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A useful technique for the validation and verification of complex flight 
systems is Monte Carlo Filtering—a global sensitivity analysis that tries to 
find the inputs and ranges that are most likely to lead to a subset of the 
outputs. A thorough exploration of the parameter space for complex 
integrated systems may require thousands of experiments and hundreds of 
controlled and measured variables. Tools for analyzing this space often have 
limitations caused by the numerical problems associated with high-
dimensionality and caused by the assumption of independence of all of the 
dimensions. To combat both of these limitations, we propose a technique that 
uses a combination of the original variables with the derived variables 
obtained during a principal component analysis.  

Nomenclature 

€ 

α  = The angle between the plotting plane and the planes of the projected hyperrectangle 

I. Introduction 
inding bugs in modern flight software is an arduous process. Interdependencies between the 
systems and subsystems of the flight vehicle and the environment are usually explored in the 

design phase using high-fidelity simulations. At this level, the interplay between the interfaces 
can be fully explored. Advances in computing power make it possible to try many thousands of 
combinations of input variables to exercise the behavior of the system. However, a thorough 
exploration of the entire flight envelope results in gigabytes of data that requires expert domain 
knowledge to interpret; and because of the high dimensionality of the data, it is difficult to pick 
out patterns with the human eye.  
 The Robust Software Engineering (RSE) group within the Intelligent Systems Division at 
NASA Ames Research Center has developed a multi-step Monte Carlo Filtering technique1,2 

called the Margins Analysis3-5 that automates much of the process necessary to identify unusual 
behaviors within the system and to isolate the critical ranges for suspicious inputs. We develop 
input test vectors using an n-factor combinatorial process9—the assumption is that most bugs are 
triggered by a maximum combination of two or three input variables; by guaranteeing that each 
combination of n input variables (where n is 2 or 3) appears in the test suite at least once we get a 
coverage guarantee while limiting the number of total test vectors within the suite. The output 
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behavior is analyzed for non-compliance with requirements and for unexpected structure using a 
combination of unsupervised6 and supervised7,8 machine learning techniques. Failures or 
unexpected results are collected and, when enough examples of a particular undesired behavior 
have been gathered, the data is automatically examined to determine which inputs (and ranges) 
demonstrate the most sensitivity with respect to the undesired behavior. This information is 
exploited in order to cause the undesired behavior to occur more often in future runs, and the 
aggregated data over all of the iterations can be used to identify bugs within flight software or 
within the simulation, or to determine the margins to failure as the systems pass from nominal to 
off-nominal behavior. 
 In current practice at NASA, the analysis can involve several hundred parameters over tens of 
thousands of trials. The unsupervised learning technique, a clustering technique that utilizes an 
expectation-maximization algorithm, has numerical difficulties at this level of dimensionality; 
we use a principal component analysis to reduce the dataset. The supervised learning technique, 
a treatment learning algorithm developed at West Virginia University, does not suffer from the 
same numerical difficulties as the clustering technique and can handle large numbers of 
parameters effortlessly. However, the treatment learning algorithm assumes that all of the 
parameters are independent; this assumption, when false, causes parameter ranges to be much 
larger than necessary and can cause the treatment learner to miss important sensitivities. A 
treatment learning analysis performed solely in the principle components space benefits from the 
fact that each transformed variable is linearly independent, but suffers from the difficulty of 
understanding the results in the transformed space. Each new direction in the principal 
component analysis is a linear combination of the original variables, so the answer that the 
treatment returns is a hyperrectangle in the space of the original variables. 
 We utilize the ability of the treatment learner to handle many dimensions, and ask it to 
perform an analysis over the data simultaneously in the original space and in the rotated space of 
the principle component analysis. As a post-processing step, we reduce the hyperrectangles in 
the principle component space to two- and three-dimensional projections in the original variable 
space. We then combine all of the information gained from the non-rotated and rotated spaces 
into two- and three-dimensional plots in the original variable space, so that they can be 
understood and interpreted by domain experts.  

 

II. Methodology 
We will discuss at length how we perform the principal component analysis, how we reduce 

dimensionality for the clustering algorithm, what data is given to the treatment learner and what 
data the treatment learner returns, how we choose the number of plots for each treatment, how 
we determine the dimensionality and axes for each plot, and how we plot the boundaries for the 
treatments. 

III. Results 
In standard practice, we ask the treatment learner to return a maximum of 10 treatments. Each 

treatment can consist of up to 4 variables. We place no restriction on whether these variables are 
in the original space or the principle component space. Ranges in the principle component space 
are first transformed into hyperrectangles in the original space, and then projected into two- or 
three-dimensional plots depending on the value of 
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α , the angle between the primary two-
dimensional plotting plane and the parallel planes of the projected hyperrectangle. The primary 
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two-dimensional plotting plane is defined by the maximum components of the unit vector in the 
principle component direction when written as a linear combination of the variables in the 
original directions. 

Figure 1 shows an example treatment for a dataset obtained during a bicycle ride. There were 
10 variables for this dataset, and each of the 4435 time steps in the series was treated as a 
different experiment. The power calculation from the measured variables in the dataset was 
particularly noisy. Each data point in the set was rated according to the noise in the power 
calculation for some small time period surrounding the data point; the colormap goes from blue 
to red with the red points in the plots corresponding to the noisiest data points. The treatment 
returned for Figure 1 had 3 components (chosen by the algorithm from 20 components—10 
components in the original variable space and the 10 rotated directions): cadence, wind speed, 
and a principle component direction in 10-dimensional space where the two largest components 
when written in the original space were hill slope and wind speed. The two variables in the 
original space are plotted together as a two-dimensional plot on the left, and the red box shows 
that the noisiest data occurs at the highest wind speeds and cadence. The angle 
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α  for the  

 
Figure 1. An example treatment for data obtained during the operation of a bicycle. The data are color-coded 
from blue to red with red corresponding to the noisiest power data and blue corresponding to the least noisy. The 
red lines outline the regions identified by the treatment learner as the most likely to contain the undesirable noisy 
data. In this treatment, it is clear to see from the first plot that the undesired data (in this case, noisy power data, 
plotted in red and outlined with a black box) occurs most often at high wind speeds when the rider is continuing to 
pedal the bicycle. This second plot in the treatment is a projection of a principal component analysis direction result 
into the original space. This plot shows us that the hill slope and the wind speed have a strong linear correlation 
and that the least desirable data occurs for a linear combination of high wind speed and high hill slope. The two 
plots together constitute a visual representation of the highest scoring treatment. 
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principal direction isolated in this treatment is less than 10 degrees, so the principal component 
information is plotted as a two-dimensional plot on the right. The red lines show the intersection 
of the almost vertical treatment hyperplanes with the plane defined by the hill slope and wind 
speed.  What immediately becomes apparent from the plot on the right is that the hill slope and 
wind speed are negatively linearly correlated, so that the highest wind speeds occur at the 
steepest downhill slopes. Interpreting the two plots together leads to the conclusion that the 
calculated power measurement is most likely to be faulty when the cyclist is free pedaling on the 
downhill slopes. 

IV. Conclusion 
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