
Feedback-Driven Dynamic Invariant Discovery

Lingming Zhang
University of Texas, USA
zhanglm@utexas.edu

Guowei Yang
Texas State University, USA

gyang@txstate.edu

Neha Rungta
NASA Ames Center, USA

neha.s.rungta@nasa.gov

Suzette Person
NASA Langley Center, USA

suzette.person@nasa.gov

Sarfraz Khurshid
University of Texas, USA
khurshid@utexas.edu

ABSTRACT
Program invariants can help software developers identify
program properties that must be preserved as the software
evolves, however, formulating correct invariants can be chal-
lenging. In this work, we introduce iDiscovery, a technique
which leverages symbolic execution to improve the quality
of dynamically discovered invariants computed by Daikon.
Candidate invariants generated by Daikon are synthesized
into assertions and instrumented onto the program. The in-
strumented code is executed symbolically to generate new
test cases that are fed back to Daikon to help further refine
the set of candidate invariants. This feedback loop is exe-
cuted until a fix-point is reached. To mitigate the cost of
symbolic execution, we present optimizations to prune the
symbolic state space and to reduce the complexity of the
generated path conditions. We also leverage recent advances
in constraint solution reuse techniques to avoid computing
results for the same constraints across iterations. Experi-
mental results show that iDiscovery converges to a set of
higher quality invariants compared to the initial set of can-
didate invariants in a small number of iterations.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Algorithms, Verification, Experimentation

Keywords
Invariant generation, Symbolic execution, Model checking

1. INTRODUCTION
While researchers have long recognized the value of doc-

umenting properties of code, e.g., as behavioral specifica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

tions [20, 24], in the development and maintenance of cor-
rect software systems, writing specifications for non-trivial
functional correctness properties is quite challenging and re-
mains a largely manual process. Consequently, it is rare to
find software systems with accompanying specifications that
are up-to-date. This creates challenges not only for reason-
ing about correctness, but it also hinders the development of
effective testing and analysis techniques that leverage spec-
ifications. An example of the latter—in our recent work on
developing an incremental analysis to support software evo-
lution [36], we were not able to find any existing artifacts
that included multiple versions of expected properties cor-
responding to the different versions of code as it evolved.

Techniques to automatically extract properties of code,
say to create likely specifications, provide users with an ini-
tial set of specifications from which additional, or more pre-
cise, specifications can be derived. Such techniques have
been investigated by a number of researchers over the last
several decades using a variety of static [5,8,22,32] and dy-
namic [9, 12] techniques. While some of these techniques
are efficient and applicable to real-world programs, the gen-
erated properties may not accurately characterize the pro-
gram’s behavior [28, 31]: (1) they may contain many incor-
rect or imprecise properties; and (2) they may miss many
valid properties. The focus of this paper is on extracting
higher quality properties by addressing both of these issues.

Dynamic invariant discovery is a well-known approach for
generating invariants. It was pioneered over a decade ago
by Daikon [12] and provided the foundation for a number
of subsequent techniques [1, 3, 23]. Dynamic invariant dis-
covery has a simple and practical basis: execute a program
against a given test suite, monitor the executions at control-
points of interest to generate program traces, and check the
program states collected in the traces to validate a set of
invariants to see which ones hold and compute candidate
program invariants [12]. The number of the invariants in-
ferred by these tools and their correctness is often highly
dependent on the quality of the test suites used [12, 28].
We are unaware of any current work on how to construct
a test-suite that would enable dynamic invariant inference
techniques to generate better program invariants.

In this work, we introduce iDiscovery, a technique that
employs a feedback loop [35] between symbolic execution [6,
19] and dynamic invariant discovery to infer more accurate
and complete invariants until a fix-point is reached. Our em-
bodiment of iDiscovery uses Daikon as the dynamic invariant
inference technique. In each iteration, iDiscovery transforms
candidate invariants inferred by Daikon into assertions that

c© 2014 Association for Computing Machinery. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor, or affiliate of the national
government. As such, the Government retains a nonexclusive, royalty-free right to pub-
lish or reproduce this article, or to allow others to do so, for Government purposes only.

ISSTA’14, July 21–25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00
http://dx.doi.org/10.1145/2610384.2610389

362

are instrumented in the program. The instrumented pro-
gram is analyzed with symbolic execution to generate ad-
ditional tests to augment the initial test suite provided to
Daikon. The key intuition behind iDiscovery is that the
constraints generated on the synthesized assertions provide
additional test inputs that can refute incorrect/imprecise in-
variants or expose new invariants. Therefore, when the new
inputs are used to augment the previous test suite, dynamic
invariant discovery will be based on a richer set of program
executions enabling discovery of higher quality invariants.

A key element in the performance cost of iDiscovery is
the high cost of symbolic execution. To mitigate the cost
of symbolic execution, iDiscovery provides two optimiza-
tions: assertion separation and violation restriction. As-
sertion separation leverages the underlying search engines’
non-deterministic choice and backtracking features to focus
symbolic execution on checking one assertion at a time. This
generates fewer path conditions that are overall less complex
and in turn reduces the constraint solving time. Violation
restriction uses the state of the underlying execution engine
to generate at most one violation of each assertion, since one
test that reveals the violation is sufficient to form a counter-
example. Both of these configurations can be applied in
tandem to amortize the cost of iDiscovery. Moreover, iDis-
covery’s feedback loop, which repeatedly uses symbolic ex-
ecution, involves iteratively checking the same code against
different sets of properties. Thus, our approach offers a
substantial opportunity to memoise and re-use the results
of symbolic execution from previous iterations to further re-
duce its cost [4, 33, 37]. Our iDiscovery tool uses the Green
library [33] for the Symbolic PathFinder [26] to re-use con-
straint solving results, which together with assertion separa-
tion and violation restriction, minimize the overall symbolic
execution cost for improving dynamic invariant discovery.

We make the following contributions:

• Dynamic invariant discovery and symbolic ex-
ecution. We combine Daikon and symbolic execution
to generate test inputs that allow Daikon to discover
higher quality invariants.

• iDiscovery. We present our core technique iDiscov-
ery, which embodies our idea to dynamically discover
invariants for Java programs.

• Optimizations. We present two optimizations: (a)
assertion separation and (b) violation restriction that
enhance the efficiency of iDiscovery.

• Evaluation. We present an experimental evaluation
using a suite of Java programs that have been used
in previous work on invariant discovery and symbolic
execution. The experimental results show that iDis-
covery converges to a set of higher quality invariants
than the initial set of invariants computed by Daikon
in a small number of iterations.

2. MOTIVATING EXAMPLE
We demonstrate our feedback-driven technique, iDiscov-

ery, for inferring and refining program invariants using the
example in Fig. 1. In Fig. 1 we first present snippets of code
from the Wheel Brake System (WBS) [29] and the tests used
to generate the initial invariants. We then show the arti-
facts produced by our technique: 1) the assertions generated

public class WBS {
...
BSCU_SystemModeSelCmd_rlt_PRE = 0;
Nor_Pressure = 0;

public void update(int PedalPos, boolean AutoBrake,
boolean Skid){

....
rlt_PRE2 = 100;
...
if (PedalPos == 0)

BSCU_Command_PedalCommand_Switch1 = 0;
else if (PedalPos == 1)

BSCU_Command_PedalCommand_Switch1 = 1;
else if (PedalPos == 2)

BSCU_Command_PedalCommand_Switch1 = 2;
else if (PedalPos == 3)

BSCU_Command_PedalCommand_Switch1 = 3;
else if (PedalPos == 4)

BSCU_Command_PedalCommand_Switch1 = 4;
else BSCU_Command_PedalCommand_Switch1 = 0;
...

/** Subset of the initial test inputs **/
PedalPos = 0, AutoBrake = false, Skid = false;
PedalPos = 1, AutoBrake = false, Skid = false;
PedalPos = 2, AutoBrake = false, Skid = false;
PedalPos = 3, AutoBrake = false, Skid = false;
PedalPos = 4, AutoBrake = false, Skid = false;
PedalPos = 5, AutoBrake = false, Skid = false;

/** Assertions generated from initial invariants **/
A1: assert(this.rlt_PRE2 > PedalPos);
A2: assert(PedalPos >= 0);
A3: assert(this.BSCU_SystemModeSelCmd_rlt_PRE <=

PedalPos);
A4: assert(this.rlt_PRE2 == 100);
A5: assert(this.BSCU_SystemModeSelCmd_rlt_PRE ==

this.Nor_Pressure);
A6: assert(this.BSCU_SystemModeSelCmd_rlt_PRE ==

this.BSCU_rlt_PRE1);

/** New tests generated in the first iteration **/
PedalPos = 100, AutoBrake = false, Skid = false;
PedalPos = -1000, AutoBrake = false, Skid = false;

/** Assertions updated in the first refinement **/
A4: assert(this.rlt_PRE2 == 100);
A5: assert(this.BSCU_SystemModeSelCmd_rlt_PRE ==

this.Nor_Pressure);
A6: assert(this.BSCU_SystemModeSelCmd_rlt_PRE ==

this.BSCU_rlt_PRE1);
A7: assert(this.rlt_PRE2 >= PedalPos);

/** New test generated in the second iteration **/
PedalPos = 101, AutoBrake = false, Skid = false;

/** Assertion updated in the second refinement **/
A4: assert(this.rlt_PRE2 == 100);
A5: assert(this.BSCU_SystemModeSelCmd_rlt_PRE ==

this.Nor_Pressure);
A6: assert(this.BSCU_SystemModeSelCmd_rlt_PRE ==

this.BSCU_rlt_PRE1);

Figure 1: Parts of the WBS example, the test cases
generated by symbolic execution at each step, and
the assertions generated from the Daikon invariants.

based on the Daikon invariants, 2) the new tests generated
by symbolic execution at each iteration of our technique,
and 3) the updated assertions based on the program invari-
ants generated by Daikon at each iteration of iDiscovery.
The assertions and tests shown in Fig. 1 are a subset of the
assertions and tests generated by iDiscovery for the WBS

363

program. The complete results for the WBS example are
discussed in Section 5.

The WBS program contains an update method with three
input variables: PedalPos, AutoBrake, and Skid. These in-
put variables are treated as symbolic values while all other
fields in the systems are initialized with concrete values. An
initial set of test inputs is generated for the update method
using symbolic execution. A subset of these tests is shown
in Fig. 1; in these tests there are six possible values for the
input parameter PedalPos: 0, 1, 2, 3, 4, 5 while the Au-

toBrake and Skid variables are set to false. The six input
values of PedalPos cover all of the branches shown in the
update method in Fig. 1. Daikon monitors the concrete ex-
ecution traces of the WBS program that are generated by
the initial test inputs to infer the candidate invariants re-
lated to the PedalPos input variable and other fields in the
WBS program. These invariants are transformed into Java
assertions A1 through A6 as shown in Fig. 1.

Symbolic execution is performed on the original program
instrumented with assertions A1-A6. Symbolic execution of
the object code (i.e. Java bytecode) corresponding to the
assertions creates additional constraints on the path condi-
tions of the program. The SMT solver now generates new
test inputs for the program by solving these path conditions.
For example, the constraint PedalPos < 0 is generated by
symbolic execution along the false branch of the conditional
branch for assertion A2: PedalPos ≥ 0. The SMT solver
provides a solution of −1000 for PedalPos based on this new
constraint; this in turn results in a new test input. Similarly,
the constraints this.rlt_PRE2 == 100 ∧ this.rlt_PRE2 ≤
PedalPos are generated by symbolic execution along the true
branch of assertion A4 and the false branch of assertion A1.
The SMT solver generates a solution 100 for PedalPos to
satisfy these constraints, which is used to create another
new test input value.

The values of −1000 and 100 are provided as test inputs
for the PedalPos input variable while the AutoBrake and
Skid are set to false. Using the test traces generated by
these new test inputs, Daikon refines the set of candidate
invariants. Note that the test traces are generated based
the original program without the assertions generated from
invariants. Using information from the new traces, Daikon
deletes (does not generate) assertions A1, A2, and A3; re-
tains A4, A5, A6; and adds A7.

In the second iteration of iDiscovery, the invariants are
again transformed into Java assertions and instrumented on
the original program. Symbolic execution generates new
constraints, this.rlt_PRE2 == 100 ∧ this.rlt_PRE2 <
PedalPos, for assertions A4 (true branch) and A7 (false
branch). These constraints cause the SMT solver to com-
pute a solution of 101 for the PedalPos variable. A new test
input is created with this value for PedalPos, and AutoBrake

and Skid are set to false. Daikon then refines the candidate
invariants using the program trace for the new input. In
the second iteration, Daikon deletes assertion A7 and does
not add any new assertions. For the code-snippet shown
in Fig. 1 this represents a fix-point. For this example, iDis-
covery successfully refutes 3 incorrect/imprecise invariants
computed by Daikon (50% of the initial invariants).

3. APPROACH
In this section, we present the details of our iDiscovery ap-

proach. Given a program and an initial test suite, iDiscovery

Invariant
Inference

Assertion
Synthesis

Symbolic
Execution

Initial
Test Suite Program Likely

Invariants

Candidate
Invariants

Instrumented
Program

Additional
Test Inputs

iDiscovery

Figure 2: iDiscovery Overview.

automatically and iteratively applies two techniques: 1) dy-
namic invariant inference, e.g., Daikon [12], and 2) symbolic
execution [6, 19], to infer program invariants for Java pro-
grams. An overview of the iDiscovery technique is shown in
Figure 2. iDiscovery transforms the program invariants in-
ferred by Daikon into Java expressions within assert state-
ments. All of the paths in the original program code and
the synthesized assertions are explored using symbolic exe-
cution in an attempt to generate additional test inputs. For
every assertion, constraints encoding the true and the false
branches of the assertions are added to the path condition
computed by symbolic execution. The resulting path con-
ditions are solved using an off-the-shelf decision procedure,
in an attempt to generate additional test inputs. The ad-
ditional test inputs, together with the initial test suite, are
then provided to Daikon in the next iteration of iDiscov-
ery. Note that iDiscovery makes no modifications to either
the invariant inference technique or the symbolic execution
algorithm; each is treated as a black-box by iDiscovery.

During each iteration of iDiscovery, the set of inferred
invariants is refined until a fix-point is reached, e.g., the in-
ferred invariants are unchanged with respect to the previous
iteration of the algorithm. An invariant is refuted by Daikon
when a counter example is found. Therefore, theoretically,
all the invariants refuted in each iteration of iDiscovery are
either incorrect or imprecise, because the symbolic execution
engine of iDiscovery is able to generate counter examples for
those invariants. New invariants can also be augmented in
each iteration of iDiscovery because more evidence support
can be found by the additional tests generated by iDiscov-
ery. Note that similar to other dynamic invariant discovery
techniques [9, 12, 16], the invariants discovered by iDiscov-
ery may be unsound or incomplete (due to the limitations
of Daikon). However, iDiscovery can generate valuable tests
to guide Daikon to refute incorrect or imprecise invariants,
or augment un-observed invariants.

Formally, the overall iDiscovery algorithm is shown in
Algorithm. 1. The inputs to the algorithm are the pro-
gram under analysis P, and an initial test suite Tinit. The
set of inferred invariants is initialized to ∅ at line 2. The
set of execution traces used by the invariant inference al-
gorithm, InvarInfer(Γ), is computed by invoking function
TraceExec(P, Tinit) at line 3. Recall that iDiscovery treats
the invariant inference algorithm as a black box, providing
only the program and the tests as input. During each itera-
tion of the loop starting at line 4, the iDiscovery algorithm
first invokes the invariant inference algorithm to generate a
set of candidate invariants. If the set of inferred invariants
is equivalent to the previous set of inferred invariants, iDis-
covery has reached a fix-point and exits the loop at line 8.
If the set of candidate invariants is changed, then at line 9,
P is instrumented with code to check the invariants, e.g.,
with assert statements, and at line 10 symbolic execution
of the instrumented version of P is performed. The test

364

Algorithm 1: iDiscovery Algorithm

Input: Program P, test suite Tinit
Output: Invariants I

1 begin
// Initialize the invariant set as empty

2 I ← ∅
// Record the execution trace for the original

test suite
3 Γ← TraceExec(P, Tinit)
4 while true do
5 Iold ← I

// Infer invariants based on the test
execution traces

6 I ← InvarInfer(Γ)
// Terminate the algorithm if the fix-point is

reached
7 if I = Iold then
8 break

// Annotate program under test with property
checks

9 P ′ ← PropertyInstr(P, I)
// Use symbolic execution to generate

additional test inputs
10 Tsym ← SymbcExec(P ′)

// Expand the test traces with the generated
tests

11 Γ← TraceExec(P, Tsym) ∪ Γ

12 return I // Return the final set of inferred
invariants

inputs computed by symbolic execution are used to aug-
ment the set of execution traces used by the invariant in-
ference algorithm in the next iteration of the loop. iDiscov-
ery includes test inputs for all paths explored by symbolic
execution (non-violating and counter-examples). When a
fix-point is reached, the loop terminates and the inferred
invariants are returned at line 12.

3.1 Complexity Analysis
Symbolic execution is a powerful analysis technique; how-

ever, scalability is an issue because of the large number
of execution paths generated during the symbolic analysis.
This is known as the path explosion problem, and is fur-
ther exacerbated in iDiscovery by the addition of the as-

sert statements to the code. Symbolic execution generates
a set of path conditions, Φ, for the program under test that
does not contain any synthesized assertions from invariants.
During the symbolic execution in iDiscovery, a path condi-
tion, φ ∈ Φ, for the original program is further expanded by
adding constraints from the synthesized assertions.

Suppose iDiscovery instruments m synthesized assertions
in the locations specified by Daikon (e.g., beginning of pro-
gram methods, or at the end of program methods). For the
ease of presentation, assume the synthesized assertions are
not contained within a loop, then for each path condition,
φ ∈ Φ, there can be at most m+1 potential path conditions
generated in iDiscovery (when φ reaches all the m asser-
tions). Note that iDiscovery is applicable even when synthe-
sized assertions are contained in loops; in that case, the total
number of expanded paths for φ can be Σ1≤i≤m|γφ(ai)|+ 1,
where |γφ(ai)| ≥ 1 denotes the number of instance asser-
tions unrolled from loops for ai in path φ (|γφ(ai)| = 1 for
assertions not in loops). The set of path conditions con-
taining constraints from φ and the synthesized assertions is

described as {φk ∧ (
∧

1≤j≤k−1 aj) ∧ ¬ak|1 ≤ k ≤ m + 1};
where each ai for 1 ≤ i ≤ m is the predicate constraint ex-
tracted from the corresponding assert statement, each φi
for 1 ≤ i ≤ m is a prefix of the path condition φ that reaches
ai, and φm+1 = φ∧am+1 = false so that the corresponding
expanded path specifies the path that satisfies all assertions
when k = m + 1. To illustrate, Fig. 3(a) shows an execu-
tion path annotated with the path condition φ as well as
the synthesized assertions. In Fig. 3, white nodes represent
constraints in the original program, the black nodes denote
the synthesized assertions, and the square nodes denote the
program exit points. The path conditions generated due to
the synthesized assertions are annotated at the correspond-
ing exit nodes. In this way, the original program path φ
is expanded into 3+1=4 different paths after instrumented
with 3 assertions. Note that φ1 is true because a1 is instru-
mented at the beginning of the program. In total, symbolic
execution of the program instrumented with synthesized as-
sertions can generate up to |Φ| ∗ (m+ 1) path conditions.

3.2 Cost Reduction
The path explosion problem in iDiscovery can be divided

into two dimensions: (1) checking assertions along each orig-
inal program path can be expensive when there are many
assertions because the constraints accumulate over all the
assertions, (2) the same assertions are repeatedly checked by
different program paths. We discuss two optimizations that
allow us to mitigate the path explosion problem in the above
two dimensions respectively: (1) assertion separation where
we direct symbolic execution to check one instrumented as-
sertion in isolation at a time for each original program path,
and (b) violation restriction to cause symbolic execution
to generate at most one violation of each instrumented as-
sertion across different program paths. Figure 3(b) shows
the set of expanded paths explored for the original path φ
during symbolic execution in iDiscovery without assertion
separation in the second column and with assertion separa-
tion in the third column. As shown in the second column,
each path condition contains constraints that represent the
true branches of assertions (satisfied) with a constraint from
the false branch of an assertion (refuted). The reason is
that symbolic execution will treat assertions equally with
branches. By simply checking constraints in the third col-
umn we can reduce the cost of symbolic execution. In ad-
dition, symbolic execution in the default configuration of
iDiscovery attempts to find all possible violations of an as-
sertion, since it can appear in multiple paths, each of which
will try to violate the assertion. In order to mitigate this
cost we configure iDiscovery to generate test inputs for only
the first violation of an assertion. In the violation restric-
tion configuration, iDiscovery keeps track of assertions that
have been violated since the start of symbolic execution, and
prunes paths leading to these violated assertions.

3.3 Discussion
The two optimizations presented in this work reduce the

number of path conditions generated in iDiscovery, however,
they may also cause iDiscovery to generate fewer additional
test inputs. The optimizations enable the analysis of arti-
facts that are too large to be analyzed with the standard
iDiscovery algorithm. Therefore, in Section 5, we present a
detailed study to evaluate the optimizations for both effec-
tiveness and efficiency on various subject systems. Further-

365

�2 ^ a1 ^ ¬a2

�3 ^ a1 ^ a2 ^ ¬a3

a1

a2

a3

b1

b2

b3 �2 = b1 ^ b2

�3 = b1 ^ b2 ^ b3

Predicates

Assertions

Exits

� = b1 ^ b2 ^ b3

�1 ^ ¬a1

� ^ a1 ^ a2 ^ a3

�1 = true

Monday, October 14, 13

Step No Separation Separation

1 φ1 ∧ ¬a1 φ1 ∧ ¬a1
2 φ2 ∧ a1 ∧ ¬a2 φ2 ∧ ¬a2
3 φ3 ∧ a1 ∧ a2 ∧ ¬a3 φ3 ∧ ¬a3
...
m φm ∧ a1 ∧ a2 ∧ ... ∧ am−1 ∧ ¬am φm ∧ ¬am
m+ 1 φ ∧ a1 ∧ a2 ∧ ... ∧ am−1 ∧ am φ

Figure 3: (a) Example path expanded with assertions (b) Assertion checking
more, various techniques have been developed to reduce the
cost of symbolic execution by reusing constraint solutions,
e.g., [33, 37]. Given the iterative nature of the iDiscovery
algorithm, it is an ideal candidate for constraint re-use solu-
tions. Hence, in this work we leverage an existing constraint
solution reuse technique, Green [33] to further mitigate the
cost of symbolic execution in iDiscovery.

iDiscovery is guaranteed to terminate if the underlying dy-
namic invariant inference technique satisfies two key prop-
erties: (a) the invariant inference is deterministic, i.e., the
same invariants are generated for a given test suite each time
and (b) a potential invariant, violated by at least one test
in the given suite, is not generated as a candidate invariant.
In each iteration of iDiscovery, the set of invariants inferred
may increase or decrease. A refuted invariant, however, is
never generated again by Daikon [11]. Furthermore, there
is an upper bound to the possible candidate invariants that
Daikon can generate for a given program. These elements
lead us to believe that iDiscovery when used with Daikon
will terminate for most programs (Also confirmed by our
experimental evaluation in Section 5).

4. DETAILED OPTIMIZATION
To evaluate our technique we implement iDiscovery using

Daikon to dynamically infer program invariants and Sym-
bolic PathFinder (SPF) to perform symbolic execution. iDis-
covery takes advantage of SPF’s support for non-deterministic
choices within its underlying engine (Java PathFinder—JPF)
and leverages the Green extension for reusing constraint so-
lutions. We use CVC3 and CORAL as the underlying solvers
to check satisfiability of path conditions and generate so-
lutions. The main code for coordinating and combining
Daikon and SPF is implemented using bash scripts. The
instrumentation of Daikon invariants into the program un-
der test is implemented using the Eclipse JDT framework.

To implement the assertion separation optimization, iDis-
covery automatically generates a wrapper for each assertion
as shown in Figure 4(a). Each synthesized assertion, ai, is
guarded by Verify.getBoolean() which is a modeling prim-
itive in JPF that non-deterministically generates both true
and false choices during symbolic execution. When Ver-

ify.getBoolean() returns false, assertion ai is not checked
and the search continues executing the instruction that fol-
lows the if statement. When Verify.getBoolean() returns
true, assertion ai is checked. The Verify.ignoreIf(true) is
another modeling primitive in JPF, which forces the search
to backtrack. Here it is used to force the search to backtrack
after checking ai. The combination of these two modeling
primitives enable iDiscovery to check each assertion sepa-
rately as shown in the Separation column of Figure 3(b).
Consider the example in Figure 4(b), where the dashed nodes
represent the new choices from Verify.getBoolean() that

control whether to check an assertion. The symbolic execu-
tion engine generates and explores non-deterministic choices.
The Verify.ignore(true) statement forces symbolic exe-
cution to backtrack to the previous choice point when the
corresponding assertion has been checked. The pruned parts
of the search tree are enclosed in dashed lines for each asser-
tion. The final set of paths explored by symbolic execution
are annotated with the path conditions at the correspond-
ing exit nodes. Note that the modeling primitives are not
considered as path conditions and the final path conditions
generated are exactly the same as the ones shown in the
Separation column of Figure 3(b).

To restrict the number of times an assertion is violated
to at most once, iDiscovery also uses modeling primitives in
JPF to wrap assertions and record the assertion checking
information. For each assert statement, iDiscovery auto-
matically creates a wrapper as shown below:

if(Verify.getBoolean()){ //non-deterministic boolean
choice

if (Verify.getCounter(i) < 1 && !(ai)) {
Verify.incrementCounter(i);
throw new AssertionError(‘‘ith assertion failed’’);

}
Verify.ignoreIf(true); //backtrack

}

The code, Verify.getCounter(i), controls whether asser-
tion ai is checked (1 ≤ i ≤ m and m is the total number
of synthesized assertions). When an assertion is violated
on some execution path, the counter for that assertion is
increased by 1, indicating the assertion has been violated
during the search and does not need to be checked again. In
the best case scenario, if the first path violates all the asser-
tions then the pruning can reduce the number of assertion
checks from |Φ| ∗ (m+1) to |Φ|+m. The reason is that only
the first path that reaches the assertions will be explored
m + 1 times for all m assertions, while the other |Φ| − 1
paths will only be checked once each. In the worst case sce-
nario, if none of the paths lead to an assertion violation then
no paths will be pruned.

5. EVALUATION

5.1 Artifacts
We evaluate iDiscovery on four Java artifacts. 1. Traffic

Anti-Collision Avoidance System (TCAS) is an aircraft col-
lision avoidance system consisting of one class and approx-
imately 150 lines of code. We use three randomly selected
versions of TCAS from the Software Infrastructure Repos-
itory (SIR) [30]. We inline all functions in TCAS into the
TCAS.alt_sep_test method, and apply iDiscovery on that
method. 2. Wheel Brake System (WBS) is a synchronous

366

//non-deterministic boolean
choice

if(Verify.getBoolean()){
//assertion checking
assert(ai);
//backtrack
Verify.ignoreIf(true);

}

�2 ^ a1 ^ ¬a2

�3 ^ a1 ^ a2 ^ ¬a3

�1 = ?
�2 = b1 ^ b2

�3 = b1 ^ b2 ^ b3

� = b1 ^ b2 ^ b3

�1 ^ ¬a1

� ^ a1 ^ a2 ^ a3

Predicates

Assertions

Exits
Non-determinism
Choices

�1 ^ ¬a1

�2 ^ ¬a2

�3 ^ ¬a3
�

Monday, October 14, 13

Figure 4: (a) Assertion separation wrapper (b) Assertion separation backtrack tree

reactive component derived from the WBS case example
found in ARP 4761 [29]. It consists of a single class and
231 lines of code. We inline all functions in WBS into the
WBS.update method, and apply iDiscovery on that method.
3. Altitude Switch (ASW) is a synchronous reactive com-
ponent from the avionics domain. The ASW consists of a
single class and 610 lines of code. We apply iDiscovery on
the asw.Main0 method, which implements the main func-
tionality in ASW. 4. The Apollo Lunar Autopilot (Apollo)
is a model created by an engineer from the Apollo Lunar
Module digital autopilot team. We apply iDiscovery on the
rjc.MainSymbolic method, which is the main method that
invokes all other methods in Apollo. Apollo contains 2.6
KLOC in 54 classes.

5.2 Experimental Setup

5.2.1 Independent Variables
The independent variables in our study are as follows:

IV1: Different iDiscovery Optimizations. We evalu-
ate four possible configurations of iDiscovery: (a) iDiscovery
with no optimizations, (b) iDiscovery with only assertion
separation (Optimization-1), (c) iDiscovery with only viola-
tion restriction (Optimization-2), (d) iDiscovery with both
optimizations.
IV2: Different Solver Configurations. As iDiscovery
applies symbolic execution to similar programs, i.e., the
same code with different synthesized assertions, at each iter-
ation, the solver’s opportunities for constraint solution reuse
may affect the efficiency of iDiscovery significantly. We eval-
uate iDiscovery with and without the Green solver inter-
face [33] to measure the benefits of constraint reuse.
IV3: Different Initial Test Suites. The initial test suite
provided to iDiscovery may affect the invariants computed
by iDiscovery. We investigate the impact of different initial
test suites on iDiscovery: (a) an initial test suite generated
by full symbolic execution, (b) an initial test suite with the
same size as the test suite generated by symbolic execution
but generated using a random test generator, (c) initial test
suites of varying sizes (e.g., 5%, 10%, 15%, and 20%) of
randomly generated tests.

We set a time-out limit of 20 hours for each of our exper-
imental settings. All of the experiments were performed on
a Dell machine with an Intel i7 Quad-Core processor, 8G
RAM, and Ubuntu 12.04 64-bit version OS.

5.2.2 Dependent Variables
DV1: Effectiveness. For each configuration of iDiscov-
ery, we collect the number of refuted invariants (indicating
iDiscovery’s effectiveness in falsifying incorrect or imprecise
invariants), and added invariants (indicating iDiscovery’s ef-

fectiveness at augmenting new invariants).
DV2: Efficiency. For each configuration of iDiscovery, we
collect the time costs for test trace collection, invariant infer-
ence, and test augmentation time using symbolic execution
at each iteration.

5.3 Results and Analysis
Table 1 shows the detailed experimental results for the

iDiscovery configuration without optimizations using an ini-
tial test suite generated by symbolic execution. The first
column lists the artifact names. The second column lists
the iDiscovery iteration. For each iteration, column 3 lists
the number of invariants generated by Daikon, and columns
4 and 5 list the number of deleted and augmented invariants
respectively, with respect to the original set of invariants
generated by Daikon in the first iteration. Columns 6 and
7 list the execution time costs (in seconds) for computing
the execution traces and the invariant inference time respec-
tively, for each iteration. Columns 8 to 12 list the number of
test cases generated by symbolic execution and the cost of
symbolic execution to analyze the code instrumented with
the invariants generated in each iteration: the number of
solvers calls, the number of backtracked states, the max-
imum memory consumption, and the symbolic execution
time1. We only show the iterations up to the point where
iDiscovery reaches a fix-point. Similarly, Table 2 shows the
detailed results for iDiscovery using both optimizations (as-
sertion separation and violation restriction) with the initial
test suite generated by symbolic execution.

The results in Table 1 show that for the TCAS and WBS
artifacts, iDiscovery is able to refine invariants effectively
without any optimizations. For the ASW and Apollo ar-
tifacts, however, iDiscovery times out after 20 hours. For
the first version of TCAS, iDiscovery successfully falsified
71.50% of the original invariants (148 out of 207), indicating
that the additional test cases generated by symbolic execu-
tion helped Daikon falsify invariants. Theoretically, Daikon
falsifies invariants only when it has counter-example(s), in-
dicating that all falsified invariants are correctly deleted.
In addition, the final set of augmented invariants are quite
small in number (e.g., only 2 for Apollo, and 0 for all other
subjects). The reason is that the initial test suites gener-
ated by symbolic execution already give enough evidence
support for the possible candidate invariants, making iDis-
covery mainly refute invariants in this case (also confirmed
by our later study on different initial test suites).

iDiscovery reaches a fix-point in a relatively small num-
ber of iterations. In the subjects where iDiscovery termi-

1The symbolic execution time for WBS is sometimes 0 be-
cause the time is too small to be captured by the SPF timer.

367

Table 1: Experimental results for iDiscovery without optimizations
Subjects Iter. Invariants Invariant Cost Symbolic Execution Cost

Num Del New Tracing Inference Tests SCalls States Memory Time

TCAS-v1 1 207 0 0 40s 11s 183 10066 10067 129MB 250s
2 79 132 4 109s 13s 193 2894 2895 129MB 44s
3 63 144 0 115s 15s 74 2342 2343 118MB 28s
4 59 148 0 44s 16s 72 2090 2091 118MB 22s

TCAS-v2 1 149 0 0 100s 13s 445 13944 13945 126MB 348s
2 78 77 6 265s 17s 299 5604 5605 238MB 93s
3 63 86 0 178s 20s 167 5404 5405 128MB 64s
4 59 90 0 99s 22s 165 4752 4753 127MB 50s

TCAS-v3 1 149 0 0 218s 16s 483 14804 14805 128MB 356s
2 78 77 6 285s 20s 321 5830 5831 128MB 87s
3 63 86 0 189s 23s 184 5750 5751 127MB 63s
4 59 90 0 109s 25s 182 5022 5023 126MB 46s

WBS 1 15 0 0 11s 2s 26 100 101 118MB 0s
2 12 4 1 13s 3s 25 48 49 118MB 0s
3 11 4 0 12s 3s 24 46 47 118MB 0s

ASW 1 55 0 0 300s 10s – – – – TimeOut

Apollo 1 269 0 0 171s 59s 1677 26714 26716 2130MB 6058s
2 245 26 2 3554s 560s 2756 43984 43986 2120MB 10869s
3 215 56 2 5850s 1371s 2262 34570 34572 2181MB 8083s
4 187 84 2 4807s 2036s – – – – TimeOut

Table 2: Experimental results for iDiscovery with both optimizations
Subjects Iter. Invariants Invariant Cost Symbolic Execution Cost

Num Del New Tracing Inference Tests SCalls States Memory Time

TCAS-v1 1 207 0 0 40s 11s 178 3538 20835 121MB 45s
2 59 148 0 106s 12s 72 2072 8353 120MB 24s

TCAS-v2 1 208 0 0 100s 13s 279 7644 50143 121MB 93s
2 59 149 0 166s 14s 172 4656 20137 119MB 51s

TCAS-v3 1 149 0 0 218s 16s 447 11562 82323 120MB 129s
2 59 90 0 265s 20s 372 8940 42821 119MB 91s

WBS 1 15 0 0 12s 2s 28 94 539 118MB 1s
2 12 4 1 14s 3s 25 48 441 118MB 0s
3 11 4 0 12s 3s 24 46 437 118MB 0s

ASW 1 55 0 0 301s 10s 531 4809 44154 2080MB 843s
2 42 13 0 316s 15s 504 4580 36857 2091MB 802s

Apollo 1 269 0 0 159s 56s 82 704 802 1105MB 34s
2 213 58 2 161s 79s 35 303 401 1718MB 17s
3 185 86 2 68s 88s 14 470 716 763MB 143s
4 175 96 2 27s 91s 0 348 1394 898MB 135s

nates, it takes iDiscovery at most four iterations to reach
the fix-point. Since iDiscovery without optimizations does
not finish within the 20-hour limit on ASW and Apollo,
optimizations to mitigate the path explosion problem are
needed.

The results in Table 2 demonstrate that the iDiscovery op-
timizations are able to reduce the symbolic execution cost
dramatically. It takes more than one hour to complete sym-
bolic execution on Apollo instrumented with assertions in
the first iteration of iDiscovery without optimizations, while
symbolic execution is completed in 34 seconds when iDis-
covery is used with optimizations, indicating a speed-up of
more than 100X. Note that the number of symbolic states
may increase when using optimizations because of the addi-
tional non-determinism choice points added by SPF at the
Verify modeling primitives. For example, for TCAS-v3, the
first iteration of symbolic execution without optimizations
explores 14805 states, while the first iteration of symbolic
execution with optimizations explores 82323 states. How-
ever, the symbolic execution time is much less for the latter,
because a large number of the symbolic states are pruned by
the iDiscovery optimizations. The optimizations not only re-
duce the total symbolic execution time at each iteration of
iDiscovery, but also reduce the number of iterations for some

subjects as seen in Table 2. For all three versions of TCAS,
iDiscovery with no optimizations requires four iterations to
reach a fix-point, while iDiscovery with optimizations re-
quires only two iterations to reach the same fix-point. The
reason is that the first optimization (assertion separation)
greatly simplifies path constraint complexity and can solve
more constraints within the solver time limits for each con-
straint, thus leaving less solvable constraints for following
iterations, and reducing the number of iterations.
Different iDiscovery Optimizations. To better under-
stand the effects of the optimizations, we evaluate iDiscovery
with each optimization independently of the other on all of
the artifacts. The assertion separation optimization is de-
noted as Optimization-1, and the violation restriction opti-
mization is denoted as Optimization-2. The invariants gen-
erated on the last iteration of Optimization-1, Optimization-
2, iDiscovery with no optimizations and iDiscovery with
both optimizations are the same. Thus, in Table 3, we show
only the symbolic execution cost for each of the iDiscovery
configurations to study the impact of each individual opti-
mization. In the table, Columns 1 and 2 list the correspond-
ing artifacts and iterations; Columns 3 to 5, 6-8, 9-11, and
12-14 list the symbolic execution cost for each iteration of
iDiscovery with no optimizations, with only Optimization-

368

Table 3: Symbolic execution costs for iDiscovery using different optimizations
Subjects Iter. No Optimizations Optimization-1 Optimization-2 Both Optimizations

SCalls States Time SCalls States Time SCalls States Time SCalls States Time

TCAS-v1 1 10066 10067 250s 12044 29341 201s 1454 1455 25s 3538 20835 45s
2 2894 2895 44s 2312 8593 25s 2934 2935 40s 2072 8353 24s
3 2342 2343 28s – – – 2202 2203 25s – – –
4 2090 2091 22s – – – 1950 1951 21s – – –

TCAS-v2 1 13944 13945 348s 23866 56561 406s 18814 18815 380s 7644 50143 93s
2 5604 5605 93s 5298 20779 59s 6860 6861 84s 4656 20137 51s
3 5404 5405 64s – – – 5184 5185 54s – – –
4 4752 4753 50s – – – 4532 4533 43s – – –

TCAS-v3 1 14804 14805 356s 53116 123877 859s 24316 24317 508s 11562 82323 129s
2 5830 5831 87s 11068 44949 109s 7720 7721 99s 8940 42821 91s
3 5750 5751 63s – – – 5470 5471 54s – – –
4 5022 5023 46s – – – 4742 4743 41s – – –

WBS 1 100 101 0s 100 545 0s 100 101 0s 94 539 1s
2 48 49 0s 48 441 0s 48 49 0s 48 441 0s
3 46 47 0s 46 437 0s 46 47 0s 46 437 0s

ASW 1 – – TimeOut 60861 100206 11970s 112322 112323 32028s 4809 44154 843s
2 – – – 4580 36857 770s 4571 4572 773s 4580 36857 802s

Apollo 1 26714 26716 6058s 704 802 33s 12259 12261 8550s 704 802 34s
2 43984 43986 10869s 303 401 16s 17201 17203 14771s 303 401 17s
3 34570 34572 8083s 470 716 143s 16221 16223 14066s 470 716 143s
4 – – TimeOut 348 1394 136s 14548 14550 12884s 348 1394 135s

0	

50	

100	

150	

200	

250	

300	

350	

400	

NoOp-‐
NoGreen	

NoOp-‐Green	 Op-‐NoGreen	 Op-‐Green	

Iter-‐4	

Iter-‐3	

Iter-‐2	

Iter-‐1	

(a) TCAS-v1

0	

100	

200	

300	

400	

500	

600	

NoOp-‐
NoGreen	

NoOp-‐Green	 Op-‐NoGreen	 Op-‐Green	

Iter-‐4	

Iter-‐3	

Iter-‐2	

Iter-‐1	

(b) TCAS-v2

0	

100	

200	

300	

400	

500	

600	

NoOp-‐
NoGreen	

NoOp-‐Green	 Op-‐NoGreen	 Op-‐Green	

Iter-‐4	

Iter-‐3	

Iter-‐2	

Iter-‐1	

(c) TCAS-v3

Figure 5: Symbolic execution costs (in seconds) for iDiscovery with/without Green

1, with only Optimization-2, and with both optimizations,
respectively. Based on the results, we make the following
observations. First, Optimization-1 can reduce the sym-
bolic execution time as well as the number of iterations. To
illustrate, for TCAS-v1, iDiscovery without optimizations
requires four iterations to finalize the invariants with a to-
tal symbolic execution time of 5 minutes 44 seconds, while
Optimization-1 requires only two iterations and 3 minutes
46 seconds. Second, Optimization-2 reduces the symbolic
execution time without reducing the number of iterations.
The reason is that Optimization-2 only restricts the number
of violations for each assertion, but does not separate the in-
teraction between different assertions. Third, the combina-
tion of the two optimizations yields much better results than
either of the optimizations independently. To illustrate, at
the end of the first iteration of ASW, the symbolic execution
time is more than three hours for Optimization-1 and more
than eight hours for Optimization-2 (the time for iDiscov-
ery with no optimization is more than 20 hours). However,
symbolic execution for iDiscovery with both optimizations
finishes within 15 minutes, indicating a speed-up of more
than 14X and 37X over Optimization-1 and Optimization-
2, respectively. These results emphasize the importance of
reducing the complexity of assertions in each program path
(addressed by Optimization-1) and reducing the number of
times an assertion is checked across different program paths
(addressed by Optimization-2).
Different Solver Configurations. We also study how
state-of-the-art solver techniques based on constraint re-use
can benefit iDiscovery. Figure 5 shows the symbolic execu-

tion time for each iteration of iDiscovery with and without
the Green solver interface, which reuses constraint solution
histories from previously observed executions. Note that we
reset the Green solver at the beginning of each experiment
on each artifact. The reductions can be even more dramatic
if we allow for constraint re-use across different programs.
Each sub-figure in Figure 5 represents the results for one
subject. In each figure, each stacked column denotes the
total symbolic execution time (in seconds) for each of the
four configurations (i.e., no optimizations with no green, no
optimizations with green, optimizations with no green, and
optimizations with green). In each stacked column, the four
different colors show the time cost distribution for differ-
ent iterations. Note that we do not show Green results for
WBS because its symbolic execution cost is too small to in-
vestigate (0s for the majority cases), and we do not show
Green results for ASW and Apollo because the current ver-
sion of Green does not support the CORAL solver which is
required for solving invariant constraints of these artifacts.
From the results in Figure 5, we make the following observa-
tions. First, the use of the Green solver extension can reduce
the cost of symbolic execution independent of the optimiza-
tions. Second, using the Green extension together with the
optimizations can yield even better results. To illustrate,
consider the first iteration of TCAS-v1; Green is able to re-
duce the symbolic execution cost of iDiscovery without the
optimizations from 4 minutes and 10 seconds to 2 minutes
and 46 seconds. However, when optimizations are also used,
symbolic execution takes just 8 seconds, which is much bet-
ter than applying them separately. Thus, we believe that the

369

combination of a Green-like solver extension and our opti-
mizations can make future applications of iDiscovery even
more tractable.
Different Initial Test Suites. In practice, it is possible for
the test suites provided to iDiscovery to be generated using
different test generation techniques, and for the test suites to
vary in size and coverage. Thus, we also study the impact of
test suites generated by different techniques and test suites
of various sizes on the performance of iDiscovery. As we al-
ready studied the performance of iDiscovery when given an
initial test suite generated by symbolic execution, we now
analyze the performance of iDiscovery when given an initial
test suite generated randomly. We randomly generated 5%,
10%, 15%, 20%, and 100% of the number of initial tests gen-
erated by symbolic execution as initial test suites. We then
apply iDiscovery with optimizations on each initial test suite
for each artifact. The final set of candidate invariants and
the time cost for the various initial tests are quite similar.
However, the number of added (augmented) invariants and
refuted invariants differs. Therefore, we show the number
of added invariants and refuted invariants for each artifact
and initial suite combination in Figure 6. In Figure 6a, the
horizontal axis shows the different initial test suites (symbc
denotes the symbolically generated test suites, rand denotes
the randomly generated test suites, and x%-rand denotes
x% of the randomly generated test suites); the vertical axis
shows the number of refuted invariants by iDiscovery for
a given initial test suite; each line show the corresponding
results for each artifact. Similarly, Figure 6b shows the num-
ber of added invariants by iDiscovery for each artifact and
each type of initial test suite. To understand the differences
in performance of iDiscovery for different initial test suites,
we also show the instruction coverage, branch coverage, and
line coverage for each initial test suite for each subject in Fig-
ure 7. For example, in Figure 7a, the horizontal axis shows
the different initial test suites, while the vertical axis shows
the instruction coverage for each suite on each artifact.

Based on the results, we highlight several interesting find-
ings. First, the number of refuted invariants is low for most
artifacts when initial test suites have extremely low or high
coverage. The reason is that when the initial test suites
have extremely low coverage, the number of invariants in-
ferred by the first iteration of iDiscovery is limited by the
small set of trace samples, making the number of candidate
invariants to be refuted small; when the initial test suites
have extremely high coverage, the number of invariants in-
ferred during the first iteration is also limited, because the
high-coverage test suites can already refute a number of in-
correct or imprecise invariants. Second, for each subject, the
number of augmented invariants consistently goes down as
the initial test suite coverage goes up. The reason is that
traditional dynamic invariant inference techniques, such as
Daikon, first generate candidate invariants for the covered
program behaviors, and then try to refute them based on
additional tests. Therefore, when a test suite has high cov-
erage, Daikon has likely already computed the largest possi-
ble set of invariants (with potentially many false-positives),
so that iDiscovery can only help refute incorrect/imprecise
invariants (but cannot augment correct/precise invariants).

5.4 Threats to Validity
Threats to construct validity. The main threat to con-
struct validity for our study is the set of metrics used to

evaluate the different iDiscovery configurations. To reduce
this threat, we use the number of finally generated candidate
invariants, augmented invariants, as well as refuted invari-
ants to measure the effectiveness of iDiscovery; we also use
test tracing time, invariant inference time, and symbolic ex-
ecution time of each iteration of iDiscovery to measure the
efficiency of iDiscovery. Our study still has a threat to con-
struct validity: although all the refuted invariants by iDis-
covery are proven to be incorrect or imprecise, we did not
check the quality of the augmented invariants.
Threats to internal validity. The main threat to inter-
nal validity is the potential faults in the implementation of
different configurations of iDiscovery or in our data analysis.
To reduce this threat, the first author carefully reviewed all
the code for iDiscovery and data analysis during the study.
Threats to external validity. The main threat to exter-
nal validity is that our experimental results may not general-
ize to other contexts, including programs, initial test suites,
invariant inference tools, and constraint solvers. Further re-
duction of threats to external validity requires more exten-
sive evaluation on more invariant inference tools and con-
straint solvers, as well as more and larger subject programs.

6. RELATED WORK
Automated techniques for discovering invariants can gen-

erally be categorized as either a static or a dynamic inference
technique. Static inference techniques are typically sound,
but in practice, suffer from several limitations including the
undecidability of the underlying mathematical domains, and
the high cost of modeling program states. Much of the static
inference work [5,22,32] uses abstract interpretation or sym-
bolic execution to approximate the fix-point of properties on
semantics of program expressions. Some work constructs,
derives, or strengthens specifications by using existing spec-
ifications [2,10,15,18,27,34]. While several projects [13,25]
have used static verification tools, e.g., ESC/Java [14] to
check the invariants, the results are not used as feedback to
further improve invariant discovery as is done in this work.

Dynamic invariant detection techniques follow two main
approaches. They either start with a set of candidate invari-
ants and refine them using program trace information from
a user-provided test suite [12,16], or they use the trace infor-
mation to essentially build the invariants “from scratch” [9].
In this work, we use Daikon, which follows the first approach.
Daikon first instantiates a set of initial candidate invariants
based on a database of invariant templates, and then during
execution of a test suite, it tracks the values of program vari-
ables and uses these values to refute invariants in the initial
set [12]. Whereas, a tool such as DySy takes the second ap-
proach and builds the invariants by collecting symbolic path
conditions while executing the user-supplied test suite [9].
DySy then summarizes the generated path conditions as in-
variants. Note that unlike symbolic execution techniques,
DySy is not reliant on a constraint solver or a decision pro-
cedure to check feasibility of the invariants since it relies
exclusively on concrete execution traces. A key difference
between the two approaches is that techniques starting with
candidate invariants, such as Daikon, may over-approximate
the inferred invariants if the set of test traces does not pro-
vide enough information to refute the generated candidate
invariants. On the contrary, techniques that build invariants
“from scratch”, such as DySy, can generate a more precise set

370

0	

50	

100	

150	

200	

250	

5%-‐rand	 10%-‐rand	 15%-‐rand	 20%-‐rand	 rand	 symbc	
#	
Re

fu
te
d	
In
va
ria

nt
s	

tcas-‐v1	

tcas-‐v2	

tcas-‐v3	

wbs	

asw	

apollo	

(a) Trends for Refuted Invariants

0	

5	

10	

15	

20	

25	

30	

35	

40	

5%-‐rand	 10%-‐rand	 15%-‐rand	 20%-‐rand	 rand	 symbc	

#	
N
ew

	 In
va
ria

nt
s	 tcas-‐v1	

tcas-‐v2	

tcas-‐v3	

wbs	

asw	

apollo	

(b) Trends for Added Invariants

Figure 6: The trends for added and refuted invariants for different initial test suites

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

5%-‐rand	 10%-‐rand	 15%-‐rand	 20%-‐rand	 rand	 symbc	

In
st
ru
c4
on

	 C
ov
er
ag
e	
(%

)	

tcas-‐v1	

tcas-‐v2	

tcas-‐v3	

wbs	

asw	

apollo	

(a) Trends for Instruction Coverage

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

5%-‐rand	 10%-‐rand	 15%-‐rand	 20%-‐rand	 rand	 symbc	

Br
an

ch
	 C
ov
er
ag
e	
(%

)	

tcas-‐v1	

tcas-‐v2	

tcas-‐v3	

wbs	

asw	

apollo	

(b) Trends for Branch Coverage

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

5%-‐rand	 10%-‐rand	 15%-‐rand	 20%-‐rand	 rand	 symbc	

Li
ne

	 C
ov
er
ag
e	
(%

)	

tcas-‐v1	

tcas-‐v2	

tcas-‐v3	

wbs	

asw	

apollo	

(c) Trends for Line Coverage

Figure 7: The coverage trends for different initial test suites

of invariants, but the invariants are more similar to symbolic
summaries than the invariants generated by Daikon.

The number of invariants generated by dynamic invari-
ant detection techniques may be quite large, and the quality
of the generated candidate invariants for techniques such
as Daikon [12] and DIDUCE [16], depends largely on the
collection of invariants in its invariant repository. Recent
studies have also shown that the test suite used to generate
the program traces can affect the quantity and quality of
the generated candidate invariants [12, 28]. Recently, Li et
al. [21] presented a technique to help derive more relevant in-
variants and reduce noise. Their technique enhances the dy-
namic invariant detection algorithm by including additional
(“secondary”) constraints which relate classes of invariants.
These constraints can also be inferred automatically through
dynamic observations of program behavior. This work is or-
thogonal to iDiscovery and would be interesting to explore
in conjunction with iDiscovery in future work.

The work most closely related to iDiscovery is that of
Xie and Notkin [35]. Their approach enhances both tests
and specifications using a feedback loop between dynamic
invariant discovery using Daikon and test generation using
Jtest [7]. This is similar to the feedback loop in iDiscovery,
however, the approach in [35] uses the specifications com-
puted by Daikon to guide the test generation process and the
process includes a test selection step which involves manual
inspection of the generated tests. The work presented here
is fully automated and uses a (bounded) symbolic execu-
tion of the program instrumented with the candidate invari-
ants to compute additional test inputs. Howar et al. [17]
proposed an iterative learning algorithm, X-PSYCO, which
combines dynamic analysis and symbolic component anal-
ysis to infer constraints on method parameters, i.e., invari-
ants. Unlike the method-level pre- and post-conditions gen-
erated by Daikon, the results of X-PSYCO are represented
using finite-state automata and specify a component’s inter-
face in terms of safe method sequences where the inferred

constraints on method parameters serve as guards on the
transitions in the automata.

Our recent work on iProperty [36] introduces an approach
for incremental checking of conformance of code to specifica-
tions that evolve. Specifically, iProperty introduces a prop-
erty differencing algorithm that computes logical differences
between two sets of properties to allow checking code against
a minimal set of properties taking into account the previous
version of code and properties already checked as well as
those checking results (e.g., any counterexamples that were
previously found). Property differencing of iProperty can in
principle benefit iDiscovery by further optimizing its itera-
tive use of symbolic execution in enhancing the quality of
invariants discovered. We plan to investigate the combina-
tion of iProperty and iDiscovery in the future.

7. CONCLUSION
This paper introduced iDiscovery, a novel technique that

applies two well-known approaches – dynamic invariant dis-
covery and symbolic execution – in synergy to discover higher
quality invariants. The Daikon tool for invariant discovery
and the Symbolic PathFinder (SPF) tool for symbolic ex-
ecution provide the enabling technology. A feedback loop
iteratively runs Daikon and SPF to discover more accurate
and complete invariants until a fix-point is reached. Two
optimizations, namely assertion separation and violation re-
striction, enhance the efficiency of iDiscovery by reducing
the cost of symbolic execution. An experimental evaluation
using a suite of Java subject programs shows that iDiscov-
ery converges to a set of higher quality invariants than the
initial set in a few iterations.

8. ACKNOWLEDGMENTS
This work was funded in part by the National Science

Foundation (NSF Grant Nos. CCF-0845628, CCF-1319688,
and CNS-0958231) and the Google Summer of Code 2013.

371

9. REFERENCES
[1] A. Baliga, V. Ganapathy, and L. Iftode. Automatic

inference and enforcement of kernel data structure
invariants. In ACSAC, pages 77–86, 2008.

[2] N. Bjørner, A. Browne, and Z. Manna. Automatic
generation of invariants and intermediate assertions.
Theor. Comput. Sci., 173(1):49–87, Feb. 1997.

[3] V. Braberman, F. Fernández, D. Garbervetsky, and
S. Yovine. Parametric prediction of heap memory
requirements. In ISMM, pages 141–150, 2008.

[4] C. Cadar, D. Dunbar, and D. R. Engler. Klee:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[5] B.-Y. E. Chang and K. R. M. Leino. Abstract
interpretation with alien expressions and heap
structures. In VMCAI, pages 147–163, 2005.

[6] L. A. Clarke. A program testing system. In
Proceedings of the 1976 annual conference, ACM ’76,
pages 488–491, 1976.

[7] P. Corporation. Jtest manuals version 4.5 october 23
(2002). http://www.parasoft.com/, 2002.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL,
pages 238–252, 1977.

[9] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy:
Dynamic symbolic execution for invariant inference. In
ICSE, pages 281–290, 2008.

[10] D. D. Dunlop and V. R. Basili. A heuristic for
deriving loop functions. IEEE Trans. Softw. Eng.,
10(3):275–285, May 1984.

[11] M. D. Ernst. Dynamically discovering likely program
invariants. PhD thesis, University of Washington,
2000.

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1-3):35–45, 2007.

[13] C. Flanagan and K. R. M. Leino. Houdini, an
annotation assistant for ESC/Java. In FME, pages
500–517, 2001.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In PLDI, pages 234–245, 2002.

[15] S. M. German and B. Wegbreit. A synthesizer of
inductive assertions. In AFIPS, pages 369–376, 1975.

[16] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. In ICSE,
pages 291–301, 2002.

[17] F. Howar, D. Giannakopoulou, and Z. Rakamarić.
Hybrid learning: Interface generation through static,
dynamic, and symbolic analysis. In ISSTA, pages
268–279, 2013.

[18] S. Katz and Z. Manna. Logical analysis of programs.
Commun. ACM, 19(4):188–206, Apr. 1976.

[19] J. C. King. Symbolic execution and program testing.
CACM, 19(7):385–394, 1976.

[20] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and
D. R. Cok. How the design of JML accommodates
both runtime assertion checking and formal
verification. Sci. Comput. Program., 55(1-3):185–208,
Mar. 2005.

[21] K. Li, C. Reichenbach, Y. Smaragdakis, and
M. Young. Second-order constraints in dynamic
invariant inference. In ESEC/FSE 2013, pages
103–113, 2013.

[22] F. Logozzo. Automatic inference of class invariants. In
VMCAI, pages 211–222, 2004.

[23] M. Z. Malik, A. Pervaiz, and S. Khurshid. Generating
representation invariants of structurally complex data.
In TACAS, pages 34–49, 2007.

[24] B. Meyer, J.-M. Nerson, and M. Matsuo. Eiffel:
Object-oriented design for software engineering. In
ESEC, pages 221–229, 1987.

[25] J. W. Nimmer and M. D. Ernst. Static verification of
dynamically detected program invariants: Integrating
Daikon and ESC/Java. In RV, 2001.

[26] C. S. Păsăreanu and N. Rungta. Symbolic Pathfinder:
symbolic execution of Java bytecode. In ASE, pages
179–180, 2010.

[27] C. S. Pasareanu and W. Visser. Verification of Java
programs using symbolic execution and invariant
generation. In SPIN, pages 164–181, 2004.

[28] N. Polikarpova, I. Ciupa, and B. Meyer. A
comparative study of programmer-written and
automatically inferred contracts. In ISSTA, pages
93–104, 2009.

[29] SAE-ARP4761. Guidelines and Methods for
Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment. SAE International,
December 1996.

[30] SIR. Software-artifact infrastructure repository:
Home. http://sir.unl.edu, 2008.

[31] M. Staats, S. Hong, M. Kim, and G. Rothermel.
Understanding user understanding: Determining
correctness of generated program invariants. In
ISSTA, pages 188–198, 2012.

[32] N. Tillmann, F. Chen, and W. Schulte. Discovering
likely method specifications. In ICFEM, pages
717–736, 2006.

[33] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green:
reducing, reusing and recycling constraints in program
analysis. In FSE, page 58, 2012.

[34] B. Wegbreit. The synthesis of loop predicates.
Commun. ACM, 17(2):102–113, Feb. 1974.

[35] T. Xie and D. Notkin. Mutually enhancing test
generation and specification inference. In In Proc. 3rd
International Workshop on Formal Approaches to
Testing of Software, pages 60–69, 2003.

[36] G. Yang, S. Khurshid, S. Person, and N. Rungta.
Property differencing for incremental checking.
http://cs.txstate.edu/~g_y10/publications/

icse14-iproperty.pdf, to appear in ICSE 2014.

[37] G. Yang, C. S. Păsăreanu, and S. Khurshid. Memoized
symbolic execution. In ISSTA, pages 144–154, 2012.

372

