
  

  

Abstract—Presented here is an L1 adaptive control 
architecture for a generic transport aircraft. At its core, this 
architecture features a three-axis, non-linear, dynamic-
inversion controller. Command inputs for this baseline 
controller are provided by pilot roll-rate, pitch-rate, and side-
slip commands. This paper will first thoroughly present the 
baseline controller followed by a description of the L1 adaptive 
augmentation to this control system.  Results are presented via 
a full-scale, non-linear simulation of NASA’s Generic 
Transport Model (GTM).  

I. INTRODUCTION 
he Integrated Resilient Aircraft Control project (IRAC)  
is a part of the NASA Aviation Safety program. A key 

focus of this project is to investigate adaptive control 
systems as a risk-mitigating technology for off-nominal 
conditions. In this work, an L1 adaptive control architecture 
is investigated as just such a technology.  

To begin, section II presents the baseline control 
architecture and justifies the design selection. Section III 
then presents the L1 adaptive augmentation to this system. 
Here we briefly show some of the fundamental stability 
proofs for the architecture, but we refer the interested reader 
to the large body of L1 literature for further reference. 
Section IV presents results from a full non-linear simulation 
of the control system and provides a discussion of the 
qualitative meaning of these results. Finally, section V 
presents a brief summation of this paper’s contribution to the 
community.  
 The primary intentions of this paper are two fold: to 
present the L1 architecture for a complete nonlinear dynamic 
inversion controller (a novel contribution to the community 
in as far as the authors are aware) and to demonstrate the 
architecture on a complete nonlinear flight simulation. 
Future work will be aimed at more thoroughly assessing the 
strengths and weaknesses of this control strategy.   
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II. BASELINE CONTROLLER: NONLINEAR DYNAMIC 
INVERSION 

A. Control Selection Justification 

The baseline controller for this work is a full non-linear 
dynamic inversion controller based in large part on [1], [2], 
and [3]. This control architecture is chosen for several key 
reasons. First, this control approach can be effectively 
implemented as evinced by the recent selection of a dynamic 
inversion controller for the F-35 aircraft. Second, and more 
importantly, a dynamic inversion controller offers a cost and 
time effective way to develop a control system; with 
appropriate modeling, a full-flight control system can be 
quickly and efficiently developed for research studies, as 
contrasted with a more time intensive traditional gain-
scheduled controller. This ultimately facilitates the rapid 
evaluation and testing of multiple adaptive control systems 
over a large range of flight conditions. 

B. Control Architecture 
The general (and well known) rigid body dynamics for an 

aircraft are presented below: 
 
 

€ 

τ = I ˙ ω +ω × Iω . (1) 
 
Here, ω ∈ ℜ3X1 and represents a vector of the roll (p), pitch 
(q), and yaw (r) rates. By modeling the torques on the 
aircraft using traditional aerodynamic stability derivatives 
(includes p, q, and r derivatives), (1) may be decomposed 
into the following convenient form: 
 
  

€ 

˙ ω = Aω + Gz + Bu  (2) 
 
For this decomposition, the matrices A (∈ ℜ3X3), G (∈ 
ℜ3X7), and B (∈ ℜ3X3) are time-varying. Moreover, the 
aircraft’s control allocation tables are incorporated into (1) 
such that the control vector u is ∈ ℜ3X1 and represents the 
three, non-dimensional lateral, longitudinal, and directional 
control signals (limited from -1 to 1). The vector z represents 
a non-linear combination of ω, specifically pq, qr, rp, (p2- 
q2), (r2- p2), and (q2 - r2), as well as a bias term (which 
accounts for the τ dependence on slowly changing variables 
such as angle of attack and side-slip). 

A general non-linear dynamic inversion control law is 
then 
 

€ 

u = ˆ B −1( ˙ ω d −
ˆ A ω − ˆ G z) . (3) 
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For clarity, over-hats have been used to denote that 
parameters in the dynamic inversion control law are 
estimated; look-up tables provide these matrices in real-time 
operation. The reader should be careful not to confuse the 
dynamic inversion parameters with the real-time, adaptively 
estimated parameters that will be introduced in later 
sections. Finally, the subscript d denotes a desired value. 

To generate the desired values in (3), each of the three 
directional axes is treated independently. For the 
longitudinal and lateral axes, the pilot’s stick commands are 
interpreted as pitch and roll rate commands. These 
commands are then filtered to produce a tracking signal for a 
linear PI control law. The control signal is further 
augmented by a feedforward term from the filter states. The 
resulting control signals are the desired pitch and roll rates 
for the dynamic inversion in (3).  

For the directional axis, the pilot’s pedal inputs are not 
interpreted directly as yaw rate commands, but instead as 
sideslip commands. As a result, an additional dynamic 
inversion is employed to generate the necessary yaw rate 
command; this is similar to the work done in [4] in which a 
two stage slow and fast dynamic inversion architecture was 
proposed (in this work the fast dynamic inversion is similar 
to the dynamic inversion shown in (3)). More precisely, the 
pilot’s sideslip command is filtered to produce a tracking 
command for a proportional controller. This proportional 
control signal is augmented with a feedforward term from 
the filter states to generate a desired sideslip command. 
From this, a dynamic inversion is performed to generate a 
yaw rate command for the fast dynamic inversion in (3). The 
desired yaw rate command is then generated identically to 
the lateral and longitudinal axes, i.e. the desired yaw rate is 
generated from a linear PI controller augmented with a 
feedforward term. 

For the slow dynamic inversion, the following well-
known relationship is used as a starting point for derivation: 

 

 

€ 

˙ β =
1
mV

[Dsin(β) +Y cos(β)− XT cos(α )sin(β) +

mg(cosα sin β sinθ + cosβ sinφ cosθ −
sinα sin β cosφ cosθ + psinα − r cosα )]

 (4) 

 
This expression is simplified to the more tractable 
relationship shown in (5).  
 
 

€ 

˙ β ≈ p sin(α ) − r cos(α ) + (g /Vt ) cos(θ ) sin(φ ) . (5) 
 

The yaw rate command is then determined from (5), as 
shown in (6). 
 
 

€ 

r
com

= −( ˙ β 
d
− p sin(α ) − (g /V

t
) cos(θ ) sin(φ )) / cos(α )  (6) 

 
The complete architecture is presented in both Fig. 1 and 

Fig. 2.  Specifically, Fig. 1 illustrates the outer loop control 
architecture while Fig. 2 shows the fast dynamic inversion 
using all three of the pitch, roll, and yaw rate commands. It 
is worth noting that the desired angular accelerations for this 
architecture (as diagramed in Fig. 2) are given below in (7).  
 

 

€ 

˙ ω d = Kp (ω f −ω) + KI (ω f −ω)dτ
0

t

∫ + ˙ ω f − uad  (7) 

Here, the output of the command filter is expressly 
represented with a subscript f. Moreover, it should be noted 
that both Kp and KI are constant diagonal, 3X3 matrices. 
Though not yet explicitly defined or illustrated in Fig. 2, the 
adaptive compensation term uad has been introduced in (7). 
 As a final note on the general architecture, the pilot’s 
commanded pitch-rate is augmented by the level turn-
compensation term 

€ 

gsin 2 φ /V cosφ . Qualitatively, this helps 
keep the nose of the aircraft up during bank and roll 
maneuvers.  

III. L1 AUGMENTATION 
The following L1 development follows as closely as 

possible the approach outlined in [5-9].  This work is 
different in that the baseline controller is a full nonlinear 
dynamic inversion controller, as discussed in the previous 
sections. 

A. Preliminaries 
To begin defining the L1 adaptive augmentation, we 

manipulate the general system model of (2) by incorporating 
the true matrix values A, B, and G with their controller 
estimates.  

   
 

€ 

˙ ω = ˆ A ω + ˆ G z + ˆ B u + ΔAω + ΔGz + ΔBu  (8) 
 

In (8), Δ denotes the difference between the true matrices 
and the estimated values used by the controller. To further 
develop the controller, the result in (8) is transformed into 
the form presented in (9). 
 

 
Fig. 2.  Presented here is the inner-loop fast dynamics controller.  The 
D.I. block contains the equation presented in (3). 
 

 
Fig. 1.  High-level base-line control architecture. Here the 
dependency of the sideslip inversion on additional states (α, θ, ϕ, p, 
and Vt) is not illustrated.  
 



  

 

€ 

˙ ω = ˆ A ω + ˆ B (u + f ) (9) 
 
The term f is here introduced for convenience and comprises 
the modeling uncertainty; this is the uncertainty for which 
the L1 adaptive augmentation is intended to compensate. It 
should be further noted that 

€ 

ˆ B  is assumed for a nominal 
aircraft and is thus taken as full-rank throughout the entirety 
of this paper. Comparing (8) and (9), the term f is then 
defined as  
 
 

€ 

f = ˆ B −1(ΔAω + ΔBu + ΔGz) + ˆ B −1 ˆ G z . (10) 
 
In much of the adaptive control literature an additional term 
is added to (10) to approximate non-parametric uncertainty. 
This term is significant from a stability proof and analysis 
perspective, but is ignored here for the purposes of 
developing the correct control laws and L1 predictor system.  
 To facilitate further development, the command filter in 
Fig. 2 is represented in state space form as below in (11).  
 
 

€ 

˙ ω f = Amω f + Bmr  (11) 
 
Here the reference input r is provided from the pilot 
commanded roll and pitch rates and the outer-loop side-slip 
controller. For this work, the filter is assumed first order, as 
illustrated in Fig. 2. 

B. L1 Predictor System Development 
For the L1 development presented here, the predictor 

system is defined using the following state vector: 
 

 

€ 

x = ω f dτ
0

t

∫
 

 
 

 

 
 

T

ω f
T ωdτ

0

t

∫
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ωT
 

 

 
 

 

 

 
 

T

. (12) 

 
Combining (3), (7), and (11) the control law is rewritten 
below as 
 
 

€ 

u = Kx
T x + Kr

T r −Kz
T z − ˆ B −1uad , (13) 

 
where 
 
 

€ 

Kx
T = ˆ B −1KI

ˆ B −1(K p + Am ) − ˆ B −1KI − ˆ B −1(K p + ˆ A )[ ]  ,  (14) 

 
 

€ 

Kr
T = ˆ B −1Bm , (15) 

and 
 
 

€ 

Kz
T = ˆ B −1 ˆ G . (16) 

 
It should be observed that x ∈ ℜ12X1, Kx ∈ ℜ12X3, Kr ∈ ℜ3X3, 
Kz ∈ ℜ7X3, uad ∈ ℜ3X1 , and u ∈ ℜ3X1. 
 The system in (9), given the above definitions, is easily 
written as   
 

 

€ 

˙ x = A x + B mr + B [ Kx
T x + Kr

T r − ˆ B −1uad

                             + ˆ B −1(Δ ˜ A x +ΔBu +ΔGz)]
 (17) 

 
In (17), the following definitions have been introduced: 
 

 

€ 

A =

0 I 0 0
0 Am 0 0
0 0 0 I
0 0 0 ˆ A 

 

 

 
 
 
 

 

 

 
 
 
 

, (18) 

 
 

€ 

B m = 0 Bm
T 0 0[ ]T

, (19) 
 

 

€ 

B = 0 0 0 ˆ B T[ ]T
, (20) 

and 
 
 

€ 

Δ ˜ A = 0 0 0 ΔA[ ] . (21) 
 

 To complete the manipulation of the system dynamics, 
the Δ terms are expanded, and (17) can be once again 
rewritten as  

 

  

€ 

˙ x = (A + B K x
T )x + (B m + B Kr

T )r + Bl [(ΔBK x
T

+ Δ ˜ A )x

+(ΔBKr
T )r − B ˆ B −1uad + (G − BKz

T )z]
, (22) 

where 
 
 

€ 

Bl
T = 0 0 0 I[ ],  Bl

T ∈ℜ3X12 . (23) 
 

For further simplicity, (22) is rewritten with a simpler 
notation.  
 

 

€ 

˙ x = Ar x + Br r +

     Bl (W1
T x + W2

T r −W3
T uad + W4

T z)
 (24) 

 
The above result employs the proceeding definitions: 
 

 

€ 

Ar = (A + B Kx
T )

Br = (B m + B Kr
T )

W1 = ΔBKx
T + Δ ˜ A 

W2 = ΔBKr

W3 = B ˆ B −1

W4 = (G − BKz
T )

 (25) 

 
In order to be precise on matrix dimensions, we note that W1 
∈ ℜ12X3, W2 ∈ ℜ3X3, W3 ∈ ℜ3X3, and W4 ∈ ℜ7X3. Moreover, 
each of the W parameters in (25) is time varying. 
Conversely, the terms Ar and Br are time invariant. Finally, 
Ar is a Hurwitz matrix. 

Though seemingly excessive, the system manipulations of 
(2) in order to achieve (24) have placed the system in a more 



  

amenable form for defining the L1 predictor system. 
Specifically, the L1 predictor system is then simply 
manipulated from (24) to be the following: 
 

 

€ 

ˆ ˙ x = Ar ˆ x + Br r +

     Bl ( ˆ W 1
T x + ˆ W 2

T r − ˆ W 3
T uad + ˆ W 4

T z)
. (26) 

C. Adaptive Control Laws 
To complete the adaptive architecture, we here define the 

adaptive control laws. The L1 adaptive control signal is 
given as: 

 
  

€ 

˙ u ad = kL1( ˆ W 1
T x + ˆ W 2

T r − ˆ W 3
T uad + ˆ W 4

T z)  (27) 
 
In (27) the gain kL1 is a tunable parameter selected by the 
designer. For this application, kL1 is a diagonal matrix with 
dimensions 3X3. 

The adaptive laws for estimating the unknown weights W 
require an examination of the error dynamics  

 
 

€ 

˙ e r = ˆ ˙ x − ˙ x . (28) 
 
Investigation of the dynamics in (28) reveals that the filter 
commands (ωf) are perfectly reproduced by the predictor 
states, assuming identical initial conditions (a reasonable 
assumption). This is obvious from (24) as the predicted 
values of the filter states are not a function of the control 
signal or the system uncertainty. As a consequence, the error 
dynamics can be reduced to 
 
      

€ 

˙ e r = Aeer + Be (ΔW1
T x +ΔW2

T r −ΔW3
T uad +ΔW4

T z)   (29) 
 
where  

  

€ 

er = ( ˆ ω −ω)
0

t

∫ dτ
 

 
 

 

 
 

T

( ˆ ω −ω)T
 

 

 
 

 

 

 
 

T

, (30) 

 

 

€ 

Ae =
0 I

−KI −K p

 

 
 

 

 
 , (31) 

and 
 
 

€ 

Be
T = [ 0 I ] . (32) 

 
To further elucidate the notation in (29), we note that Δ 
denotes the difference between the true weights W* and their 
estimated values. Finally, 

€ 

ˆ ω  represents the 3X1 vector of the 
predicted pitch, roll, and yaw rates. Given (29 – 32), the 
adaptive laws are then defined as in (33). 
 

 

€ 

ˆ ˙ W 1 = Γ1Proj( ˆ W 1,−xer
T PBe )

ˆ ˙ W 2 = Γ2Proj( ˆ W 2,−rer
T PBe )

ˆ ˙ W 3 = Γ3Proj( ˆ W 3,−uader
T PBe )

ˆ ˙ W 4 = Γ4Proj( ˆ W 4 ,−zer
T PBe )

 (33) 

 
As is consistent with most model adaptive control 
formulations, P is the solution to the Lyapunov equation 

€ 

Ae
T P +PAe = −Q  where both P and Q are positive definite, 

symmetric matrices and Q is a tunable parameter. The “Γ” 
terms are the respective adaptive learning rates for each 
unknown parameter.  It is here worth noting that the matrix 
in (31) is constant for the error dynamics irrespective of the 
fact that the system is actually time varying. 

D. Theoretical Analysis 
To show the correctness of the development, three 

theoretical issues are addressed here: the boundedness of the 
prediction error, the boundedness of the predictor system 
states, and the strictly proper nature of the L1 filter. As 
aforementioned, all uncertainty has been treated as 
parametric, thereby simplifying the presentation here. If non-
parametric uncertainty were considered, the theoretical 
development would be further complicated. However, the 
results would still match the existing body of L1 literature. 
 

1) Bounded Error Dynamics 
The error dynamics are already presented in (29). To 

show that these errors are bounded, we choose the Lyapunov 
function below. 
 

 

€ 

V = er
T Per + trace(ΔW1

TΓ1
−1ΔW1 ) + trace(ΔW2

TΓ2
−1ΔW2 )

+trace(ΔW3
TΓ3

−1ΔW3 ) + trace(ΔW4
TΓ4

−1ΔW4 )
. (34) 

 
Taking the derivative of (34) and substituting the error 
dynamics in (29) yields the following:  
 

 

€ 

˙ V = −er
TQer − ˆ e p

TQp
ˆ e p − 2trace(ΔW1

TΓ1
−1 ˙ W 1)

      − 2trace(ΔW2
TΓ2

−1 ˙ W 2) − 2trace(ΔW3
TΓ3

−1 ˙ W 3)

      − 2trace(ΔW4
TΓ4

−1 ˙ W 4 ) .
 (35) 

 
Because the weights W are time varying, the stability proof 
requires bounds on each of the weights as well as bounds on 
the derivatives of the weights. More precisely,  
 

     

€ 

W1 (t) ∈W 1,  W2 (t) ∈W 2,  W3 (t) ∈W 3,  W4 (t) ∈W 4  ∀t , (36) 
 
where  denotes a known compact set and  
 
     

€ 

W1 (t) ≤ d1,  W2 (t) ≤ d2,  W3 (t) ≤ d3,  W4 (t) ≤ d4  ∀t . (37) 
 
If these exist, the stability proof outlined in [16] establishes 
that the tracking error in (28) is uniformly ultimately 
bounded. To establish this result, the use of the projection 
operator (in (33)) is required to ensure that each adaptive 
weight error is bounded. The result in [16] is somewhat 
simplified here by the nature of the error dynamics in (29); 
because Ae is a constant matrix, the Lyapunov matrix P is a 
constant for all time. 
 

! 

W 



  

2) Bounded Predictor System 
As noted in [7], it is necessary to establish that the true 

system is tracking a stable predictor. Given that the tracking 
error is bounded, the true system states can be shown 
bounded if the prediction model is shown bounded. To 
establish this, we inspect the closed loop reference system in 
which fast adaptation (high-gain adaptation) ensures that the 
adaptive weights are known instantaneously. With this 
assumption, the closed loop reference system can be 
formulated as below. 
 

   

€ 

˙ x ref = Ar xref +

      BI (Br r + Bl (W1
T xref +W2

T r −W3
T uad +W4

T z))
  (38) 

 
In (38), BI is a 12X12 identity matrix. Solving (27) for uad 
and substituting the result into (38) yields the following 
system:  
 
      

€ 

xref = HBr r + HC Bl (W1
T xref +W2

T r + Gxref ) + H in xo . (39) 
 
In (39) H is the input-output map of the system  
 
 

€ 

˙ x ref = Ar xref + BI uref .  (40) 
 
Additionally, G is the input-output map for non-linear terms 

€ 

W4
T z , more precisely  

 

 

€ 

(W4
T z) =Gxref . (41)  

 
Finally, Hin is the input output map for the initial condition 
xo and

€ 

C  is the input output map for 

€ 

(1−C (s)) , where C(s) is 
the adaptive filter defined below. 
 
 

€ 

C (s) = (sI + kL1W3
T )−1kL1W3

T   (42) 
 
The states xref are then bounded if the following condition is 
satisfied: 
 

 

€ 

HC 
1
<

1
L1 + L2

,  (43) 

 
where L1 and L2 are the £1 norms of the terms 

€ 

W1
T

 and G, 
respectively. The interested reader will find much greater 
detail on this theoretical analysis in [7] and [16]. It should be 
noted, however, that the filter parameters ultimately shape 
the performance of the reference model in (38). 
 

3) Strictly Proper Filter C(s) 
To ensure that the filter C(s) is strictly proper, several 

assumptions are made about the parameter W3. From (25), 
W3 is defined as below: 

 
 

€ 

W3 = B ˆ B −1 . (44) 
 
The true B matrix and the dynamic inversion estimate of the 
B matrix are then both assumed to be diagonally dominant, a 

reasonable assumption for a transport aircraft. The 
uncertainty in 

€ 

ˆ B  may then be approximated by the following 
relationship: 
 
 

€ 

B ≈ ˆ B Λ . (45) 
 
In (45), Λ is a purely diagonal matrix. Given (45) and (44) 
and the original assumption that both B and 

€ 

ˆ B  are 
diagonally dominant, then W3 can be approximated by the 
relationship in (46).  
 
  

€ 

W3 ≈ Λ  (46) 
 
Treating W3 as a diagonal matrix then ensures that C(s) (in 
(43)) is a diagonal matrix of strictly proper first order filters.  

IV. SIMULATION RESULTS 
To investigate the functionality of the system, we use a 

full-scale version of NASA’s Generic Transport Model 
(GTM - developed at NASA Langley Research Center); this 
model is intended to represent a scaled version of a two 
engine commercial transport aircraft [14]. Using real 
aerodynamic data, the above controller is simulated in a full-
nonlinear simulation environment. As an added caveat, data 
for the dynamic inversion is collected using the vortex-
lattice code base VorView [15]; this ensures a separation 
between the true aircraft model and the dynamic inversion 
(i.e. we do no circularly use the simulation aerodynamic data 
for the dynamic inversion controller). For the purposes of 
this paper, we consider an aircraft performing a doublet 
maneuver in roll, pitch, and sideslip. The results for a 
nominal aircraft operating with the baseline controller are 
presented in Fig. 3. 

 

 
Fig. 3.  Nonlinear dynamic inversion controller for GTM performing lateral, 
longitudinal, and directional doublet tracking filtered command signal. 
 

The results in Fig. 3 illustrate the effectiveness of the 
baseline controller. To further exercise the system, however, 
we repeat the simulation by failing the stab and the left 
horizontal elevator. As shown in Fig. 4., the L1 Adaptive 
controller reduces the initial pitch rate oscillation and 
significantly improves tracking performance. The baseline 
controller, in this example, also benefits from its initial poor 



  

performance in that the aircraft will lose altitude and 
increase speed, allowing the control system to gain 
additional actuator effectiveness; the L1 architecture does not 
benefit from a similar phenomenon. The L1 overshoot in Fig. 
5 also illustrates a key point: the L1 system will track the 
reference model in (38), not the filtered states of (11). As a 
result, the choice of learning rates and kL1 directly impact the 
target performance by shaping the closed loop reference 
model. As a final point, the close-loop reference system used 
to establish stability in (38) requires that the L1 architecture 
be implemented with a gain significantly larger than may be 
typically considered for an MRAC based adaptive controller  
(i.e. as compared to the MRAC system in [2]); the large L1 
adaptive gain ensures that the predictor system behaves as 
the closed loop reference system in (38). 

 

 
Fig. 4.  Nonlinear dynamic inversion controller and L1 for GTM aircraft and 
failed stabilator and left elevator. 

 

 
 

Fig. 5.  Enlarged view of pitch performance in Fig. 4. 
 

 During development, experimentation revealed that 
actuator saturation can be destabilizing to the L1 system if 
the predictor model did not include any saturation 
compensation (whether it be adaptive or as a fixed gain). 
Techniques for this may be found in [10-13].   

V. CONCLUSION 
This paper has presented a baseline nonlinear dynamic 

inversion controller with an L1 adaptive augmentation 
component incorporating a notion of actuator saturation. 
Through the presentation of simulation results, we have 

shown that this architecture can improve tracking 
performance as compared to the un-augmented controller.  

ACKNOWLEDGMENT 
Thanks must be given to Enric Xargay (U. of Illinois) for 

assistance identifying errors in our L1 development. 
Additional thanks must be given to NASA Adaptive Control 
and Evolvable Systems group members Maryam Bakhtiari-
Nejad, Susan Frost, Kalmanje Krishnakumar, Greg Larchev, 
Nhan Nguyen, Shivanjli Sharma, and Vahram Stepanyan. 

REFERENCES 
[1] R. T. Rysdyk and A. J. Calise, “Fault Tolerant Flight Control via 

Adaptive Neural Augmentation”, AIAA Guidance, Navigation, and 
Control Conference, Aug. 1998. 

[2] J. T. Kaneshige, J. Bull, and J. J. Totah, “Generic Neural Flight 
Control and Autopilot System,” AIAA Guidance, Navigation, and 
Control Conference, Aug. 2000. 

[3] N. Nguyen, K. Krishnakumar, J. T. Kaneshige, and P. Nespeca, 
“Flight Dynamics and Hybrid Adaptive Control of Damaged 
Aircraft”, AIAA Journal of Guidance, Control, and Dynamics, Vol. 
31, No. 3, pp. 751-764, 2008. 

[4] S. A. Snell, D. F. Enns, and W. L. Garrard Jr., “Nonlinear Inversion 
Flight Control for a Supermaneuverable Aircraft,” Journal of 
Guidance, Control, and Dynamics, Vol. 15, No. 4, July-August 1992. 

[5] C. Cao, and N. Hovakimyan, “Design and Analysis of a Novel L1 
Adaptive Controller, Part I: Control Signal and Asymptotic Stability,” 
Proceedings of the 2006 American Control Conference, Minneapolis, 
MN, June 14-16, 2006. 

[6] C. Cao, and N. Hovakimyan, “Design and Analysis of a Novel L1 
Adaptive Controller, Part II: Guaranteed Transient Performance,” 
Proceedings of the 2006 American Control Conference, Minneapolis, 
MN, June 14-16, 2006. 

[7] C. Cao and N. Hovakimyan, “Novel L1 Neural Network Adaptive 
Control Architecture with Guaranteed Transient Performance,” IEEE 
Transactions on Neural Networks, Vol. 18, No. 4, July 2007. 

[8] V. V. Patel, C. Chengyu, N. Hovakimyan, K. A. Wise, and E. 
Lavretsky, “L1 Adaptive Controller for Tailless Unstable Aircraft,” 
Proceedings of the 2007 American Control Conference, New York 
City, NY, July 11-13, 2007. 

[9] J. Wang, V. V. Patel, C. Chengyu, and N. Hovakimyan, “L1 Adaptive 
Neural Network Controller for Autonomous Aerial Refueling with 
Guaranteed Transient Performance”, AIAA Guidance, Navigation, and 
Control Conference, Keystone, CO, Aug. 21-24, 2006. 

[10]  S. P. Karason and A. M. Annaswamy, “Adaptive Control in the 
Presence of Input Constraints”, IEEE Transactions on Autmoatic 
Control,  Vol. 39, No. 11, November 1994.  

[11] E. Lavretsky and N. Hovakimyan, “Stable Adaptation in the Presence 
of Input Contraints”, Systems & Control Letters 56, 2007, pp. 722 - 
729. 

[12] E. Lavretsky and N. Hovakimyan, “Stable Adaptation in the Presence 
of Actuator Constraints with Flight Control Applications,” Journal of 
Guidance, Control, and Dyanmics, Vol. 30, No. 2, March – April, 
2007. 

[13] D. Li, N. Hovakimyan, and C. Cao, “L1 Adaptive Controller in the 
Presence of Input Saturation,”  AIAA Guidance, Navigation, and 
Control Conference, Chicago, IL, Aug. 10-13, 2009. 

[14] T.L. Jordan, W. M. Langford, et al., “Development of a Dynamically 
Scaled Generic Transport Model Testbed for Flight Research 
Experiments,” AUVSI Unmannded Systems North America 2004, 
Arlington, VA, 2004. 

[15] J. J. Totah, D. J. Kinney, J. T. Kaneshige, and S. Agabon, “An 
Integrated Vehicle Modeling Environment,” AIAA Atmospheric Flight 
Mechanics Conference and Exhibit, Portland, OR, Aug 9-11, 1999. 

[16] J. Wang, N. Hovakimyan, C. Cao, “L1 Adaptive Augmentation of 
Gain-Scheduled Controller for Racetrack Maneuver in Aerial 
Refueling,” AIAA Guidance, Navigation, and Control Conference, 
Aug. 2009, Chicago, IL. 


