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Abstract. Component interfaces are the essence of modular program
analysis. In this work, a component interface documents correct se-
quences of invocations to the component’s public methods. We present an
automated framework that extracts finite safe, permissive, and minimal
interfaces, from potentially infinite software components. Our proposed
framework uses the L* automata-learning algorithm to learn finite in-
terfaces for an infinite-state component. It is based on the observation
that an interface permissive with respect to the component’s must ab-
straction and safe with respect to its may abstraction provides a precise
characterization of the legal invocations to the methods of the concrete
component. The abstractions are refined automatically from counterex-
amples obtained during reachability checks performed by our framework.
The use of must abstractions enables us to avoid an exponentially ex-
pensive determinization step that is required when working with may
abstractions only, and the use of L* guarantees minimality of the gener-
ated interface. We have implemented the algorithm in the ARMC tool
and report on its application to a number of case studies including several
Java2SDK and J2SEE library classes. We also report on the successful
application to NASA flight-software components.

1 Introduction

Component interfaces are a central concept in component-based software en-
gineering. In current practice, interfaces typically describe the services that a
component provides and requires at a purely syntactic level. However, the need
has been identified for interfaces that document richer aspects of component
behavior. For example in this work, as in others [1, 5, 8, 10, 11, 14], interfaces
describe correct sequences of invocations to public methods of a component.
Richer interfaces can serve as a documentation aid to application programmers,
but can also be used by verification tools in checking that the components are
invoked correctly within a system. In fact, interfaces are key for modular pro-
gram analysis [8, 10, 11]. They reduce the task of verifying a system consisting of
a component and a client, to the more tractable task of verifying that the client
satisfies the component’s interface.

Given the source-code of a library component C, we address the problem of
extracting a precise component interface in the form of a deterministic finite-
state automaton (DFA), labeled with the public method names of C. By precise,
we mean safe and permissive. An interface is safe if it accepts no illegal sequence



of calls to C, and permissive if it includes all the legal sequences of calls to C [14].
In contrast to our previous work [11], we combine interface generation algorithms
with predicate abstraction techniques, that allows us to handle components with
very large or infinite state spaces. The novelty of our proposed algorithms lies
in the fact that we use a combination of under-, and over-approximations of the
component behavior, in the form of must and may abstractions, respectively. Our
approach is based on the observation that an interface that is safe with respect
to the may abstraction and permissive with respective to the must abstraction is
safe and permissive with respect to C itself. We use the L* learning algorithm [4]
to generate safe and permissive interfaces for C, by iteratively checking may and
must abstractions of C. These abstractions are gradually refined during the
learning process, based on counterexamples. If the algorithms terminate, then
the returned interface is the minimal DFA capturing the precise interface for C.

Extended interfaces can be difficult to characterize precisely without the help
of automated tools, making interface generation an area of active research [1, 5,
14]. The approaches closest to ours are those presented in [1, 14]. Both approaches
construct only over-approximations of the component behavior, which may be
non-deterministic. Checking permissiveness when (abstracted) components are
non-deterministic requires a potentially expensive determinization step. Alur et
al. [1] avoid this step by using heuristics, and therefore cannot guarantee per-
missiveness of the generated interfaces. On the other hand, Henzinger et al. [14]
build “abstract regions”, which is equivalent to performing a determinization
step. Their abstractions are subsequently checked for safety and permissiveness.
These steps cannot be combined in an on-the-fly algorithm, so the complete
abstract reachability graph needs to be constructed, even if a counterexample
exists early in the search.

Furthermore, the abstraction mechanisms in [14] cannot guarantee minimal
interfaces. Even if these interfaces were to be minimized, this approach would
suffer from potentially large intermediate interfaces that subsequently get com-
pacted. This latter problem is more pronounced in the presence of the deter-
minization step, which is exponential, in the worst case. In contrast, L*-based
approaches like ours and [1] directly generate minimal interfaces. Note however
that the technique by [1] does not provide criteria to automatically detect the
need for abstraction refinement. Their refinements are based on inspection of
the generated interfaces, and are performed manually.

Contributions. We present a framework for automated generation of mini-
mal, safe and permissive interfaces for large or infinite-state components. The
framework uses L* with automatically generated and refined may and must
abstractions of the component behavior. It guarantees permissiveness without
requiring determinization, and performs all checks on-the-fly. We present a basic
algorithm and also an optimized version that re-uses results across abstraction-
refinement iterations. We also describe the implementation of our algorithm in
ARMC, and the application to the benchmarks presented in [1, 14], as well as
new benchmarks including J2SEE classes and NASA software components.



Other related work. Work on predicate abstraction for modal transition sys-
tems, e.g. [12], similarly distinguishes between may and must transitions. How-
ever, to the best of our knowledge, the use of may and must abstractions for in-
terface generation is novel. Other approaches generate interfaces by using static
analysis [25], or a combination of static and dynamic analyses [26], or by extract-
ing information from sample execution traces [3]. All these techniques generate
approximate interfaces, as opposed to our work that aims at producing precise
interfaces that provide correctness guarantees.

Interface generation is related to assume-guarantee reasoning [2, 9, 16, 21],
since component interfaces can be used as assumptions in this context. Shoham
et al. [24] describe a compositional framework for modal transition systems,
based on techniques taken from the 3-valued game-based model checking for ab-
stract models. Those approaches do not use explicit interfaces (or assumptions).
Finally, recent work [13] uses may and must information in the form of procedure
summaries in a compositional framework that performs program analysis.

2 Example

void rel(){
a = NULL;
return;}

void relx(){
a = NULL;
x = 0;
return;}

void acq(){
if(a==NULL)

a=get lock();
else

e=1;

return;}

void read(){
if(a!=NULL)

m read(a);
else

e=1;

return;}

void acqx(){
if(a==NULL){

a=get lock();
x=1;}

else
e=1;

return;}

void write(){
if(x!=0)

m write(a);
else

e=1;

return;}

Fig. 1. Read-write-acq example

Our running example, taken from [14], is illustrated in Figure 1. It consists
of a component C with 3 static variables and 6 public library methods. Variable
e defines the error states in the component (e 6= 0), variable a denotes the
possession of lock and variable x enables method write. Methods acq/rel and their
variations acqx/relx are used to acquire/release a lock, respectively. Methods read
and write are used to access and update the shared memory, respectively.

It can be observed that C enforces several requirements such as read can
only be called after acq or acqx. Similarly write can be called safely only after
calling acqx. Once acq is called, it can only be called again after calling rel or relx.
The interface A for C should capture all such correct sequences of invocation of
public methods.

3 Preliminaries

Components and Interfaces. A component C = (Xs, F, s0, Perr, Σ) consists
of: a set Xs of static global variables shared across the methods ([[Xs]] denotes
the valuations of variables in Xs and represents the states of the component); a
set F of library methods; initial state s0 of the component, s0 ∈ [[X]]; a global
set Perr of error predicates over variables in X; and a finite alphabet Σ of the



method names. The error predicates denote the error conditions in the library
such as runtime exceptions, assertion violations etc. A component state s ∈ [[Xs]]
is an error state if s satisfies an error predicate.

Example 1. The example component in Figure 1 can be expressed as C =
(X,F, s0, Perr, Σ) where X = {a, x, e}, F is the set of CFAs for methods (de-
scribed below), the start state s0 = {a = NULL, x = 0, e = 0}, the error
predicate Perr = {e 6= 0} and alphabet set Σ ={acq,read,rel,write,relx,acqx }.

Every library method f ∈ F is represented as a control-flow automaton (CFA)
f = (Xs,Xl, Q, qs, qr, T ) consisting of a disjoint set of static variables (Xs) and
local variables (Xl), a set Q of control locations; a start location qs ∈ Q, a return
location qr ∈ Q, and a finite set of method transitions T . Each transition τ ∈ T
is labeled with a from location qfrom ∈ Q, a to location qto ∈ Q and the method
statement operation represented as a guarded command, g(x) 7→ x = e(x) where
g(x) is a guard and e(x) are updates to variables in x ∈ (Xs ∪ Xl). We use a
special no-op skip transition to model multiple return locations with one return
location.

CFA and Component Semantics. We give the definition of CFA semantics
in terms of method transitions and of component semantics in terms of method
calls. A state in the CFA is modelled as (q, s) where q ∈ Q is a control location
and s ∈ [[(Xs∪Xl]] represents the valuation of (both global and local) variables in
that state, whereas a state in the component is represented by s where s ∈ [[Xs]]
denotes the valuation of (only global) variables in that state.

A binary transition relation ρτ ⊆ (Q × [[Xs ∪ Xl]])
2 captures the semantics

of the transitions τ ∈ T in a CFA. ((q, s), (q′, s′)) ∈ ρτ if q = τ.qfrom, q′ = τ.qto,

s |= τ.g and s′ = τ.e(s). We write s
τ

−→ s′ for ((τ.qfrom, s), (τ.qto, s
′)) ∈ ρτ .

Let s ◦ t denote the combination of valuations s ∈ [[Xs]] (static variables)
and t ∈ [[Xl]] (local variables). The transition relation for the component δC ⊆
[[Xs]]×Σ × [[Xs]] denotes the successful termination of method f when applied
on some state s ∈ [[Xs]] resulting in state s′ ∈ [[Xs]]. It is defined as follows:
(s, f, s′) ∈ δC if ∃ sequence (q1, (s1 ◦ t1)), (q2, (s2 ◦ t2)), . . . , (qn, (sn ◦ tn)) such
that (qs, s) = (q1, s1) (q1 is the start location of f), (qr, s

′) = (qn, sn) (qn is the
return location of f), and ∀i

1≤i≤n−1
((qi, (si ◦ ti)), (qi+1, (si+1 ◦ ti+1))) ∈ fc.ρτ , si ∈

[[Xs]], ti ∈ [[Xl]] (every transition in the sequence is a valid transition in f.T ). For
simplicity we assume error states have no outgoing method transitions, except

for return. We write s
f

−→ s′ for (s, f, s′) ∈ δC .
The semantics of the component C is captured by a (possibly infinite) de-

terministic transition system SC = ([[X]], Σ, s0, δC). A component sequence
Seq = f1, f2, . . . , fn is the sequence of method calls corresponding to a com-
putation s0, s1, . . . , sn of SC such that ∀i si ∈ [[X]], (si−1, fi, si) ∈ δC . An
error sequence is a component sequence that leads the component to an er-
ror state. The language L(SC) ⊆ Σ∗ denotes all the component sequences of C;
LE(SC) ⊆ L(SC) denotes the language of error sequences, and Lsafe(SC) denotes
the language of safe method sequences which is defined to be the complement of
LE(SC), i.e. Lsafe(SC) = LE(SC). Note that while L(SC) and LE(SC) contain



only feasible traces, Lsafe(SC) may contain both feasible and infeasible compo-
nent sequences.

Safe and Permissive Interfaces. An interface for a library component C is
a prefix-closed regular set over the alphabet Σ of library method names. We
represent interfaces as (deterministic) finite state automata A = (Q,Σ, q0, δ)
where: Q is a finite non-empty set of accept states; Σ is a finite alphabet of
method names; q0 ∈ Q is the initial state; and the transition relation δ ⊆ Q ×
Σ×Q (the set of accepting states is Q). L(A) is the set of words accepted by A.
We let LE(A) = L(A) denote the set of error traces of A. LE(A) is the language
accepted by automaton Aerr, representing A completed with an error state which
is the only accepting state, i.e., Aerr = (Q′, Σ, q0, δ

′), where Q′ = Q ∪ {err} and
δ′ = δ ∪ (q, a, err) ∀q, q′ ∈ Q, a ∈ Σ : (q, a, q′) 6∈ δ.

Interface A is safe if every word w ∈ L(A) is a safe sequence of method calls in
C, i.e. L(A) ⊆ Lsafe(SC); equivalent to LE(SC) ⊆ LE(A) or L(A)∩LE(SC) = ∅.

Interface A is permissive if it accepts all safe sequences of method calls in C,
i.e. Lsafe(SC) ⊆ L(A); equivalent to LE(A) ⊆ LE(SC) or Lsafe(SC)∩LE(A) = ∅.

From the above definitions, since LE(SC) ⊆ LE(A) and LE(A) ⊆ LE(SC),
it follows that LE(SC) = LE(A).
Example 2. For the component in Figure 1, the string σ1 = (acq,read,rel) ∈
Lsafe(SC) and σ1 ∈ L(SC) as the corresponding method sequence is safe for the
component. The string σ2 = (read,acq,rel) ∈ LE(SC) as the method sequence
causes the component to be in an error state.

Composition. Let SC = ([[X]], Σ, s0, δC) be the transition system capturing
the semantics of library component C, and A = (Q,Σ, q0, δ) be an interface au-
tomaton. The composite transition system G = SC ‖ A obtained by composing
SC and A is defined as G = (Q×, Σ, q×0 , δ×), where Q× = Q×[[X]], q×0 = (q0, s0),
and δ× = {((q, s), f, (q′, s′))|(q, f, q′) ∈ δ and (s, f, s′) ∈ δC}.

Abstraction. We build may and must abstractions of software components
using predicate abstraction – a special instance of abstract interpretation [7] that
maps a potentially infinite state transition system into a finite state transition
system via a finite set of predicates Preds = {p1, . . . , pn} over the program
variables. We ‘require Perr ⊆ Preds. An abstract state a ⊆ Preds is an error
state if it satisfies an error predicate.

An abstraction function α maps a concrete program state s to a set of predi-
cates that hold in s: α(s) = {p ∈ Preds | s |= p}. For transition τ ∈ T of method
f , we define may and must transitions; a, a′ denote abstract states, s, s′ denote
concrete states:
– a

τ
−→must a′ iff ∀s s.t. α(s) = a, ∃s′ s.t. α(s′) = a′ and s

τ
−→ s′. a

f
−→must a′

iff ∀s s.t. α(s) = a, ∃s′ s.t. α(s′) = a′ and s
f

−→ s′.

– a
τ

−→may a′ iff ∃s s.t. α(s) = a and ∃s′ such that α(s′) = a′ and s
τ

−→ s′.

a
f

−→may a′ iff ∃s s.t. α(s) = a and ∃s′ s.t. α(s′) = a′ and s
f

−→ s′.

Given component C with transition system SC , the must and may abstrac-
tions with respect to the set of abstract predicates Preds are defined as Smust

C,Preds
=



(2Preds, Σ, α(s0),−→must) and Smay
C,Preds

= (2Preds, Σ, α(s0),−→may), respectively.

We sometimes write Smust
C or Smay

C when Preds is clear from the context.
Algorithms for computing may and must abstractions with the help of a

theorem prover are given in e.g. [22]. Note that the set of may transitions is
a super-set of the must transitions. We also note from the above definitions
it follows that the may and must abstractions define simulations [19] between
Smust

C and SC , and between SC and Smay
C , respectively. Since simulation im-

plies trace inclusion, we have the following characterization of under- and over-
approximations (that we will use later):

Proposition 1. L(Smust
C ) ⊆ L(SC) ⊆ L(Smay

C ). Furthermore, LE(Smust
C ) ⊆

LE(SC) ⊆ LE(Smay
C ).

Weakest Precondition. For automated abstraction refinement, we use weak-
est precondition calculations over counterexample traces [22]. Let φ be a predi-
cate characterizing a set of states. The weakest precondition of φ with respect to
transition τ is wp(φ, τ) = ∀s′.(s

τ
→ s′ ⇒ φ(s′)), and it characterizes the largest

set of states whose successors by transition τ satisfy φ.

The L
∗ Algorithm. L* was developed by Angluin [4] and later improved

by Rivest and Schapire [23]. L* learns an unknown regular language U over
alphabet Σ and produces a minimal deterministic finite state automaton (DFA)
that accepts it. L* interacts with a Minimally Adequate Teacher that answers
two types of questions from L*. The first type is a membership query asking
whether a string σ ∈ Σ∗ is in U . For the second type, the learning algorithm
generates a conjecture A and asks whether L(A) = U . If L(A) 6= U the Teacher
returns a counterexample, which is a string σ in the symmetric difference of
L(A) and U . L* is guaranteed to terminate with a minimal automaton A for U .
If A has n states, L* makes at most n− 1 incorrect conjectures. The number of
membership queries made by L* is O(kn2 + n log m), where k is the size of Σ,
n is the number of states in the minimal DFA for U , and m is the length of the
longest counterexample returned when a conjecture is made.

4 Algorithms

Let C be a component corresponding to a potentially infinite-state transition
system SC . From now on, for simplicity, we will use C to represent the component
and its transition system. Our proposed interface-generation algorithms operate
by analyzing finite-state abstractions of C. The essence of our approach lies in
the following observation:

Theorem 1. Let us assume a component C, a may abstraction Cmay for C and
a must abstraction Cmust for C. If an interface A for C is permissive with respect
to Cmust and safe with respect to Cmay, then A is safe and permissive for C.

Our approach for interface generation is therefore based on constructing may
and must abstractions for a concrete component C (Cmay and Cmust, respec-
tively). We first describe a basic algorithm, followed by an optimized one; both



algorithms use a combination of automated learning and abstraction refinement
techniques. These algorithms involve procedures for checking whether an inter-
face is safe and permissive, which we provide first.

CheckSafe. Checking that an interface A is safe for some component abstrac-
tion CAbst (corresponding to Cmay or Cmust), reduces to checking reachability
of a state s in A ‖ CAbst such that s corresponds to an error state in CAbst. A
counterexample is returned if such a state is found.

CheckPermissive. The key to our approach is that our algorithms only
check permissiveness for Cmust. Must abstractions are always deterministic since
we assume that our concrete components are also deterministic. As a result,
checking permissiveness reduces to a simple reachability check. The interface A =
(Q,Σ, q0, δ) is first completed with an error state err to get Aerr = (Q′, Σ, q0, δ

′),
where Q′ = Q∪{err} and δ′ = δ∪(q, a, err) ∀q, q′ ∈ Q, a ∈ Σ : (q, a, q′) 6∈ δ. Cmust

sink

is then built by similarly completing Cmust with a new sink state sink, which is
an accepting state (see [11] for explanations of the need for such completions).
The permissiveness check then reduces to checking, in automaton Aerr ‖ Cmust

sink ,
reachability of some state s corresponding to an error state in Aerr and a non-
error state in Cmust

sink . If such a state is detected, A is not permissive, and a
counterexample is returned. The counterexample illustrates a correct sequence
of invocations to the component that is rejected by the interface.

4.1 Basic algorithm: BuildInterface

BuildInterface(C) in Algorithm 1 illustrates the high-level steps of our approach.
Since Cmust is finite-state, procedure LearnInterface uses L* to generate a safe
and permissive interface for Cmust, expressed as a DFA Amust over the alphabet
of the component. L* queries determine whether a string σ belongs to the lan-
guage that we are learning, and return yes if it does, and no otherwise. Similarly
to [11], LearnInterface answers L* queries by performing CheckSafe(ts(σ), Cmust

), and returning no if a counterexample is obtained, and yes otherwise (ts(σ)
denotes the transition system whose language contains σ and its prefixes). Con-
jectures are also similarly decomposed to checks for safety and permissiveness,
which in this context we carry out with the CheckSafe and CheckPermissive

procedures described above. The interface Amust produced by LearnInterface is
subsequently checked for safety with respect to Cmay. If safe, then based on
theorem 1, Amust is a safe and permissive interface for C. Otherwise, the coun-
terexample t obtained from the safety check illustrates a behavior included in
Cmay but absent fromCmust (t is clearly a behavior of Cmay since it was obtained
from step 2. If t also belonged to Cmust, then Amust would similarly not be safe
for Cmust, which contradicts step 1). We use t to guide the automatic refinement
of the predicate set used for building the component abstractions, as described
later in this section. Another iteration of the algorithm is then performed, with
the new set of predicates.

4.2 Optimized algorithm: LearnReuse

The limitation of the basic algorithm is that, each time an abstraction is refined,
the learning needs to be restarted. We would ideally like to reuse information



Algorithm 1 BuildInterface(C)

1: Amust := LearnInterface(Cmust )
2: t := CheckSafe(Amust,Cmay )
3: if t == null then

4: return Amust

5: else

6: Preds := Preds
S

Refine(t)
7: Go to step 1.
8: end if

Algorithm 2 Query(σ, C)

1: if CheckSafe(ts(σ), Cmust )! = null

then

2: return no
3: else

4: t := CheckSafe(ts(σ),Cmay )
5: if t == null then

6: return yes
7: else

8: Preds := Preds
S

Refine(t)
9: invoke Query(σ, C) (new Preds)

10: end if

11: end if

learned by L* across abstraction refinement iterations. In contrast to the basic
algorithm that first learns an interface for Cmust, the optimized algorithm di-
rectly learns an interface for component C. In other words, answers to queries,
conjectures, and the counterexamples returned to L* are given with respect to
L(C) (more precisely, with respect to LE(C) = LE(A), with A being a safe and
permissive interface for C). In the following, we explain how we achieve this by
using finite-state abstractions of C, rather than C itself. In the following, Preds
is a global set of abstraction predicates.

Queries. The procedure for queries is illustrated by Algorithm 2. We briefly
argue for its correctness here. From Proposition 1, LE(Cmust ) ⊆ LE(C) ⊆
LE(Cmay ). Therefore, if a counterexample is obtained at line 1, it means that
σ ∈ LE(Cmust ), which implies that σ ∈ LE(C), so the query returns no. If no
counterexample is obtained at line 4, then it means that σ /∈ LE(Cmay ), which
implies that σ /∈ LE(C), so the query returns yes. Otherwise, we know that the
counterexample t obtained belongs to Cmay but not to Cmust (if it did, then the
check on line 1 would not have returned null). t is used to refine the abstraction.

Conjectures. We use Theorem 1 to answer the conjectures using two oracles,
as illustrated in Algorithms 3 and 4. Oracle 1 is invoked first.

Oracle 1: Is the conjectured assumption A safe with respect to Cmay?
Oracle 2: Is A permissive with respect to Cmust?

If the answers to both oracles are yes, we know from Theorem 1 that A is a
safe and permissive interface for C. Let us now examine the remaining cases:

Oracle 1: If A is not safe with respect to Cmay, we obtain a counterexample
t, which leads to error in Cmay. We subsequently query σ = project(t) on the
component (line 5, Algorithm 3); here project(t) denotes the sequence of method
calls corresponding to the sequence of transitions in t, so that σ is over the



Algorithm 3 Oracle 1

1: t := CheckSafe(A,Cmay );
2: if t == null then

3: invoke Oracle 2
4: else

5: σ := project(t)
6: result := Query(σ, C)
7: if result == no then

8: return σ to L*
9: else

10: invoke Oracle 1 (new Preds)
11: end if

12: end if

Algorithm 4 Oracle 2

1: t := CheckPermissive(A,Cmust )
2: if t == null then

3: return A as safe & permissive
4: else

5: σ := project(t)
6: result := Query(σ, C)
7: if result == yes then

8: return σ to L*
9: else

10: invoke Oracle 2 (new Preds)
11: end if

12: end if

interface alphabet that L* is learning. From line 1, we know that σ ∈ L(A). The
querying procedure may involve refinement of the abstraction; let Cmay′

denote
the may abstraction used in the last iteration of the query, when it returns. If
the query returns no, then it means that σ should not be in the language of A,
so σ is returned to L*. Otherwise, we invoke Oracle 1 again, knowing that Preds
have been updated. The reason is that, since the result of the query is yes, σ is
safe in Cmay′

, meaning σ /∈ LE(Cmay′

) (line 4, Algorithm 2), but is unsafe in
Cmay, meaning σ ∈ LE(Cmay ) (line 1, Algorithm 3).

Oracle 2: If A is not permissive with respect to Cmust, we obtain a counterex-
ample t, which does not lead to error in Cmust

sink . Moreover, σ = project(t) is not
in L(A). We subsequently query σ on the component (line 6, Algorithm 4). The
querying procedure may involve refinement of the abstraction; let Cmust′ denote
the must abstraction used in the last iteration of the query, when it returns.
If the query returns yes, then it means that σ should be in the language of A,
so it is returned to L*. If the query returns no, then we invoke Oracle 2 again,
knowing that Preds have been updated. The explanation is as follows. When the
query returns no, it means that: 1) σ is unsafe in Cmust′ (line 1, Algorithm 2);
and 2) σ ∈ LE(C). On the other hand, σ must be safe in Cmust; if σ were unsafe
in Cmust, then the permissiveness check of line 1 could not have returned t as a
counterexample, since σ = project(t). Therefore clearly, Cmust′ is more refined
that Cmust. Note that since σ ∈ LE(C) but σ /∈ LE(Cmust ), t cannot be a trace
of Cmust, but is rather a sink trace in Cmust

sink .

4.3 Abstraction refinement

In the algorithms BuildInterface and LearnReuse presented above, the abstraction
refinement procedure is applied whenever a violating trace t is discovered that
belongs to Cmay but not to Cmust. Consequently, t must contain a may transition
(ai

τ
→may ai+1) that is not a must transition. This means that there exists at least

another abstract state a′
i=1 that is a successor of ai by τ via a may transition,

i.e. ai
τ
→may a′

i+1. The reason is that ai does not distinguish between concrete



states of two types: those whose successors are abstracted to ai+1 and those
whose successors are abstracted to a′

i+1.
Automated abstraction refinement consists in adding new abstraction pred-

icates (based on weakest pre-conditions). As a result, we split ai into two or
more new abstract states, corresponding to predicates in ai ∧ wp(ai+1, τ) and
ai ∧ ¬wp(ai+1, τ) respectively, that separate the concrete states of type (i) and
(ii) above. Note that this results in a finer partition of the concrete states. The
new abstraction will no longer contain τ as a may and non-must transition and
therefore we have the following proposition:

Proposition 2. If trace t has a transition τ that is of type may but not must,
the refined abstraction results in a strictly finer partition and does not contain
transition τ .

In practice, given a sequence of transitions as a counterexample Cex =
{τ1, τ2, . . . , τn}, we compute refinement predicates using wp computations re-
cursively wp(true,Cex) = wp(wp(true, τn), {τ1, τ2, . . . , τn−1}).

Our refinement algorithm uses weakest precondition calculations to compute
new abstraction predicates that are guaranteed to eliminate these may transi-
tions, and returns the newly discovered predicates. We note that unlike standard
approaches to counterexample-based abstraction refinement [6], we do not refine
solely based on “spurious” counterexamples. The counterexamples obtained from
failed safety checks may be feasible, but they may still lead to refinement since
they contain non-must transitions.

q0q1 q2 q3

rel, relx

acq

rel,relxread acqx

relx

read
write

rel

acq,acqx

rel

relx

Fig. 2. Read-Write-Acq Example Interface

Example 3. For the example of Figure 1, our algorithms generate the safe and
permissive interface A shown in Figure 2. The interface captures the enforcements
imposed by the library. Method read can only be called after calling acq (q1) or
acqx (q2). However, method write can only be called after calling acqx (q2).
cONsecutive calls of acq or acqx are inhibited and acq once called can be called
again only after calling rel or relx.

The generated interface has one state more than the interface presented
in [14] for the same example. On closer inspection, we see that the automa-
ton accepts the string σ = acqx,write,rel,acq,write which is not accepted by their
interface. After calling the method acqx from the start state s0 = {x = 0, a =
NULL, e = 0}, the variable a becomes non-null and x is set to 1. The method
write does not modify a or x. The next method call rel only sets a to NULL but



leaves x unchanged (which remains 1). Now after the acq method a is again set
to non-null. Since a 6= NULL and x = 1, the write method can now be called
safely. When we contacted the authors of [14], they observed a discrepancy be-
tween the example as it appeared in their paper and their implemented case
study, which explains the difference in our respective results.

4.4 Correctness and Termination

In this section we argue the correctness and termination of our algorithms. We
will be using Alg to represent either BuildInterface or LearnReuse, when our
presented arguments hold for both algorithms.

Theorem 2 (Correctness). If algorithm Alg terminates (with final abstrac-
tions Cmust and Cmay), then the constructed interface A is safe and permissive
for C. Furthermore, LE(Cmust) = LE(Cmay) = LE(C).

Termination. For infinite-state components, the predicate abstraction refine-
ment used in Alg may not always terminate. However, we can make the following
termination argument:

Theorem 3. If Alg computes an abstraction such that LE(Cmust) = LE(Cmay) =
LE(C), then the Alg terminates.

Furthermore, from previous work on automatic abstraction refinement [20,
17], we know that if the component C has a finite bisimulation quotient [18],
then the refinement based on weakest precondition calculations is guaranteed to
converge to that finite quotient.

Theorem 4 (Bisimulation Completeness [20, 17]). If the component C has
a finite bisimulation quotient, then there exists a refinement iteration bound such
that the abstraction Cmay is bisimilar to C.

Since bisimulation implies trace equivalence [19] and from Proposition 1, it
follows that if C has a finite bisimulation quotient, then there exists a refine-
ment iteration bound such that for the obtained set of abstraction predicates,
LE(Cmust) = LE(Cmay) = LE(C). Therefore, together with Theorem 4 we
conclude the following:

Theorem 5 (Termination). If the component C has a finite bisimulation quo-
tient then Alg terminates.

We observe that this termination condition is not very tight as our algorithms
also terminate for systems for which predicate abstraction with refinement results
in an abstraction such as LE(Cmust) = LE(Cmay) = LE(C), which is a weaker
condition than the existence of a finite bisimulation quotient (see Theorem 3).

Let us finally note that although in general our algorithms may not terminate,
they can be made to return results “any time”. At any stage, we may use L*
to compute interfaces for Amay for Cmay and Amust for Cmust. The language of
the safe and most permissive interface A for component C is bounded between
the languages of Amay and Amust.



5 Implementation and Experiments

Implementation We have implemented the algorithms presented in Section 4
in the ARMC tool [22]. ARMC already had support for may abstractions; we
extended it with support for must abstractions. Furthermore, ARMC provides
abstraction refinement algorithms based on Craig interpolation [15]. We have
integrated these algorithms in our approach, as an alternative to refinement
based on weakest preconditions.

We note that the algorithms presented previously use the explicit composition
of the abstraction with the interface. Instead of performing this explicit composi-
tion, our implementation builds the abstract graph of the composite automaton
implicitly, by method inlining. This helps us avoid un-necessary computation
and only constructs a part of component abstractions which are sufficient to
prove (or disprove) the safety and permissive checks.

We observe that in the basic algorithm, only feasible counterexample traces
can add error behaviors to the must abstraction Cmust. The spurious counterex-
amples only remove error behaviors from the may abstraction Cmay. Therefore
it suffices to restart learning only after refining feasible counterexamples. In the
case of spurious counterexamples, the CheckSafe algorithm is restarted after the
may abstraction is refined; it terminates when either a feasible counterexample
is found or the interface is safe.

Case Studies We evaluate our interface generation algorithm on several sam-
ple Java2SDK library classes presented in [1, 15] as well as some benchmarks
from J2SEE and the NASA CEV 1.5 EOR-LOR mission profile case study [11].
Details about the modelling and generated interfaces can be found in the ap-
pendix (section B). Table 1 presents our empirical results. The experiments were
run on a dual core 1.80 GHz Intel Pentium processor with 3 GB of RAM. The
Table presents the results obtained from following different algorithmic schemes:
wp: basic algorithm with weakest precondition refinement; wp+craig: basic
algorithm with craig interpolation refinement for infeasible counterexamples
(wp+craig); refine-may: basic algorithm with refining only may abstraction
for infeasible counterexamples (refine-may + craig); learn-reuse: optimized al-
gorithm with craig.

The table also presents the number of predicates (#Preds) discovered and
the number of new learning iterations (#Iterations) required before generating
the final safe and permissive interfaces (learn-reuse never restarts learning and is
always 1), the number of states in the final interface (#States) and the running
times of the algorithm. From the table, we can see that the learn-reuse opti-
mized algorithm outperforms all other algorithms significantly. Amongst other
strategies, the refine-may strategy usually performs better in terms of the run-
ning time whereas wp+craig discovers lesser number of predicates. This might
happen if the predicates discovered during the refinement of infeasible traces
might add error behaviors to the must abstraction Cmust.

We note that Table 1 does not document the empirical comparison for the
algorithms presented in [1, 15]. Alur et. al’s approach requires manual abstrac-
tion refinement and also their algorithm does not guarantee permissiveness. For



Henzinger et. al’s algorithm, there is no tool support to evaluate their algorithm
over the benchmark studies, although in previous sections we present the theo-
retical savings achieved by using must abstractions for the permissiveness checks
and on-the-fly approach of our algorithm.

Class name Algorithm #Preds #Iterations #States Running Time

wp 12 5 2 40.6s
ListItr wp+craig 7 6 2 42.2s

refine-may 8 4 2 39.3s
learn-reuse 6 1 2 12.7

wp 8 9 3 72.7s
Signature wp+craig 5 6 3 42.9s

refine-may 7 4 3 33.2s
learn-reuse 5 1 3 16.6s

wp 10 10 3 98.1s
ServerTableEntry wp+craig 6 7 3 64.9s

refine-may 10 5 3 51.3s
learn-reuse 7 1 3 19.2

wp 4 5 2 16.4s
PipedOutputStream wp+craig 2 3 2 11.4s

refine-may 2 3 2 11.6s
learn-reuse 2 1 2 7.4s

wp 6 6 4 122.8s
read-write-acq wp+craig 4 5 4 75.4s

refine-may 7 5 4 74.3s
learn-reuse 6 1 4 31.1

wp 25 5 6 468.5s
Socket wp+craig 13 5 6 272.9s

refine-may 13 5 6 228.0s
learn-reuse 12 1 6 65.8

wp 15 8 4 138.6s
TransactionManager wp+craig 9 7 4 103.5s

refine-may 9 4 4 76.9s
learn-reuse 9 1 4 30.4s

wp 34 14 5 1685.6s
NASA-Ascent wp+craig 20 14 5 1433.9s

refine-may 20 6 5 712.4s
learn-reuse 20 1 5 75.6s

NASA-Complete learn-reuse 74 1 14 3115.6s

Table 1. Experiment results on benchmark case studies
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A Appendix: Proofs

Given a component C, corresponding to a potentially infinite-state transition
system SC , our proposed interface-generation algorithms operate by analyzing
finite-state abstractions of SC . The essence of our approach lies in the following
observation:

Theorem 6. Let us assume a component C, a may abstraction Cmay for C and
a must abstraction Cmust for C. If an interface A for C is permissive with respect
to Cmust and safe with respect to Cmay, then A is safe and permissive for C.

Proof. If A is safe for Cmay, it follows from section 3 that LE(Cmay) ⊆ LE(A).
In conjunction with Prop. 1, we conclude that LE(SC) ⊆ LE(Cmay) ⊆ LE(A),
meaning that A is also safe with respect to C.

If A is permissive for Cmust, it follows from section 3 that LE(A) ⊆ LE(Cmust).
In conjunction with Prop. 1, we conclude that LE(A) ⊆ LE(Cmust) ⊆ LE(SC),
meaning that A is also permissive with respect to C. �

A.1 Correctness and Termination

In this section we argue the correctness and termination of our algorithms. We
will be using Alg to represent either BuildInterface or learnReuse, when our
presented arguments hold for both algorithms.

Theorem 7 (Correctness). If algorithm Alg terminates (with final abstrac-
tions Cmust and Cmay), then the constructed interface A is safe and permissive
for C. Furthermore, LE(Cmust) = LE(Cmay) = LE(C).

Proof. When our algorithms terminate, the constructed interface A is permissive
with respect to Cmust and safe with respect to Cmay. From Theorem 1 we
conclude that A is safe and permissive with respect to the component C.

Let us now show that LE(Cmust) = LE(Cmay) = LE(C). We first show that
LE(Cmust) = LE(Cmay) (from Proposition 1 it will then follow that LE(Cmust) =
LE(Cmay) = LE(C)).

Proof by contradiction: assume LE(Cmust) 6= LE(Cmay). From Proposi-
tion 1, we get LE(Cmust) ⊂ LE(Cmay). Therefore there must exist a string x ∈
Σ∗ such that x ∈ LE(Cmay) and x 6∈ LE(Cmust) which implies x ∈ Lsafe(C

must).
Since A is safe for Cmay, i.e. L(A)∩LE(Cmay) = ∅ and x ∈ LE(Cmay), it implies
x 6∈ L(A). x 6∈ L(A) and x ∈ Lsafe(C

must) implies Lsafe(C
must) 6⊆ L(A). Since A

is also permissive with respect to Cmust, we have Lsafe(C
must) ⊆ L(A) which is

a contradiction. Therefore, we have LE(Cmust) = LE(Cmay). �

Termination. For infinite-state components, the predicate abstraction refine-
ment used in Alg may not always terminate. However, we can make the following
termination argument:

Theorem 8. If Alg computes an abstraction such that LE(Cmust) = LE(Cmay) =
LE(C), then the Alg terminates.



Proof. Case 1: Alg is BuildInterface. BuildInterface starts by using L* to com-
pute an interface for Cmay. Since Cmay is finite-state, we know that L* will
terminate successfully if it is provided with correct answers to its queries and
conjectures. We can conclude termination of L* from our previous results [11]
and the correctness of the safety and permissiveness checks discussed earlier.
We therefore only need to show that if LE(Cmust) = LE(Cmay) = LE(C), then
CheckSafe returns no counterexamples.

Proof by contradiction: assume CheckSafe returns Cex ∈ Σ∗ such that Cex ∈
LE(Cmay) and Cex ∈ L(A). Since A is safe and permissive with respect to Cmust

(by construction from LearnInterface), we have Lsafe(C
must) = L(A). Therefore

Cex ∈ Lsafe(C
must) which implies Cex 6∈ LE(Cmust). From Cex ∈ LE(Cmay)

and Cex 6∈ LE(Cmust), we get LE(Cmust) 6= LE(Cmay) which is a contradiction.
Therefore if LE(Cmust) = LE(Cmay) = LE(C), then the algorithm BuildInterface
always terminates.

Case 2: Alg is algorithm LearnReuse. There are two potential sources of
non-termination in LearnReuse, the refinement of abstractions, and the refine-
ment of interfaces by L*. LearnReuse refines abstractions during queries. How-
ever, if LE(Cmust) = LE(Cmay) = LE(C), CheckSafe(lts(σ), Cmust) will return
a counterexample if and only if CheckSafe(lts(σ), Cmay) returns a counterexam-
ple, and therefore refinement will not be needed. Since Oracle 1 and Oracle 2
refine abstractions only through queries, we conclude that refinement will not be
performed during the conjecture either.To show termination, we therefore simply
need to show that L* will terminate the refinement of its conjectured interfaces
A, when such abstractions are obtained. Given correctness of our querying and
conjecture procedures, as argued in our presentation of LearnReuse, we know
that L* will terminate if there exists a finite-state interface for component C.
Since LE(Cmust) = LE(Cmay) = LE(C), and LE(C) = LE(A), it follows that
the interface is finite-state, and therefore L* will indeed terminate. �

Furthermore, from previous work on automatic abstraction refinement [20,
17], we know that if the component SC has a finite bisimulation quotient [18],
then the refinement based on weakest precondition calculations is guaranteed to
converge to that finite quotient.

Theorem 9 (Bisimulation Completeness [20, 17]). If the component SC

has a finite bisimulation quotient, then there exists a refinement iteration bound
such that the abstraction Cmay is bisimilar to SC .

Since bisimulation implies trace equivalence [19] and from Proposition 1, it
follows that if SC has a finite bisimulation quotient, then there exists a refine-
ment iteration bound such that for the obtained set of abstraction predicates,
LE(Cmust) = LE(Cmay) = LE(C). Therefore, together with Theorem 4 we
conclude the following:

Theorem 10 (Termination). If the component SC has a finite bisimulation
quotient then Alg terminates.



B Case Studies
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Fig. 3. Signature Class Interface

Signature Class The Signature class is part of the package java.security. We
select five methods as the alphabet Σ = {initSign, initVerify, sign, update, ver-
ify}. The exception SignatureException is modelled as the error predicate. The
class maintains a private state variable state that can have three values : UNINI-
TIALISED, SIGN or VERIFY. The start state of the component is state = UNINITIALISED.
The initSign method changes the state of component to SIGN, whereas the initVer-
ify method changes the state to VERIFY. The method sign (resp. verify) can only
be called from state = SIGN (resp. VERIFY), otherwise it throws the exception
SignatureException. The method update can only be called from state = SIGN
or state = VERIFY, otherwise it throws the exception. Our algorithm generates
a three state interface shown in figure 3 with states corresponding to expected
labellings of uninitialized, sign and verify respectively.
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Fig. 4. ServerTableEntry Class Interface

ServerTableEntry Class The ServerTableEntry class is taken from the package
com.sun.corba.se.internal.Activation. We select six methods as the alphabet Σ ={



activate, register, registerPorts, install, uninstall, holdDown}. We model the ex-
ception INTERNAL as the error condition. The class maintains a private state
variable state that can have five values DE ACTIVATED, ACTIVATING, ACTI-
VATED, RUNNING, HELD DOWN. The start state of component is state =
DE ACTIVATED. The method activate changes the state to ACTIVATED. reg-
ister can only be called if the state is ACTIVATED, otherwise the exception is
thrown. The method registerPorts changes the state to RUNNING if called from
a state where state = ACTIVATED. The install method can only be called if the
state is RUNNING and it changes the state to DE ACTIVATED. The method
hold down changes the state to HELD DOWN.

The generated interface is shown in figure 4. It can be observed that the
error condition only needs to keep track of three states: ACTIVATED(register),
RUNNING(install/uninstall) and other states as one state. The generated interface
captures these three states.

q0 q1

next, prev

remove, add

add

next
prev
set

Fig. 5. ListItr Class Interface

ListItr Class The ListItr class is an inner class of AbstractList from the package
java.util. We select five methods as the alphabet Σ = {next, remove, previous, set, add}.
The exception IllegalStateException is modelled as the error predicate. The meth-
ods next and previous are used to traverse the list, add to add a new element,
set to modify the last accessed element and remove to remove the last accessed
element. The clas maintains a private variable lastRet to keep track of last ac-
cessed element. The methods next and previous update the lastRet value whereas
remove or add methods set it to −1. The library also maintains a variable cursor
which represents the index of element in the list to be returned by subsequent
call to next. The methods set and remove raise the exception when called with
variable lastRet = −1.

The generated interface is shown in figure 5. The interface depicts the inhi-
bition of calls of methods set, remove after calling methods remove or add.

PipedOutputStream Class The PipedOutputStream class is taken from the
package java.io and is an implementation of an abstract class OutputStream. We
select five methods as the alphabet Σ ={close, (connect,0), (connect,1), flush,
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Fig. 6. PipedOutputStream Class Interface

write }, where we model invocations of connect method returning different val-
ues (0 or 1) as different methods ((connect,0) or (connect,1)) similar to the ap-
proach taken in [5]. The exception NullPointerException is modelled as the error
predicate. The class maintains an internal variable sink to keep track of whether
the PipedOutputStream object is already connected to some PipedInputStream.
The start state of component is sink = null. The method connect can only be
called if sink = null, otherwise the exception is raised. (connect,0) represents an
unsuccessful connection whereas (connect,1) represents a successful connection.
The methods flush and write throw the exception if called from states where sink
= null. The method close can only be called from state sink 6= null and changes
variable sink to null.

The generated interface is shown in figure 6. The interface captures precisely
two states where sink = null and sink 6= null. Only a successful connect call can
enable flush and write methods.

Socket class The Socket class is part of java.net package which implements
client sockets. We consider seven methods as the alphabet Σ ={ close, bind,
getInputStream, getOutputStream, shutdownInput, shutdownOutput }. The excep-
tion SocketException is modelled as the error predicate. The class maintains 6
internal boolean variables created, bound, connected, closed, shutIn and shutOut.
The start state of the component has all the variables set to false.

The generated interface is shown in figure 7. The interface enforces the re-
quirement that bind cannot be called after connect, shutdownInput can only be
called after calling connect, getInputStream can only be called after the connect
call and not after close or shutdownInput has been called. After calling close no
other method calls are allowed.

NASA CEV 1.5 EOR-LOR mission profile We applied our technique to ob-
tain the interface for the simplified state machine for NASA CEV 1.5 EOR-LOR
mission profile case study. It models the Ascent,EarthOrbit,TransitEarthMoon and
Entry phases of the space-craft, the events (like srbIgnition,stage1separation
etc.), the vehicle configuration and various failure modes. The Java model is
avaiable with the JPF distribution under examples/jpfESAS. We modelled the 22
events as the alphabet set for the interface and the error predicate was modelled
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as the failure modes and the event calls from inappropriate states. Events with
parameters like abort(boolean controlMotorField) were modelled as two events
one with controlMotorField parameter true (abortctr) and the other with con-
trolMotorField parameter false (abortnctr) which increased the alphabet size to
26. Figure 8 presents the interface generated by the learn-reuse technique. The
interface has 14 states and required 74 predicates. We found that for such large
interface only the optimized scheme finished in reasonable time. Table 1 also
documents the results for NASA-Ascent interface where only the Ascent phase
of the space-craft was modelled.

We can see that the interface captures several interesting properties. States
1 and 2 are indentified as the abort state and the end state respectively. The
lsamRendezvous maneuver can only happen after the las module of the space-craft
is jettisioned (lasjettision method removing las from the component) and the state
of the space-craft is OrbitOps (stage2separation changing the state from Stage2
to OrbitOps). The event tliBurn can not take place after the event edsseparation
and the event loiBurn can happen only after the event tliBurn is finished. These
interfaces in addition to being helpful in verifying the space-craft code are also
a useful tool to help debug the system early in the designing process of such
critical software.
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