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This paper presents a method that can achieve fast adaptatiofor a class of model-reference adaptive
control systems. It is well known that standard model-refeence adaptive control exhibits high-gain control
behaviors when a large adaptive gain is used to achieve fastiaptation in order to reduce tracking error
rapidly. High-gain control creates high-frequency oscilations that can excite unmodeled dynamics and can
lead to instability. The fast adaptation approach is based @ the minimization of the squares of the tracking
error, which is formulated as an optimal control problem. The necessary condition of optimality is used to
derive an adaptive law using the gradient method. This adapte law is shown to resultin uniform boundedness
of the tracking error by means of the Lyapunov’s direct methad. Furthermore, this adaptive law allows a large
adaptive gain to be used without causing undesired high-gaicontrol effects. The method is shown to be
more robust than standard model-reference adaptive contrb Simulations demonstrate the effectiveness of the
proposed method.

[. Introduction

In recent years, adaptive control has been receiving afiignt amount of attention. The Aviation Safety Program
under the NASA Aeronautics Research Mission DirectoraRNW) has established the Integrated Resilient Aircraft
Control (IRAC) research project to advance the state of ttsermadaptive control to enable flight control resilienay i
the presence of adverse conditidnghere has been a steady increase in the number of adaptitrelcapplications
in a wide range of settings such as aerospace, roboticsegg@ontrol, etc. Research in adaptive control continues
to receive attention from government agencies, industrgt, academia. In aerospace applications, adaptive control
has been developed for many flight vehicles. For example,ANA&s been conducting a flight test of a neural net
intelligent flight control system on board a modified F-1% tgcraft? The U.S. Air Force - Boeing team has suc-
cessfully developed and completed numerous flight testsre€toadaptive control on Joint Direct Attack Munitions
(JDAM).2 The ability to accommodate system uncertainties and toomepfault tolerance of a flight control system is
a major selling point of adaptive control. Nonethelesspéitia control still faces significant challenges in prowigli
robustness in the presence of unmodeled dynamics and paiaomcertainties. The crash of the X-15 aircraft in
1967 serves as a reminder that adaptive control is still vieweti @@me misgivings despite enormous advances in
this technology ever since. The ability for an adaptive oardalgorithm to modify a pre-existing control design is
considered a strength and at the same time a weakness.

Over the past several years, various model-referenceiadaphtrol (MRAC) methods have been investigated.

The majority of MRAC methods may be classified as direct,rgatj or a combination thereof. Indirect adaptive
control methods are based on identification of unknown ptanameters and certainty-equivalence control schemes
derived from the parameter estimates which are assumedtteivérue values® Parameter identification techniques
such as recursive least-squares and neural networks haveused in indirect adaptive control methdd#n con-
trast, direct adaptive control methods directly adjusttadrparameters to account for system uncertainties withou
identifying unknown plant parameters explicitly. MRAC retls based on neural networks have been a topic of
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great research interéstl? In particular, Rysdyk and Calise described a neural nettliadaptive control method for
improving tracking performanc&This method is the basis for the intelligent flight contrad®m that has been devel-
oped for the F-15 test aircraft by NASA. Johnson et al. infietl a pseudo-control hedging approach for dealing with
control input characteristics such as actuator saturatie limit, and linear input dynamic$. Idan et al. studied

a hierarchical neural net adaptive control using secondetyators such as engine propulsion to accommodate for
failures of primary actuators. Hovakimyan et al. developed an output feedback adaptive@ao address issues
with parametric uncertainties and unmodeled dynaffic€ao and Hovakimyan developed #fi adaptive control
method to address high-gain contt6l.

While adaptive control has been used with success in a nusfilb@plications, the possibility of high-gain control
due to fast adaptation can be an issue. In certain applicatfast adaptation is needed in order to improve tracking
performance when a system is subject to a large source oftaimt&s such as structural damage to an aircraft that
could cause large changes in aerodynamic derivatives eBethituations, a large adaptive gain or learning rate must
be used in the adaptive control in order to reduce the trgokiror rapidly. However, there typically exists a balance
between stability and adaptation. It is well known that sdaptation can result in high-frequency oscillations Wwhic
can excite unmodeled dynamics that could adversely affecstability of an MRAC law. Recognizing this, some
recent adaptive control methods have begun to addressgaigheontrol, such as th&’ adaptive contrdf* and a
hybrid direct-indirect adaptive contr&?. In the former approach, the use of a low-pass filter effebtipeevents
any high frequency oscillation that may occur due to faspsateon. In so doing, the reference model is no longer
preserved and instead must be reconstructed using a redtiotlel. In the latter approach, an indirect adaptive law
based on a recursive least-squares parameter estimajigisatthe parameters of a nominal controller to reduce the
modeling error, and the remaining tracking error signalddien be handled by a direct adaptive law with a smaller
learning rate.

This paper introduces a new approach to fast adaptatioeiMBRAC framework. The method is formulated as an
optimal control problem to minimize the tracking ertgb-norm. The optimality condition results in a modification to
the MRAC law by introducing a damping term proportional togigent excitation. The optimal control modification
is analyzed to determine convergence and stability chariatits. The analysis shows that this modification can
achieve fast adaptation without high-frequency oscilagias in the case with the standard MRAC. Furthermore, the
modification is shown to provide improved stability robiesta while preserving the tracking performance.

lI. Optimal Control Modification for Fast Adaptation
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Fig. 1 - Direct MRAC

A direct MRAC problem as illustrated in Fig. 1 is posed asdoi:
Given a nonlinear plant model as
X=Ax+B[u+ f (x)] (1)
wherex(t) : [0,00) — R" is a state vecton(t) : [0,00) — RP is a control vectorA € R™" andB € R™P are known
plant matrices such that the pdik, B) is controllable, and (x) : R" — RP is a matched uncertainty that acts as a
disturbance.
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Assumption 1: x(t) € C' (t),i>1,is smoothirt € [0, ).
Assumption 2: f (x) € C! (x), j > 1, is semi-globally Lipschitz. Then there exists a constant0 such that

100 = f (0)l| < LIIx—o] )

forall |||, < & int € [0,00).
It then follows that the partial derivatives ¢f(x) are uniformly bounded and at least piecewise continuous suc

that
af(x)
ox

<L )

forall ||X||, < & int € [0, ).

Proposition 1: If u(t) is a stable and bounded controller, then the total derigatif (x) is also bounded.

Proof: u(t) is bounded if there exists a constapt> 0 such thaf|u||.,, < &Vt € [0,). u(t) is a stable controller
which implies thai(t) is bounded and spx||,, < &Vt € [0,%). Since 1)x(t) is at leastC! smooth by Assumption
1, 2)x(t) is bounded, 3¥ (x) is semi-globally Lipschitz, and 4) ifi(t) is bounded; them(t) is also bounded. Thus,
there exists a constaay, > 0€ R, i =1,...n, such that sugx | < oy Vt € [0, ). It then follows that

df(x) <Hc9f(x)
dt |~ || ox

sup
t

n n
IS supx| <LI S oy = o (4)
® i; t i; "

for someo; > 0 € RP, where.# € RP is a vector whose elements are all equal to one. Theref¢s.c Z.
|

The objective of the problem is to design a full-state fee#ttzntroller that enables the nonlinear plant model to

follow a reference model described by

Xm = AmXm + Bmr (5)
whereAn € R™" is Hurwitz and a known matrb8ny, € R"*P is also a known matrix, and(t) : [0,00) — RP € % is
a bounded command vector with its time derivative %, also bounded.

Defining the tracking error as= Xy, — X, the goal is then to determine a controller that resultsimnp li, ||€]| < &.
Toward that end, let the controller be comprised of a stadlfack, a command feedforward, and an adaptive signal
as follows:

U= Kee+ KyXm+ K — Ugg (6)
whereKe € RP*N, Ky, € RPN, andK; € RP*P are known nominal gain matrices, angl € RP is a direct adaptive
signal.

Then, the tracking error equation becomes

&= Xn—X= (A—BKe) e+ (An— A— BKnp) Xm+ (Bm— BK,) I + BUag — f (X)] @)

For bounded tracking error, we chodse= A — BK; to be Hurwitz, and the gain matric&s, andK; to satisfy the
model matching conditions so that the nominal plant trabkséference model

A+BKn=An (8)
BK; = Bn, 9)

The adaptive signal,q can be parameterized by a linear-in-parameters matchesttaimty
Uag = O D () (10)

where® € R™P is a weight matrix an@® (x) : R" — R™ is a known regressor vector.
Let ©* be a constant ideal weight matrix aBd= © — ©* be a weight variation, thenis the approximation error
defined as
e(X)=0"Td(x) - f(x) (11)
Assumption 3: The approximation errar (x) of the matched uncertainfy(x) by © " ® (x) is bounded and its time
derivative is also bounded; i.e., there exists a constartbve; > 0 € RP such that

d(©e'®) df(x
dt dt

< 0¢ (12)
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Assumption 3 essentially implies thétis Lipschitz and its partial derivative is bounded, i.egrihexist a constant
C > 0 € R such that

[|®(X) =P (%) | < Cllx—Xol| (13)
P (x)
H "0l <c (14)

forall ||X||, < & int € [0, ).
The tracking error equation can now be expressed as

e:Ace+B(éch+s) (15)

An optimal control modification to MRAC for fast adaptatiaproposed as follows:
Proposition 2: The following adaptive law provides a weight update law thimizes the.%-norm of the
tracking error

O=-To (eTP— vcheBTPA;l) B (16)

wherel' > 0 € R™™M is a symmetric positive-definite learning rate or adaptigagnatrix,v > 0 € R is a positive
weighting constant, andl > 0 € R™" is a symmetric positive-definite matrix that solves the Lyagv equation

PAc+ACP=-Q (17)

whereQ > 0 € R"™" is a symmetric positive-definite matrix.
Proof: The adaptive law seeks a solution that minimizes#enorm of the tracking error with a cost function

tf
J= %/o (e—A)' Q(e—A)dt (18)

subject to Eq. (15) wher& represents the tracking errortat t;.
J is convex and represents the distance measured from thehsunface of a balB; with a radiusA.

0‘ e (to)

e(t)

Fig. 2 - Tracking Error Bound

This is an optimal control problem whose solution can be fdated by the Pontryagin's Maximum Principle.
Defining a Hamiltonian

H(e®) = :—Zl(e—A)TQ(e—A)+ p’ (Ace+ BO ®+ Be) (19)

wherep(t) : [0,0) — R" is an adjoint variable, then the adjoint equation is giverth®y negative gradient of the
Hamiltonian with respect to the tracking error

p=-0He =-Q(e—0)—Alp (20)

Treatirlg(:)T as a control variable, then the optimality condition is aled by the gradient of the Hamiltonian with
respect t@® "

OHgr = ®0Hgrq, = Pp' B (21)
The adaptive law can then be formulated by the gradient ndedko
O=-TOHg = —Tdp'B (22)
4 0f 19
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If e(0) is known, then the transversality condition requires
p(t) =0 (23)

This results in a two-point boundary value problem wherdéleyatdjointp solves Egs. (20) and (15) simultaneously.
The optimal control problem can be solved using a “sweepingthod’ by letting p = Pe+ SO "®. Then

d(@T®)

Pe+P (Ace+ BO d—BO TP+ Bs) 19 d+S =

——Q(e-8)-A] (Pe+s0T®)  (24)
Since@' @ is the linear-in-parameter matched uncertainty of), then by Proposition 1 and Assumption 3

+.£(X)+%(tx)

d(@'o)
dt

d(67o)

%P dt

=sup
t

< sup’(i)TdJ+ (:)Tc'b‘ + 0¢ + 0%
t
< sup‘—BT pCDTFdJ‘ +sup‘éTd>‘ +0:+0; (25)
t t

The first term in the last inequality of Eq. (25) is boundedsip must be a stable solution to the optimal control
problem andp is also bounded by definition. The second term is also bousided® must be bounded if the adaptive
law is stable (an assertion that will be proved later) énd bounded by virtue of Assumption 3. Therefore, there
exists a constant vectoy > 0 € R" such that

de'e

sup g < O (26)

t dt

Equation (24) yields three equations
P+PA+A[P+Q=0 (27)
S+PB+A/S=0 (28)
subject toP (t;) = 0 andS(t;) =0, and
CICH)

A=QL [PB(S - e*TcD) + s% (29)

Consider an infinite time-horizon optimal control problegnléttingt; — oo, thenP(t) — P(0) andS(t) — S(0)
and the solutions d? andSare determined by their steady state values. Thus

PA.+AP=-Q (30)
S=-A;'PB (31)

The adjointp now becomes
p=Pe—A; 'PBO'® (32)

Since®* is constant, thel® = 0. Upon substituting the expression of the adjgirinto Eq. (22), the following
adaptive law is then obtained

O=-ro (eTP— vcheBTPAgl) B (33)
wherev is introduced as a weighting constant to allow for adjustimehnthe second term in the adaptive law.
Defining || %| = [|suR |¢||| and |©*T®|| = ||sup |©*"®||, then, forv = 1, the steady state tracking error is
bounded by
Amax(P) [[B] [ T rdl
o)) = 2 B 07T 0|+ 13+ — 34
H H /\min(Q) H 5” Omin (AC) ( )

whereAmin andAmax denote the minimum and maximum eigenvalues, aqg denotes the minimum singular value.
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Remark 1: The cost function (18) could also be penalized v%EhH(:)TGJHZ > 0. This would resultin an additional
term in the adaptive law which would then become

6= T (e'PB-voTOB PA !B+ ®OR) (35)

R then becomes an additional tuning parameter that can betasedjust the adaptive law. Alternatively, the
adaptive law could just only include tleterm as

O=-ro (eTPB+ CDTGR) (36)

We now proceed to prove that the adaptive law (16) is stablellasvs:
Theorem 1: The adaptive law (16) results in stable and uniformly bouhidecking error in a compact set

2Amax(P) [[B[ [/ e | 20max(B'PA;'B) ||©* T 0|

S ={ecR": ||g| > A (O) O DeR": HéTCDH > — (BTAgTQAng) (37)
whereogmax denotes the maximum singular value.
Proof: Choose a Lyapunov candidate function
V =e'Pe+ trace(C:)Tl'*lc:)) (38)
whereP solves Eq. (17).
Evaluating the Lie derivative &f yields
V =€ (AP+PA) e+ 2e"PB (éan + e) - 2trace{(:)T<D (eTPB— v OBT PAng” (39)
Using the trace identity tra¢&"B) = BA", V can be written as
V =—e'Qe+2e"PB (éan + e) —2e"PBO 0 +2vd OB PA;'BO @ (40)

The sign-definiteness of the tefd; ! is now evaluated. We recall that a general real maitiis positive (nega-
tive) definite if and only if its symmetric paMls = % (M + MT) is also positive (negative) definite. Then, by pre- and
post-multiplication of Eq. (17) bA; " andA: L, respectively, one gets

AcTP+PAT=-ATQA! (41)

SinceA; TQA;! > 0, we conclude thaPA;* < 0. FurthermorePA; ! can be decomposed into a symmetric part
M= 1 (PAC1+A; TP) = —3A; TQA;1 < 0 and an anti-symmetric pat= 3 (PA;1— A; TP). ThenV becomes

V =—e'Qe+2e"PBe — v OB'A; "QA1BO ® + 2vd OB'NBO '@ +-2vd O*'B'PA;IBO ®  (42)
Lettingy = BO'® and using the property’ Ny = 0 for an anti-symmetric matriX, V is reduced to
V =—e'Qe+2e"PBe —vd'OB'A; TQA;'1BO  ® + 2vd 0BT PA; 1BO @ (43)

and is bounded by

V < ~Arn(Q) €]+ 21 Amas(P) 1] | - vAmn (BT A, "0 8) 8T
+2vomax(B'PAB) [0 To| [670| (44)

For uniform boundedness of tracking error, we req\fire 0. Thus, we have

2Amax(P) [[B][ G |

~Amin(Q) [[ell” + 2]l€]| Amax(P) Bl [| %l < 0= |lel] = Ao (O)

(45)
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and
~vAmin(B"A; TQA; 'B) HC?MJHZJr 2vomax(BTPA;'B) |0 ®|| |87 0| <0

20max(B"PA;'B) ||©* T 0|
Amin (BTA{TQA«SlB)

- HéTcDH > (46)

We note that € %, bute € %N %, if V < 0 since

Min(@ [ [dt <V @)~V (t = %) + 2as(P) B 18] [ el
0 0
(o] - 2 00 .
—vAmn (B"A; TQA; 'B) / HeTqJH dt+2v0max(BTPA; 'B) / He*TqJH HeTqJH dt<co (47)
0 0
It follows thatV (t — ) <V (0). Thus,V (t) decreases inside a compact.sét_ R" where

2Amax(P) (B[ 1| O ||
Amin (Q)

T —1 *T
B0 rn: 670> r, - 2B PATB) O <DH} )

S =cecR":|g|>r= ——
Anin (BTATQAC'B)

butV (t) increases inside the complementary®et {ec R": [le]| <r,0 ® € R": |07 ®| <1}, which contains

e= 0 and©=0, whose trajectories will all stay inside @f. It follows by LaSalle’s extensions of the Lyapunov method

thate and® are uniformly bounded.

Remark 2: The effect of the optimal control modification is to add danmgpto the weight update law so as to
reduce high-frequency oscillations in the weights. The giag term requires persistent excitation (PE) which is
defined by the product terp® . With persistent excitation, the weight is exponentially stable and bounded.
This scheme is contrasted to the well-knoa#}® ande;-18 modification methods and other variances which also add
damping terms to prevent parameter drift in the absencersfgtent excitatiod® These adaptive laws are compared
as follows:

Modification ‘ Adaptive Law ‘
- ©=-T (ve'PB+00),0>0
&1- ©=—T (Pe'PB+u|e'PB|O), u>0
Optimal | ©=—T (Pe'PB—vod OB’ PA;'B), v >0

Table 1 - Modifications to MRAC Law

In the presence of fast adaptation, i&min(I') > 1, the adaptive law (16) is robustly stable with all closedd
poles having negative real valuesif= 1. This can be established as follows:

Theorem 2: For large adaptive gain and® " @ > 0 which implies the PE requirement for parameter convergenc
whenv = 1, the adaptive law (16) results in robustly stable closexpltracking error equation

e= P lQe+B (e - e*ch) (49)
with a guaranteed phase marginpand a lower bound on the tracking error

Amax(P) [|B| ([|©" "] +[|]1)

el > 50
lell= Anin(Q) a
Proof: The adaptive law (16) can be written as
ro—-_o (eTP— vcheBTpAgl) B (51)
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If I > 1is large, then in the limit a5 — o
e'P—vd'eBTPA1=0 (52)

Solving forBO' @ yields
BO = %P*lAI Pe (53)

Hence, the closed-loop tracking error equation becomes
e= (Ac+ %P’lACT P) e+B (e -~ e*Tqa) (54)
which, upon some algebra, can also be written as
e=_pt [Q— (%—1) ACTP} e+B(e—e*Tq>) (55)

AJ P can be decomposed into a symmetric gaf\! P+ PA:) = —3Qand an anti-symmetric pa§S= 3 (AP — PA;).
The tracking error equation now becomes

'e_—P1K$>Q— <%> S} e+B(s—e*Tq>) (56)

The eigenvalues of) are all real positive values and those®#re purely imaginary. The system is stable for
all values ofv. If v <1, the closed-loop complex-conjugate poles move furthier tine left-half plane and Iisg]
increases with decreasing In the limit, whenv — 0 and the adaptive law is reverted to the standard MRAC law,
then Im[s] — c which illustrates a well-known fact that fast adaptatiothvthe standard MRAC law results in high
frequency signals which can potentially lead to instapiiit the presence of time delay or unmodeled dynamics.
Conversely, ifv becomes large, the effect of adaptation is reduced and ilmtitavhen v — o, adaptation ceases as
the adaptive law (16) becomes infinitely stiff.

A special case of = 1 is considered. The closed-loop poles are all real, negasilues with Rés| = —A (P*lQ).
The system transfer function mattik(s) = (sl +P~1Q) “tis strictly positive real (SPR) sind¢ (jw) +H T (—jw) >
0, and thus the system is minimum phase and dissip&ivihe Nyquist plot of a strictly stable transfer function is
strictly in the right half plane with a phase shift less thamqual to7 19

To compute the tracking error norm, pre-multiplying Eq. X6 e' P yields

e'Pe— e [<%> Q- <%> s} e+e'PB(s-0"0) (57)
Sincee' Se= 0, then
d T T Toas 1+ vV T T *T
a(e Pe) =& PetePe=—|—— )e'Qe+2e PB(f—@ q’) (58)

Choose a Lyapunov candidate functMr= e' Pg, then

V= (1Y) erqer2ePB(s-07®) < (121 ) ho(Q) el + 2l AP 81 (070 + 641 <0

(59)
This implies
Amax(P) [|B]| (||[@*T® o,
|e|2( 2v ) max(P) || H(” |+ 115l (60)
1+v Amin(Q)
Forv = 1, we obtain Eq. (50).
[
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Remark 3: The adaptive law for fast adaptation results in a LTI repmét@on of the tracking error equation in
the limit whenll — o, ande and©®*are zero. This is a useful feature that can enable the syabilthe system to be
analyzed using traditional linear control methods.

The adaptive law (16) causes the tracking error to tend masr — 0 if I — oo for fast adaptation and the input is
PE. On the other hand, stability robustness require®. Thus, a trade-off between tracking performance andlgiabi
robustness exists and, consequentlgecomes a design parameter to be chosen to satisfy corgtitements.

Lemma 1: The equilibrium statg = 0 of the differential equation

y=—0" (t)ro(t)y (61)

wherey(t) : [0,0) —» R, @ (t) € % :[0,00) — R" is a piecewise continuous and bounded function,fapdd € R™",
is uniformly asymptotically stable, if there exists a camty > 0 such that

1 t+To

= o' (T)ro(r)dr >y (62)
To Jt

which implies thaty is bounded by the solution of a linear differential equation

fort € [ti,t + To], wheretg = 0,ti =t;_1 + Tp, andi = 1,2,...,n — oo,
Proof: Choose a Lyapunov candidate function and evaluate its tengative

1

V =2y (64)
2
V=-—0"()Fot)y*=-20" (t)Id(t)V (65)
Then, there existg > 0 for whichV is uniformly asymptotically stable since
t+To
V(t+To) =V (t)exp<—2/ o' (1) F(D(r)dr) <V(t)e @M (66)
t
This implies that
t+To
exp(—z/ dJT(r)FCD(r)dr) < e &M (67)
t
Thus, the equilibriuny = 0 is uniformly asymptotically stable if
1 t+To
= o' ()ro(r)dr >y (68)
0 Jt

provided® (t) € %, is bounded.
Theny(t) € £ N %, since

V(t—>oo)—V(O)g—2y/0°0y2(t)dt:>2y/0°0y2(t)dt§V(O)—V(t—>00)<oo

It follows that _
V<2V =yw< - (69)

which implies that the solution of Eq. (61) is bounded frorowabif y > 0 and from below ify < 0 by the local solution
of

7= —yz (70)

fort € [ti,t + To], wheretg = 0,ti =t;_1 + Tp, andi = 1,2,...,n — oo,
Now, suppose thab = ®(y(t)), Eq. (70) still applies. The conditiol (y(t)) € 2> is identically satisfied since
y € %N %.. To show this, we first evaluaté as

V=—0" (y(t))Fo(y(t)y* = =207 (y(t))Fd(y(t)V (71)
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which upon integration yields

t+To
VT =vwen(-2[ o ym)reymdr) Ve (72)
t

Thus,V is uniformly asymptotically stable. This then leads to thms result as Eq. (69).
Example Considerp(t) = (t+1) ' € %. yis evaluated as

1 [P 1
:?0/0 @ (1)d1 = = (73)

The solutions of = —y¢? (t) andZ = —yzwith y(0) = z(0) are

y

v =yOexp( - (74)

z(t) = y(0) exp(—ﬁ) (75)

If y(0) >0,y <zsinceTp >t. If y(0) <0,y >z Soyis bounded from above and below hy

Lemma 1 is a version of the Comparison Lemma that allows besendhe solution of (t) to be computed from
a differential inequality without the need to compute theugon itself2° A different version of the proof is also
provided by Nadrenda and AnnaswarftyFigure 3 illustrates solutions of various differential atjans as compared
to solutions of their linear counterparts.

10 10
e 8 —y=y’
. ——— y'=-0.0910y —y=-0.3774%
6
> >
4
0
0 5 10
t t
10 10
8 y=-y(e)? y'=-ysin(0.1y)
— y'=-1.1318y 8 — y'=—0.1496y
6
> > 6
4
) 4
0 2
0 10 0 10

Fig. 3 - Comparison of Solutions of Differential Equations

Lemma 2: The solution of a linear differential equation

y=Ay+g(t) (76)

wherey(t) : [0,0) — R", A e R™" is a Hurwitz matrix, andy(t) : [0,0) — R" € %, is a piecewise continuous,
bounded function, is asymptotically stable and semi-dlglidounded from above by the solution of a differential
equation

z=A(z—a|Ac|) (77)
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wherea > 1€ R andc = sup|g(t)].
Proof: For matching initial conditiong(0) = z(0), the solutions of andz are

t
y=ey(0)+ / f-Tg(1)dr (78)
0
t
z=eNy(0)— / A aA|A Y| dr (79)
0
If A~lc > 0, then
t t t
y:z+/ eNt*”acdH—/ eNt*T)g(r)dr:er/ ADAaA e+ A Ig(1)] dr (80)
0 0 0

a > 1 can be made large enough f@A—1c+ A~'g(r) > 0 becausé\'c > 0 andg is bounded , and since
[ eAt-TAdT <0, then

t
/ fDAaA e+ A Ig(1)]dT <0 (81)
0
Thereforey < z
If A~1c <0, then
t t t
y=z—/ eNt*T)achJr/ eNt*T)g(T)dr:z—/ ADAaA e A g(1)] dr (82)
0 0 0

a can be made large enough imA—1c — A1g(1) < 0 becausé1c < 0 andg is bounded, therefone< z Thus,
y<zforallt € [0,0) and somex > 1.

[
Theorem 3: The steady state tracking error is bounded by
; Amax(P) [[B| *T -1 1 TA—T -1
I = 0" d 0, =B PB 83
fim supllel| = oo Vaay |V @T ]+ viadi a1+ || (87ATPB) sl @3)

if there exist a constant> 0 such thay = inf; (T—lo ftt”o (DTF(DdT) > 0 € R and a constant vect@ > 0 € R" where
B=sup|0'd|. _

Proof: Sinceeec .%, x € .%, and soP (_x) € % since®(x) is Lipschitz. 8 = sup, \éTCD\ € % is bounded since
©is bounded by the adaptive law (16) afd= % is also bounded by Assumption 3 because
df(x) df(x)

&(X) + ———=| < sup|&(X)|+sup|—-—| < O¢ + Ot (84)
dt t t dt

sup’O*Tc'D‘ =sup
t t

Using Lemmas 1 and 2 withh = 1 for simplicity, the adaptive law (16) can be written as
d /~ & ~ ~ -1
5 (ean) 00 +0 o<y Pet ywB'A; TPB <ech - ‘ (vaTAgTPB) BD (85)
where¢ = sup |©*T®|.
Using Lemma 2 witha = 1, we write
e<Ac(e—|A'B5|) +BO @ (86)
Thus, the system dynamics with adaptation are bounded by

Ac|Ac 1B |

d
- l WBA; TPB[¢+|(wBTA TPE) 8] 1 (87)

dt

e
OTo

e

A B
oTo

—yB'P ywB'A;'PB
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Differentiating Eq. (86) and upon substitution yields
~ -1
6< Aé— yBB' Pe+ WBBTACTPBGTGJ—WBBTACTPB[qH—‘(WBTACTPB) BH (88)

Substituting in Eq. (15), the tracking error equation beesm

& (A+ vaBTAgTP) et (VBBTP—l— vaBTAgTPAc) e< —yvBB'A; TPB [q& + (WBTACTPB)lﬁH
+yvBBIA; TPAC|A;1BS| (89)

Equation (89) reveals that the optimal control modificatEnm containingy augments the damping of the tracking
error to increase stability robustness of the adaptation.th@ other hand, the standard MRAC contributes to the
integral control action of the tracking error, thereby ttésg in high frequency signals whenis large.

From Eq. (89), we obtain the steady state value and the ugpgrdoon the norm of the steady-state tracking error

as
(ALP+vPA) im e < —vPB [q) + ’ (WBTACTPB)lﬁu +VPA|A;1BS; | (90)

i _ _ Amax(P)|B]] oT 1 Ll /o oo\ L
fim supllell = A TP+ vPAY Me <DH+VHACHHAC H||6g|+;H(B A PB) H||B||] (91)

Similarly, the steady state value and the upper bound ondha nf®T ® are obtained as

_ (Agp+ VPAC) AngtlméT¢ < —vPB [:p + ‘ (WBTA;TPB) lBH —AJP|A 1B (92)
i sup| 876 - —Anac L [VH@”@HHMHAc1H|65||+$H(BTAJPB)l el e

Thus for fast adaptation with PE, i.¢.;— o, the second term on the RHS of Eq. (91) goes to zero, and ttlera
error’s lower bound is dependent on If, in addition,v — 0, then||e|| — O, but if v — o, e € %, is finite and does
not tend to zero. Thus, has to be selected small enough to provide a desired trapkirigrmance, but large enough

to provide sufficient stability margins against time delayiomodeled dynamics.
[

lll. Application to Flight Control

r Model X X, Ty Xy Dynamic u .
— —==(O—=%+{ PI Controller ——=(——+ - Aircraft
Reference = - Inversion

o~

X, u
M

Fig. 4 - Direct Neural Network Adaptive Flight Control

Consider the following adaptive flight control architeegas shown in Fig. 4. The control architecture comprises:
1) a reference model that translates rate commands intcedestcceleration commands, 2) a proportional-integral
(PI) feedback control for rate stabilization and trackiy,a dynamic inversion controller that computes actuator
commands using desired acceleration commands, and 4) al netidirect MRAC due to Rysdyk and Cali$e.

Adaptive flight control can be used to provide consistentdtiag qualities and restore stability of aircraft under
off-nominal operating conditions such as those due tofedwr damage. A reduced-order equation of the linearized

angular motion of a damaged aircraft can be described by

X = Ax+Bu+Gz+ f(x,u,2) (94)

12 of 19

American Institute of Aeronautics and Astronautics



T T
wherex = [ p qr } is a state vector of roll, pitch, and yaw rates= | 6, & & is the control vector of

.
aileron, elevator, and rudder inputs:= [ a B or } is a trim state vector of angle of attack, angle of sideslip,

and engine throttleA € R3*3, B ¢ R®*3, andG < R3*® are known; and (x,u,z) represents a structured uncertainty
which has a linear form

f (X) = AAX+ ABU+ AGZ (95)

whereAA, AB, andAG are changes to the, B, andG matrices of the aircraft linear plant model.
The objective is to design a dynamic inversion flight contaat with a direct adaptive control augmentation to
provide consistent handling qualities which may be spetifiga reference model according to

Xm = ArnXm + er (96)

whereAn, € R3*3 is Hurwitz, By, € R3*3 is known r € %, is a bounded pilot command with its time derivative %,
also bounded

Let x4 be a desired acceleration that comprises the referencel momeration, a proportional-integral feedback
control, and a neural net adaptive signal

t
xd:Amewmpr(xm—xHKi/ (X —X) T — Ung (97)
0

.
whereugg =0 dwithd = | xI uT 2z’

Assuming thaB is invertible, then the dynamic inversion controller is qarted as
u=B"1(%— Ax—Bu—G2 (98)

Computing the acceleration error yields
t
Xe:—pre—Ki/ XedT + Uag — T (X,u) (99)
0

wherexe = Xm — X, Kp = diag(kp,1,Kp 2, Kp,3) > 0, andK; = diag(k; 1,ki 2, ki 3) > O are matrices of the proportional and
integral gains for roll, pitch, and yaw.

Anm = diag(—w1, —wp, —w3), where, for transport aircraft, the typical valuesw, wy, anday are 3.5, 2.5, and
2.0 rad/s for roll, pitch, and yaw, respectivéfy The Pl gains are then set ks;j = 2£;w; andki j = w?,i=1,2,3,

whereé; is the damping ratio for each mode, with a typical value 6§/2.

An=—Kp
Defining the tracking error as
t
e— | Joxedr (100)
Xe
then the tracking error equation is expressed by
e=Ace+b(uy— 1) (101)
where
0 I
= 102
Ac [ KK ] (102)
b= l ? ] (103)
Let Q = 2I, then the solution of Eq. (17) yields
-1 —1(K. -1
p—| K e K (Ki+1) AT BN (104)
K; Kot (1+K™)
13 0f 19
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A;lis computed to be

_k-1 k-1
Acl_l K'I Ke ';' ] (105)
Evaluating the ternb " PA; b yields
b'PA;lb=—-K2<0 (106)

Applying the the adaptive law (16), the weight update lavhentgiven by

&= —ro(e'Pb+vo oK ?) (107)

Thus, the damping term in the adaptive law only depends oimthgral gairk;.

A simulation of pitch rate doublet is performed to illustdhe adaptive law (16) with the optimal control modifi-
cation. The uncertainty is due to airframe structural daenalich in this case represents a 25% loss of the left wing
of a generic transport model (GTM) as shown in Fig. 5.

Fig. 5 - Damaged Generic Transport Model
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_0.05 Il Il Il Il Il
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~0.01 ! ! ! !
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Fig. 6 - Aircraft Rate Response with PI Control
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Figure 6 is a plot of the aircraft angular rates with only Phitol and without adaptive control. Due to the
asymmetric damage, a pitch rate command results in botlamndllyaw rate responses due to cross-coupling effects.
The response is completely unacceptable due to the exeestliand yaw rates.

Figure 7 is a plot of the aircraft angular rates due to thedstesh direct MRAC ¢ = 0) using a learning rate
I = 10* The tracking performance drastically improves in all axéswever, high-frequency oscillations can clearly
be seen in the yaw rate response and to a much lesser extéetpit¢h and roll channels.. Further increase in the

learning rate results in progressively larger high freaqyeamplitudes and eventually leads to a numerical instgbili
whenl™ > 2 x 10* due to a sampling limitation.
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Fig. 7 - Aircraft Rate Response with Standard MRAC
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Fig. 8- Aircraft Rate Response with Optimal Control Modifioa
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In contrast, the aircraft rate response for the optimal mbdmbodification tracks the reference model very well
as can be seen in Fig. 8. Furthermore, the optimal controlifination results in no observable high-frequency
oscillation in spite of the fact that the learning rate is twvders of magnitude greater than that for the standardtdirec
MRAC. For this simulation, a value of = 0.033 is used. A larger value of will degrade the tracking performance
but improve stability robustness. For comparison, the Kitian also includes the -modification as shown in Fig. 9.

A value of u = 0.25 is used with a learning rafe= 10*. The&;-modification significantly reduces the high frequency
in the yaw rate response, but at the expense of the trackifigrpeance as the amplitudes in the roll and yaw channels
significantly increase.

0.05 T T T T T

p, rad/s
o

~0.05 ! ! ! ! !
0

0.05 T T T T T

g, rad/s
o

_0.05 Il Il Il Il Il
0 10 20 30 40 50 60
x10°
1 T T T T T
2
B o
= r=10* p=0.25
1 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60
t,s

Fig. 9- Aircraft Rate Response with-Modification

The simulation illustrates a potential benefit of the optintntrol modification for fast adaptation. In practice,
there is a practical limit of how large a learning rate woudd In general, actuator dynamics can impose constraints
on the learning rate. The frequency separation betweendhgtation and actuator dynamics can lead to potential
problems. Nonetheless, the optimal control modificatiomadiestrates the tolerance to larger learning rates than the
standard MRAC which can be beneficial when fast adaptatioaésied to deal with large uncertainties.

One of the issues with adaptive control is the lack of metiicassess stability robustness in the presence of
unmodeled dynamics and or time delay. With fast adaptaiias,known that the direct MRAC results in reduced
phase and time-delay margif’sThus, the learning rate must be chosen carefully in ordevaaanstability due to
time delay and unmodeled dynamics. The optimal control figadion is shown to provide more robustness wien
approaches unity. Hence, it can also increase a systeratsitwle to destabilizing uncertainties like time delay.

An approximate, simple method for analyzing the stabiligrgin of the optimal control modification is presented.
Since generally a nonlinear adaptive law cannot be analpydihear stability concepts, we propose to analyze the
linear bounded differential equations of the system asldpee in the previous section. Because the nonlinear adap-
tive law is bounded locally, strictly speaking, we can onmtalyze the bounded system in a small moving time window
within which they parameter is definetf. Toward that end, pre-multiplying Eq. (88) ly to take advantage of the
fact thatb"b = | yields

b'é—b A+ yb Pe— yvb'A; TPBO @ < ywK 29 + (108)

fort € [ti,ti +To|, whereto = 0,ti =ti_1+Tp, andi = 1,2,...,n — oo.
Solving for@' @ from )
b'e<b'Ac(e—|Ab5|) +®"© (109)

and substituting into Eq. (108) results in

ble— (bTAc + yvbTAgTPbbT) e+ (beP+ yvbTAgTPbbTAC) e < yvK; 29 + B — yvK; 2" Ac|A; bS] (110)
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Upon evaluation, we get
t
Sm—X < —KiXe — (Kp+ YK 2) % — (YPr2+ YK 1) / XedT — (VP22 + YK 2Kp) Xe + YK (¢ + &) + B (111)
0

whereP; = K = diag(kijll, ki kij31) LandP =Ky (1 +K ) = diag(kgj + ko 1k ko5 ko sk 5 kg + kgélqgl) :
Referring to Fig. 4, the loop transfer function frogto x determines the stability margins of the flight control
system. Thus, defining (s) as the transfer function matrix frora to x, then from Eq. (111)H (s) is obtained as

(Kp+ YK 2) S+ (Ki + yPao+ YK 2Kp) s+ yPio+ yvK *
8

which can be broken into individual loop transfer functisitsceKp, Kj, P12, andP», are all diagonal matrices which
imply H (s) is also diagonal whose elements are

H(s) = (112)

(ko + 1k 2) @+ (ks yPoz) + YK ko ) S ypazy + vk
§ )

Figure 10 is a plot of the phase margintef(s) for the pitch rate as a function of for different values ofy.
Increasingv is shown to result in an improved phase margin. vAt 0, the phase margin approaches to zery as
increases. At large values gf the phase margin approachesiavhenv — 1. This is consistent with Theorem 2.

Also itis observed that for some intermediate values ef 1, the phase margin is reasonably closgtd@hus,v does
not have to be chosen close to unity in order to maintain gbad@ margin, so long a4ss large.

hj (s) = j=123 (113)

90

Phase Margin, deg
w Y a [o)] ~ ©
o o o o o o

N
o
T

10

Fig. 10 - Phase Margin Analysis of Optimal Control Modificeti

Figure 11 is a plot of the time delay margin bf(s). Increasingv causes the time delay margin to increase
markedly. Conversely, at = 0, increasing leads to a reduction in the time delay margin, which is wethkn in
adaptive control. On the other hand, with> 0 above some small threshold, increasyngsults in an improvement
in the time delay margin. Thus, the optimal control modifimaimproves robustness of the adaptation even in the
presence of fast adaptation.

It should be noted that Figs. 10 and 11 should be viewed iradivelsense rather than an absolute sense. The key
research question is how to sel@gtwhich is a time window in which the parameteis to be computed. In Figs. 10
and 11,y is computed for the entire time interval which may overeati#rboth the phase and time delay margins. One
research idea has been suggested to adjust the learningeratdically by evaluating for a moving time window
within which the system is bounded by a LTI system based o€ timaparison Lemm&
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Fig. 11 - Time Delay Margin Analysis of Optimal Control Modifition

Figure 12 illustrates the time delay effect on the optimaitom modification. A time delay is introduced between
the aircraft plant input and output to simulate destalilizincertainties. For the same learning fate 104, the
standard MRAC can tolerate up to 0.004 s time delay beforadlaptive law goes unstable. With the optimal control
modification, the time delay margin increases to 0.010 s aht0s forv = 0.033 andv = 0.33, respectively. This is
consistent with the general observation in Fig. 11 tha&asingy results in an improvementin the time delay margin.
However, this would come at the expense of tracking perfagaavhich would become worse asncreases.
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Fig. 12 - Pitch Rate Responses with Time Delay
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V. Conclusions

This study presents a new modification to the standard madetence adaptive control based on an optimal con-
trol formulation of minimizing the norm of the tracking errd’he modification adds a damping term to the adaptive
law that is proportional to the persistent excitation. Thadification enables fast adaptation without sacrificing ro-
bustness. When the learning rate tends to a very large vhkeigracking error equation become approximately linear
in a bounded sense. This is a useful feature that can alldvilistadf the adaptive law to be studied in the context
of linear time invariant systems. The modification can bestlasing a parameterto provide a trade-off between
tracking performance and stability robustness. Incregsinesults in better stability margins but reduced tracking
performance. When approaches unity, the system has a phase shift close to 8ete@imulations demonstrate the
effectiveness of the modification, which shows that tragkderformance can be achieved at a much larger learning
rate than the standard model-reference adaptive conttbtheat the adaptive law can tolerate a much greater time
delay in the system.
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