then more cases should be resolved overall as compared to running the
algorithm with extended turns disabled. Extended turns allow the aircraft
to perform two sequential maneuvers, where the first addresses the primary
conflict, and the second addresses a potential conflict with a secondary air-
craft that is caused as a result. That option should only exist if it offers an
overall improvement.

Note that our collaboration with the algorithm developers spanned over a
year. As described in more detail in section 8, all of the above properties were
violated at different stages of the algorithm development, which resulted in newer
and more robust versions of the code. Moreover, as the code gets expanded to
add new features of the research of our collaborators, these requirements are
used for regression testing to ensure that new versions of the algorithm preserve
them.

7 Testing Framework for TSAFE

In this section, we describe the automated testing framework that we developed
for TSAFE. For each combination of input data that is generated with the
techniques described above, we automatically create corresponding test code in
Java. Each test creates and initializes the required objects and attributes, and
subsequently invokes the system under test.

The code is included in one or more JUnit files. JUnit is a simple framework
for writing repeatable tests [25]. It provides support for developers to prepare
tests for their code, including set up of targeted objects, test methods, and
expected results. Several test methods can be included in a single JUnit file.
On execution, JUnit will apply all the methods and report statistics like how
many tests have passed and how many have failed. Since our framework may
potentially generate tens or hundreds of thousands of test methods (one for each
combination of input values), we automatically partition the inputs of sets of at
most 1000 to be included in each JUnit file.

After we started experimenting with secondary aircraft, our test suites grew
to contain tens of millions of cases. For those large test cases, JUnit proved to
be slow. For this reason, we wrote our own code for running the tests, and in
order to take advantage of our multi-core machines, also implemented a multi-
threaded approach to running the tests. Our tests ran twice as fast on a four
core machine using the parallel version, as compared to the non-parallel one.

1 public stat ic void checkError (. . .) {
2 i f (! f i l e s C r e a t e d) {
3 i n i t i a l i z e F i l e s () ;
4 f i l e s C r e a t e d = true ;
5 }
6 recordTestCase (R, a i r c r a f t I n p u t s , d iverg ing , t t l o s , ttNmac) ;
7 testsRun++;
8

9 St r ing e r r = ”” ;
10 e r r +=(checkAchievedRe lat iveSeparat ion (R, a i r c r a f t I n p u t s) ?
11 ”” : ” checkAchievedRe lat iveSeparat ion ”) ;
12 e r r += (checkForNaN (R, a i r c r a f t I n p u t s) ?
13 ”” : ” checkForNaN”) ;
14 e r r += (checkForWarns (R, a i r c r a f t I n p u t s) ?
15 ”” : ” checkForWarns”) ;
16 e r r +=(checkTurns (R, a i r c r a f t I n p u t s , d i v e rg ing) ?
17 ”” : ” checkTurns”) ;
18 e r r +=(checkAchievedAbsoluteSeparat ion (R, a i r c r a f t I n p u t s ,
19 t t l o s) ? ”” : ” checkAchievedAbsoluteSeparat ion ”) ;
20 e r r += (checkAchievedNmac (R, a i r c r a f t I n p u t s , ttNmac) ?
21 ”” : ” checkAchievedNmac”) ;
22 i f (Test ingConf ig . s e c o n d a r i e s > 0)
23 e r r += (checkSecCon f l i c t s (R, a i r c r a f t I n p u t s) ?
24 ”” : ” checkSecCon f l i c t s ”) ;
25

26 Assert . a s se r tTrue (e r r + ” ” +
27 a i r c r a f t I n p u t s , ”” . equa l s (e r r)) ;
28 }

Listing 1.2. Application of oracles to tested code

Our testing framework also implements the requirements discussed in Section
6. We coded these properties separately from the prototype code so that they

can be reused in implementations of other separation assurance algorithms. As
illustrated in Listing 1.2, all the properties that we check during our testing are
included in a single method, which subsequently invokes the right method for
each property. For example, Listing 1.3 encodes Requirement 2, according to
which—when aircraft are diverging—the algorithm should advise no change in
course. As part of each requirement, we code a message that should be returned
if that requirement gets violated, and a separate file in which this message will
get printed, e.g., out[Turn] in Listing 1.3. In this way, as a result of running
our tests, we obtain several files, each file documenting all the test inputs that
violated the requirement associated with the file, and a message explaining the
problem. This feedback has proven invaluable for the developers of the code in
debugging their algorithm when errors were discovered.

1 public stat ic boolean checkTurns (. . .) {
2 i f (d i v e rg ing) {
3 i f (R. A best turn ang != 0 | | R. B best turn ang != 0) {
4 out [Turn] . p r i n t l n (”Found e r r o r in t e s t case :\n ”
5 + a i r c r a f t I n p u t s) ;
6 out [Turn] . p r i n t l n (”Turn ang le f o r a i r c r a f t A: ”
7 + R. A best turn ang) ;
8 out [Turn] . p r i n t l n (”Turn ang le f o r a i r c r a f t B: ”
9 + R. B best turn ang) ;

10 out [Turn] . p r i n t l n (
11 ”Not an optimal s o l u t i o n f o r d iv e rg ing a i r c r a f t ”) ;
12 out [Turn] . f l u s h () ;
13 return fa lse ;
14 }
15 }
16 return true ;
17 }

Listing 1.3. Checking requirement for diverging aircraft

Note that for our testing to be independent of the prototype code, we have
implemented our own methods for calculating whether aircraft are diverging, the
time to first loss of separation, etc. If we were to use the implementations in the
prototype, our error checking code could be susceptible to the same errors as
the system under test, which could interfere with the error-finding capabilities
of our framework.

8 Results

In this section, we discuss our test results and use them in order to compare the
advantages and disadvantages of the proposed approaches. We use code coverage
as a measure of the effectiveness of the different approaches, but also discuss their
error finding capabilities.
Code coverage. We compared the different testcase generation techniques for
the case of 2 primary and one secondary aircraft. Code coverage was analyzed

using the tool CodeCover [26]. This open-source tool can be used from command-
line or as an Eclipse plug-in. It measures statement coverage (each basic state-
ment must be covered), branch coverage (all branches of conditional statements
must be executed), loop coverage, and strict condition coverage. The loop cover-
age metric of CodeCover analyzes which loop has been executed zero times (i.e.,
the body has not been entered), once, or multiple times. Finally, strict condition
coverage exercises all combinations of the Boolean subexpressions.

We focus on the Conflict resolution and MultiConflict resolution classes, since
these implement the actual conflict detection and resolution. Test suite T1 has
been generated by exhaustive combinatorial exploration with JPF, including the
filtering mechanism used to avoid generation of uninteresting tests, as discussed
in Section 4. Test suite T2 has been generated using 3-factor combinatorial ex-
ploration, using the same input ranges for the variables. This test suite contains
6,047 test cases. T2, however, has not taken advantage of any of the domain-
specific filtering. For this reason, we have additionally produced the set T f

2 ,
which contains all test cases from T2, which pass the domain-specific filters. Fi-
nally, T3 is a set of 6,047 traditional Monte Carlo test cases. Please note that for
all test suites, the same discretization of input variables and variables is being
used. T f

3 are the 698 test cases obtained from T3 by applying the filters.

Test- No Coverage: Conflict Res. Coverage: MultiConflict Res.
suite tests Stmt Branch Loop Strict Cond Stmt Branch Loop Strict Cond

T1 9.9 · 106 94 90 46 85 94 92 37 83

T2 6047 93 89 46 83 94 91 37 81

T f
2 712 92 89 46 83 63 57 32 52

T3 6047 93 89 46 83 64 57 30 52

T f
3 698 92 89 46 83 63 57 30 52

Table 3. Coverage Results

Table 3 shows the coverage results, given as a percentage. Note that 100%
coverage may not be achievable due to unreachable code. However, for this study,
we are interested in relative, rather than absolute, coverage achieved by the
various approaches.

The coverage achieved for the conflict resolution module does not exhibit
significant differences when tested with the different test suites. However, there
are some subtle differences, where T1 executes a few lines of code that the other
test suites miss. In examining statement coverage, for example, we observed
that the main difference between T1 and T2 coverage is a special case (“no local
maximum during turn, use absolute maximum”), which obviously needs a special
setting of multiple input variables, namely a specific setting of the speed of both
aircraft, a heading of the second aircraft, which is correlated to the speed, and
xB0 = ±5.

For the particular instance of checking the algorithm with two primary and
one secondary aircraft, the developers requested that we generate only test cases
for which both primary aircraft are eligible for turns. As a result, none of our
test suites was able to achieve 100% statement coverage. For example, the code
shown in Listing 1.4 was not covered, which was to be expected.

1 i f ((xB0 > 0 && psiB > 0 && psiB < Math . PI) | |
2 (xB0 < 0 && psiB > Math . PI && psiB < 2 .0 ∗ Math . PI)) {
3 maneuver = fa l se ;
4 return ; }

Listing 1.4. Java code not covered by the test suites

The most striking difference is a substantial drop in all types of coverage
when the 3-factor test suite T2 is subjected to the domain-specific filters. Since
the 3-factor test case generation is already highly optimized with respect to its
coverage, removing any of those results in a big loss of code coverage. In the
case of the module MultiConflict resolution, this causes the code that handles
extended turns (several hundred lines) to never be executed.
Discussion. It is clear from this small experiment that the number of test
cases when using combinatorial testing drops by several orders of magnitude as
compared to the exhaustive approach based on JPF. An advantage of the JPF
approach is the clear declarative description of input ranges, of the domain-
specific filters to be applied to them, as well as of potential perturbations of the
input values used for checking the quality of the generated tests. Filtering during
generation also increases efficiency since it is able to prune out early subtrees
of combinations rooting at uninteresting values. Our code coverage results also
showed that the JPF based approach is able to achieve significantly better cover-
age than combinatorial approaches when restricted to the test inputs of interest
to the developers (meaning only filtered test cases).

As discussed in Section 6, our testing identified violations of all the stated
requirements at different stages of the code development. For example, when
we ran our experiments with and without extended turns, we discovered that
the results were the same, showing that the code that was enabling extended
turns was not exercised. When this error was fixed, we discovered that for many
cases the results were better when extended turns were disabled. Although this
can happen sometimes, it was happening more often than expected, which again
identified a subtle error in the prototype. Finally, the fact that symmetric input
cases would achieve different results uncovered another bug.

A measure of the quality of a test suite is also its error finding capabilities.
From the cases discussed above, it was clear that it is worthwhile applying the
exhaustive JPF based approach while the resulting test suites are manageable.
Combinatorial test suites for example are not necessarily symmetric, so the re-
lated problem could not have been discovered. Similarly, the developers asked
us to generate diagrams that illustrate some of our obtained results, and which
they inspected to see if they matched their intuitions. One such diagram displays
the achieved minimum separation as a function of the time to conflict between

the primary aircraft. In particular, they were interested, for each value of the
time to conflict, in illustrating the test case that achieved the highest, and the
test case that achieved the lowest minimum separation. There was a clear point
in that diagram that would stand out as not meaningful, which resulted in the
developers updating the prototype code. A large number of tests increases the
possibility of identifying such points in diagrams such as these. On the other
hand, when multiple secondary aircraft come into the picture, clever techniques
such as combinatorial testing are necessary. Our expectation is that an incre-
mental approach starting with exhaustive and continuing with more selective
test generation techniques, will be effective in ensuring a robust prototype for
our targeted algorithms.

9 Statistical Analysis of Test Results

The large number of test cases that the presented techniques generate are used to
thoroughly exercise the software under test. For each test run, values of output
variables are recorded, and the results are checked against requirements. In the
case of our TSAFE example, output variables include discrete information, like
the best resolution strategy (e.g., “AC A left, AC B right”), as well as continuous
information like the minimal separation between the two aircraft in nautical
miles or the time to loss of separation. In our case, a total of 13 variables are
recorded.

As mentioned earlier in the paper, formulating requirements for separation
assurance is a challenging task. Even though we have spent a lot of effort in
identifying requirements, we are nowhere close to having a complete set of re-
quirements for the problem of separation assurance. We therefore also investi-
gate an orthogonal and complementary approach to evaluating the results of
the testing process. More specifically, we try to identify anomalies by extracting
information from the testing process as the test results can be considered to be
a large, high-dimensional data set.

Statistical single variable analysis looks at each of the output variables in
isolation. This can provide valuable information about expected and actual value
ranges as well as outliers, which could indicate a software error. However, much
more information about the behavior of TSAFE and, in particular, erroneous
behavior, could be deduced from the interaction of multiple output variables and
the analysis of their correlation.

For this experiment, we have used clustering, a well-known technique to au-
tomatically find structure in large, multivariate data sets. Clustering is an un-
supervised learning method that tries to estimate the class membership matrix
and class parameters, only given the data. We are using the AutoBayes tool
to automatically generate tailored clustering algorithms. AutoBayes [27, 28]
is a fully automatic program synthesis system, developed at NASA Ames that
generates efficient and documented C/C++ code from abstract statistical model
specifications. From the outside, AutoBayes looks similar to a compiler for a
very high level programming language: it takes an abstract problem specification

in the form of a (Bayesian) statistical model and translates it a customized and
documented algorithm in C that can be called from Matlab to process the actual
data (other target platforms are supported as well).

On the inside, however, AutoBayes works quite differently: AutoBayes
first derives a customized algorithm skeleton implementing the model and then
transforms it into optimized C/C++ code (for Matlab and Octave [29, 30]).
Hereby, the input specification is translated into a Bayesian Network [31]. The
program synthesis system uses a schema based approach to break down large
problems into statistically independent subproblems and tries to solve them
symbolically. If no solution can be found, a customized numerical algorithm is
instantiated. The synthesis task is heavily supported by a domain-specific schema
library, an elaborate symbolic subsystem, and an efficient rewriting engine. For
details on AutoBayes see [27].

In order to perform clustering, the statistical distribution or probability den-
sity function for each variable should be known. For TSAFE, several variables
have discrete values (booleans or enumeration types), which have a discrete dis-
tribution; continuous variables include distances, times, and angles. Most clus-
tering algorithms and tools make the assumption that all variables are Gaussian
(normal) distributed and Gaussian noise is added to the discrete variables in
order to gain a Gaussian-like distribution. However, such a model can be sta-
tistically very inaccurate, in particular, when dealing with angles. A noisy mea-
surement of an angle close to 0◦ would, when considered as Gaussian distributed,
yield two classes with means around 0◦ and 360◦.

In our TSAFE example, we use a vonMises [32] distribution for the angles
(e.g., best_heading_angle), Gaussian distribution for the other continuous vari-
ables, and a discrete probability density function for the discrete variables.

From such a compact specification of less than 100 lines, AutoBayes gen-
erates several thousand lines of documented C code with a Matlab MEX inter-
face. Internally, an EM (Expectation Maximization) algorithm [33], an iterative
statistical optimization algorithm is generated. In our case, all statistical sub-
problems could be solved symbolically and code as well as a detailed derivation
is generated within a few seconds of run time. For examples of specifications
and autogenerated, detailed derivations we refer the reader to the AutoBayes
manual [28].

If necessary, this specification can easily extended to incorporate additional
variables and domain knowledge in the form of priors. Again, code can be gener-
ated automatically without the user having to specify details about the desired
algorithms. Generally available EM-implementations, like Autoclass [34], EM-
MIX [35], or MCLUST [36] could be used for clustering. These algorithms are
usually designed for Gaussian distributed data only and are thus not useful
for the task at hand. Refining the statistical model (e.g., by incorporating other
probability distributions for certain variables or to introduce domain knowledge),
the EM-algorithm needs to be modified substantially for each problem variant,
making experimentation a time-consuming and error-prone undertaking with
such tools.

Application to TSAFE. The results of the tests are huge, high-dimensional
data sets with 13 variables. We use an AutoBayes-generated clustering algo-
rithm to automatically detect structure in this data set. A good clustering result
could be obtained by separating the data into 5 different classes. Here, one class
contains around 60% of the data, which comprise the nominal case, i.e., there is
no conflict to be resolved. One other class picks up most test cases, where the
minimal separation is less than the required 5 nautical miles, and which also use
specific methods for conflict resolution. However, the classes are not separated
by values of a single variable, indicating that the behavior of the system cannot
be determined by a single variable only. Hence, a single variable analysis will not
reveal important details.

For visualization of the clustering results, we use scatter plots, i.e., plots
showing the covariance between two variables. Figure 3 shows an example (using
visualization routines of the NASA Ames margins tool). The value of the output
variable “best turn dirs” is shown over the x coordinate for the aircraft B for
each test case. In the output, each data point is colored according to which of
the 5 classes it belongs. A brown color corresponds to the nominal class. For
members of this class, no turn maneuver has to be carried out. In order to make
the number of cases for which a specific value occurs and the class memberships
better visible, we perturb all of these discrete values. The larger the blob, the
more data points have this value.

The TSAFE domain is highly symmetric. As discussed above, the algorithm
and all test cases are symmetric with respect to the X coordinates. Thus, one can
expect that the output values will be symmetric as well. However, some scatter
plots did, for an early version of the software, not show a symmetric behavior
(Figure 3). Using the color (class) information, potential sources of errors can be
located. Although this non-symmetric behavior directly corresponds to a coding
error in the early program version, such analysis approach cannot provide rig-
orous evidence for an error or absence of error. Rather, the statistical clustering
analysis of test results can be seen as an additional support for the designer and
program analyst. AutoBayes can also support sensitivity analysis and help in
finding safety margins, i.e., ranges of input parameters, where failures are likely
to occur. If these are not as expected, a flaw in coding of design might have been
detected.

10 Conclusions and Future Work

This paper reported on our experience with applying several formal approaches
for testing separation assurance algorithms. We presented the various techniques
in detail, and discussed their relative strengths and weaknesses. We believe that
our experience could be valuable in verifying other problems in the aerospace
domain.

We advocate an incremental approach: we start from generating tests in an
elegant way using JPF to exhaustively generate combinations of inputs that have
been described in a concise, declarative fashion. Domain-specific filters are also

Fig. 3. Scatterplot over test results. An early version of the program exhibited a non-
symmetric behavior with respect to the X axis (XB0), a potential indicator of an error.

applied to focus the tests as specified by the algorithm developers. Moreover, we
start from the statement of generic requirements, that gradually get refined to
capture more detailed properties of the targeted system. As more components
are introduced into the problem (for example secondary aircraft), combinatorial
test case generation techniques are used to generate more restricted test suites
of manageable size. Finally, we propose to analyze the large number of data
generated during the testing process with clustering approaches that may provide
indications of irregularities in the results, and which may trigger the formulation
of additional requirements.

More sophisticated test case generation techniques like symbolic execution
were not able to routinely handle separation assurance code. In the future, we
plan to investigate a combination of our current exhaustive test case generation
approach with symbolic execution, as a way of increasing the power of the former,
and enabling the application of the latter for aerospace code. Moreover, we intend
to investigate compositional symbolic execution techniques [15, 16], in order to
address the scalability issues that we experienced.

Acknowledgements. We wish to thank Heinz Erzberger and Karen Heere for
their constructive advice on their algorithms and code, as well as their over-
all collaboration on this exciting project. We also gratefully acknowledge Peter
Mehlitz for his help with JavaPathfinder, and Todd Farley and the NextGen
program for funding this work.

References

1. D. H. Bushnell, D. Giannakopoulou, P. Mehlitz, R. Paielli, and C. Pasareanu,
“Verification and validation of air traffic systems: Tactical separation assurance,”
in Proc. IEEE Aerospace Conference. IEEE Press, 2009.

2. H. Erzberger and K. Heere, “Algorithm and operational concept for resolving short-
range conflicts,” Proceedings of the Institution of Mechanical Engineers, Part G:
Journal of Aerospace Engineering, vol. 224, no. 2, pp. 225–243, 2010.

3. RTCA, “Do-178b: Software considerations in airborne systems and equipment
certification,” 1992. [Online]. Available: http://www.rtca.org

4. W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model checking
programs,” Autom. Softw. Eng., vol. 10, no. 2, pp. 203–232, 2003.

5. “Javapathfinder.” [Online]. Available: http://babelfish.arc.nasa.gov/trac/jpf
6. E. Model Checking Clarke and D. Grumberg, O.and Peled, Model Checking. MIT

Press, 2000.
7. N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese, “Requirements

specification for process-control systems,” IEEE Trans. Software Eng., vol. 20,
no. 9, pp. 684–707, 1994.

8. A. Betin-Can, T. Bultan, M. Lindvall, B. Lux, and S. Topp, “Application of design
for verification with concurrency controllers to air traffic control software,” in ASE,
2005, pp. 14–23.

9. M. Consiglio, V. Carreno, D. Williams, and C. Munoz, “Conflict prevention and
separation assurance method in the small aircraft transportation system,” Journal
of Aircraft, vol. 45, no. 0021-8669, pp. 353–358, 2008.

10. G. Dowek and C. Munoz, “Conflict detection and resolution for 1,2,...,N aircraft,”
in Proceedings of the 7th AIAA Aviation, Technology, Integration, and Operations
Conference, 2007.

11. J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,
no. 7, pp. 385–394, 1976.

12. C. S. Pasareanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet, M. R. Lowry,
S. Person, and M. Pape, “Combining unit-level symbolic execution and system-
level concrete execution for testing nasa software,” in ISSTA, 2008, pp. 15–26.

13. “The choco constraint solver.” [Online]. Available: http://choco.sourceforge.net/
14. IASolver. [Online]. Available: http://www.cs.brandeis.edu/ tim/Applets/IA-

solver.html
15. P. Godefroid, “Compositional dynamic test generation,” in POPL, 2007, pp. 47–54.
16. P. Godefroid, A. V. Nori, S. K. Rajamani, and S. Tetali, “Compositional may-must

program analysis: unleashing the power of alternation,” in POPL, 2010, pp. 43–56.
17. “T-vec.” [Online]. Available: http://www.t-vec,com
18. M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov,

“Test generation through programming in udita,” in 32nd International Conference
on Software Engineering (ICSE), 2010.

19. D. Cohen, S. Dalal, J. Parelius, and G. Patton, “The combinatorial design approach
to automatic test generation,” Software, IEEE, vol. 13, no. 5, pp. 83–88, Sep 1996.

20. I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino, “Ap-
plying design of experiments to software testing: experience report,” in ICSE ’97:
Proceedings of the 19th international conference on Software engineering, 1997, pp.
205–215.

21. D. R. Wallace and D. R. Kuhn, “Failure modes in medical device software: an
analysis of 15 years of recall data,” International Journal of Reliability, Quality
and Safety Engineering, vol. 8, no. 4, 2001.

22. S. F. A. Mats Grindal, Jeff Offutt, “Combination testing strategies: a survey,”
Software Testing, Verification and Reliability, vol. 15, no. 3, pp. 167–199, 2005.

23. J. Schumann, K. Gundy-Burlet, C. P. X. Xareanu, T. Menzies, and T. Barrett,
“Software v&v support by parametric analysis of large software simulation sys-
tems,” in Proc. IEEE Aerospace. IEEE Press, 2009.

24. K. Tai and Y. Lie, “A test generation strategy for pairwise testing,” IEEE Trans-
actions on Software Engineering, vol. 28, no. 1, pp. 109–111, 2002.

25. “Junit.” [Online]. Available: http://www.junit.org/
26. “Codecover—an open-source glass-box testing tool,” 2009. [Online]. Available:

http://codecover.org
27. B. Fischer and J. Schumann, “AutoBayes: A system for generating data analysis

programs from statistical models,” J. Functional Programming, vol. 13, no. 3, pp.
483–508, May 2003.

28. J. Schumann, H. Jafari, T. Pressburger, E. Denney, W. Buntine, and B. Fis-
cher, “Autobayes program synthesis system users manual,” NASA, Tech. Rep.
NASA/TM-2008-215366, 2008.

29. M. Murphy, “Octave: A free, high-level language for mathematics,” Linux Journal,
vol. 39, Jul. 1997.

30. “Octave,” 2010. [Online]. Available: http://www.gnu.org/software/octave
31. W. L. Buntine, “Operations for learning with graphical models,” J. AI Research,

vol. 2, pp. 159–225, 1994.
32. C. M. Bishop, Pattern Recognition and Machine Learning (Information Science

and Statistics), 1st ed. Springer, 2006.
33. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from in-

complete data via the EM algorithm (with discussion),” J. of the Royal Statistical
Society series B, vol. 39, pp. 1–38, 1977.

34. P. Cheeseman and J. Stutz, “Bayesian classification (AutoClass): Theory and re-
sults,” in Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, U. M.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds. AAAI Press,
1996, pp. 153–180.

35. G. McLachlan, D. Peel, K. E. Basford, and P. Adams, “The EMMIX software for
the fitting of mixtures of normal and t-components,” J. Statistical Software, vol. 4,
no. 2, 1999.

36. C. Fraley and A. E. Raftery, “MCLUST: Software for model-based clustering, den-
sity estimation, and discriminant analysis,” Department of Statistics, University
of Washington, Tech. Rep. 415, Oct. 2002.

