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The Problem

Determine ability to detect chafing faults in 
shielded wire using TDR

Research goals:
• Characterize ability to detect faults on shielded wire types
• Use results to inform the design of better hardware/software
• In this presentation we look at chafed coax as an example

• The approach presented can be generalized



Approach

• Derive computationally efficient physics based forward models
– Determine the TDR response given wire specs. and fault location

• Develop fault detection software based on a probabilistic 
approach that accounts for real world uncertainties.
– Probability theory quantifies effectiveness of a fault detection algorithm

Parameters & 
Variables

Observed 
Outputs

)(F



TDR Primer

TDR Hardware Wire Under Test

ZL

An input signal is applied to the wire

TDR measures the reflected signal

Measured TDR response to a 
transmission line with 2 geometry 
discontinuities (faults). Changes in 
this reflected signature  indicate fault 
location and size.



Input Step Signal

Laboratory Measured 
Response to faulted RG58 

Coax Cable

1st and 2nd Fault 
Reflection Signatures

Actual TDR Response for Chafed Cable

TDR RG58 Coax – 7 m - 11 × 3 mm fault @ 6 m ZL = ∞ 



Physical Effects

TDR RG58 Coax – 7 m - 11 × 3 mm fault @ 6 m ZL = ∞ 

Impedance mismatch at input connection



Physical Effects

TDR RG58 Coax – 7 m - 11 × 3 mm fault @ 6 m ZL = ∞ 

Capacitive charging as  the signal flows 
down the line



Physical Effects

TDR RG58 Coax – 7 m - 11 × 3 mm fault @ 6 m ZL = ∞ 

1st reflection from 
chafing fault



Physical Effects

TDR RG58 Coax – 7 m - 11 × 3 mm fault @ 6 m ZL = ∞ 

Secondary 
reflection from 

chafing fault

Reflection 
from Load



Model Evolution

base model (lossless)



Model Evolution

base model + loss effects (σc < ∞)



Model Evolution

base model + loss effects (σc < ∞) + constant source mismatch



Model Evolution

base model + loss effects (σc < ∞) + freq. dependent source mismatch



The Forward Model

TDR
Hardware

coax chafe coax

ZL

z = 0+

l1 l2d

Approach: Use RF fundamentals to model the system piece-by-
piece, and then use the pieces to compute the TDR response.  

The next few slides cover S-parameter based models for the 
components in chafed coaxial cable.



Model Components

TDR
Hardware

coax chafe coax

ZL

Nominal (unfaulted) Coaxial Cable

a

b

εr

σc

• Radial dimensions a and b are 
considered known constants

• σc is the conductance of the inner 
conductor in [Siemens/meter]

• εr is the relative dielectric permittivity
• σc and εr are considered unknown 

parameters



Model Components

TDR
Hardware

coax chafe coax

ZL

S-Parameter Model for Nominal Coaxial Cable
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Model Components

TDR
Hardware

coax chafe coax

ZL

Chafing Fault Model

w

φ

Z0(ω) Z0(ω)ZF

d

• Finite difference method is used to 
numerically determine ZF as a function of w

• S-Parameters are then a function of d, ZF, 
and Z0(ω)

• Unknown parameters are w, and d



Model Components

TDR Hardware Model

• Unknown parameters are the measurement delay time tM, 
source impedance Zs, system gain constant G.

TDR
Hardware

coax chafe coax

ZL

VS

ZS Delay

Downstream NetworkГ0(ω)

VM(t) = measured time domain response



TDR Response Calculation for the 
Composite Model
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The entire calculation is based on a fundamental
S-Parameter Update Equation



TDR
Hardware

coax chafe coax

ZL

z = 0+

l1 l2d

TDR Response Calculation

Starting with the composite model, and system 
parameters compute the TDR response.

System parameters: fault location, length, width, cable 
dielectric permittivity, conductivity, system gain, port 
impedance mismatch, and measurement delay



TDR
Hardware

coax coax

ZL

TDR Response Calculation

Break it into its components:
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TDR
Hardware

coax coax

ZL

TDR Response Calculation

Process the schematic from right to left:
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TDR
Hardware

coax coax

ZL

TDR Response Calculation

Process the schematic from right to left:
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TDR
Hardware

coax coax

ZL

TDR Response Calculation

Process the schematic from right to left:
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TDR
Hardware

coax coax

ZL

TDR Response Calculation

Incorporate the TDR Hardware Model:
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TDR
Hardware

coax coax

ZL

TDR Response Calculation

Summary:

chafe

Г0 Г1 Г2 ГL

•Entire model is easy to evaluate on a computer
• It takes a few tens of milliseconds for say N = 4095 

different frequencies needed for the TDR response
•The model is just a function: F(θ): R7 → CN

•θ = (w , d, l1, εr , σc , Zs , tM , G )



Probabilistic Inversion
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The inversion problem is then clearly defined as an optimization problem:

),|Pr( maximize Fdata

Find the most probable parameters given the observed data and model

(1)

(2)

Viewed as a 
function of θ

Goal: Find the fault location and size, given the measured TDR 
response – the inverse of the forward model.

A Probabilistic Approach



Simulated Example Posterior PDF

Fault signature is not visually detectable on the TDR measurement, 
but very detectable on the Posterior PDF

Optimal, most likely fault 
location and size



Simulated Example Posterior PDF

Fault signature is not visually detectable on the TDR measurement, 
but very detectable on the Posterior PDF

Optimal, most likely fault 
location and size



Markov Chain Monte-Carlo
For k=1,2,…,N sample θk ~ Pr(θ|data,F)

The optimal estimate is then: 
Θ* = argmax Pr(θk|data,F)

The spread of the N samples 
provide uncertainty information

The samples are obtained using the Nested Sampling algorithm, a 
variant of the famous Metropolis Hastings Algorithm
• The main drawback is this approach is slow, it takes around 8 hours to solve 

our fault inversion problem
• The main advantage is it solves a general nonlinear inversion problem 

without the need for derivative information, a good initial guess, or 
additional Gaussian approximations



Optimal Estimate and Uncertainty

Lab Measurements:
Location: 6.007 ± 0.012 (m)

Width: 3 ± 1 mm
Length: 11 ± 1 mm

(actual fault is ellipsoidal)

Chafing Fault Parameter Estimates
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Fault
Length (mm)

Location (m)

Posterior Samples
θk ~ Pr(θ|data,F)

95% Confidence Ellipsoid

Best Estimate



Optimal Estimate and Uncertainty
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Conductivity (S/m)

RG58 Coaxial Cable Parameter Estimates

95% Confidence Ellipse

Text Book Values:
Permittivity (PE): 2.25

Conductivity (Cu) : 5.8 x 107

Text book values are typical and 
vary due to temperature, 

humidity, impurities, etc …

Our Estimate reflects the most 
likely values for this particular 

cable sample and test 
conditions



Model Fit Verification

Measurement and Model at the Parameter Estimate



Conclusion

• Main purpose of this work was to establish a general 
framework for TDR based fault detection in a wiring system
– Presented one example for chafing fault detection in RG58 coax

– Plan to extend the work to other common wiring geometries such as 
twisted shielded pair

• The probabilistic inversion approach is the way to go:
– Provides  a clear definition of what an optimal estimate is

– Enables quantification of fault detectability (as estimation uncertainty)

• Ultimate Goals: 
– Address trade space research questions

– Develop improved fault detection software that works in practice

Questions ?



Supporting Material



Model Inversion

Forward Model
Uncertainty Model

mn
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wire parameters
fault location

fault geometry
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Inversion Approach

• Direct Approach:
– Almost always works poorly in practice because there is uncertainty between 

the model output and the measured data

– Finding the inverse of the forward model, if it exists, is often intractable in 
practice. The most general forward model is an algorithm.

• Probabilistic Approach

– Requires specifying a prior pdf, which encodes known 
information about the inputs given no measured data

– Also requires a likelihood pdf, which encodes the 
probability of measuring the data given the inputs
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Admitting uncertainty in the modeling and measurement 
process leads to robust inversion and much more …



MCMC Inversion Example

Likelihood:

Prior:

Approach:

Solve:
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Estimation with Uncertainty

Noisy TDR Response

Best Estimate with 95% Confidence Ellipsoid
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Uncertainty Growth with Distance 
for a 2 mm Fault in RG58 Coax
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The Baseline Problem

Wire parameters like conductivity, and 
permittivity change over time causing a 

different TDR response each time a 
measurement is made

Cable Length = 7 m
Fault Location = 6 m
Fault Radius  = 2 mm
The same in all three cases!

3 Simulated Measurements of the Same Cable and Fault



No Baseline Needed!

95% Confidence 
Ellipse

Best Estimate

Actual

3 Simulated Measurements of the Same Cable and Fault

Fault Estimation Results for Each Simulation


