
  

  

Abstract— Next generation aircraft with a large number of 
actuators will require advanced control allocation methods to 
compute the actuator commands needed to follow desired 
trajectories while respecting system constraints. Previously, 
algorithms were proposed to minimize the l1 or l2 norms of the 
tracking error and of the control effort. The paper discusses the 
alternative choice of using the l1 norm for minimization of the 
tracking error and a normalized l∞ norm, or sup norm, for 
minimization of the control effort. The algorithm computes the 
norm of the actuator deflections scaled by the actuator limits. 
Minimization of the control effort then translates into the 
minimization of the maximum actuator deflection as a 
percentage of its range of motion. The paper shows how the 
problem can be solved effectively by converting it into a linear 
program and solving it using a simplex algorithm. Properties of 
the algorithm are investigated through examples. In particular, 
the min-max criterion results in a type of resource balancing, 
where the resources are the control surfaces and the algorithm 
balances these resources to achieve the desired command. A 
study of the sensitivity of the algorithms to the data is 
presented, which shows that the normalized l∞ algorithm has 
the lowest sensitivity, although high sensitivities are observed 
whenever the limits of performance are reached. 

I. INTRODUCTION 
ontrol allocation is the problem of distributing control 
effort among multiple, redundant actuators. In 
conventional flight control system design, the issue is 

resolved through the concept of ganging. Specifically, 
pseudo-effectors v are defined so that   
  (1) 
where v is the vector of pseudo-effectors, u is the vector of 
actuator commands, and G is a ganging matrix. Future 
vehicles may have a large number of actuators, making it 
less intuitive how the ganging matrix should be defined. 
Further, limited effectiveness may make it important to 
optimize their use within position and rate limits. Aircraft 
with blended wing body configurations [6] have been 
identified as presenting control allocation challenges due to 
novel actuators, distributed actuators with low control 
authority, interactions between control effectors, and 
interactions between propulsion and control surfaces. 

Previous work in control allocation includes the seminal 
paper of Durham [9], which introduced the concept of direct 
allocation. Buffington [3] proposed an alternative 
formulation minimizing the norm of the error between 
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desired and achieved commands. Using the l1 norm, he 
showed how the problem could be converted to a linear 
program and solved exactly, using standard linear 
programming software. Ikeda and Hood [13] similarly 
reported the application of l1 optimization, although with 
fewer details. In [1], it was shown that the direct allocation 
problem could also be solved using linear programming, and 
that a considerably smaller linear program could be obtained 
for the l1 optimization problem, compared to [3]. Timing 
data showed that solutions of the problem could comfortably 
be performed in real-time, even for a large number of 
actuators, and that the optimal solution improved 
performance significantly over simpler, approximate 
methods.  

 Solutions of the optimal control allocation problems 
using the l2 norm were also proposed, with an early solution 
provided through the fixed-point method of [5].  The fixed-
point algorithm was extremely simple, but numerical tests 
showed that convergence could be very slow and strongly 
depended on the command. An elegant alternative to this 
algorithm was proposed by Harkegård, using the theory of 
active sets [12]. The algorithm was similar to the simplex 
algorithm used for l1 optimization, and had the same 
advantage of completing in finite time and with a small 
number of iterations.  

 Interior-point methods were also studied to solve large 
control allocation problems, both for the l1 norm [16] and for 
the l2 norm [17]. The computational requirements of these 
methods scaled better with the number of actuators, but the 
number of actuators had to be quite large (>15) before the 
advantages become apparent. 

 Among recent work, one may note several papers 
considering the application of control allocation to 
hypersonic vehicles, including some flight tests [8], [18], the 
problems posed by nonlinear actuator effectiveness (e.g., 
[7]), modifications to account for the dynamic response of 
the actuators (e.g., [15]), and the combination of control 
allocation with adaptation (e.g., [19-20]).  

II. OPTIMIZATION FORMULATIONS OF CONTROL 
ALLOCATION 

A. Control allocation problem 
Generally, the control allocation objective consists in finding 
the control vector u such that 
  (2) 
where ad represents a desired vector and CB is a matrix 
specifying the effectiveness of the control variables. In [1], 
this problem formulation is obtained by taking a state-space 
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representation of an aircraft where the states are the angle of 
attack, the pitch rate, the angle of sideslip, the roll rate, and 
the yaw rate, and the outputs are the pitch rate, the roll rate, 
and the yaw rate. The i,jth element of the CB matrix, 
obtained by multiplying the B and C matrices of the state-
space model, specifies how much pitch (for i=1), roll (for 
i=2), or yaw (for i=3) acceleration is produced by the jth 
control variable. ad represents desired rotational 
accelerations.  
 The difficulty in control allocation is that the vector u is 
constrained. The limits generally take the form 
  (3) 

or, , in vector form. There may be additional 
constraints due to the maximum rate of deflection of the 
actuators. We refer to the problem of finding a vector u 
satisfying the constraints (3) and that either finds an exact 
solution of (2) or a solution that minimizes the error, as the 
control allocation problem.  

Regardless of whether an exact solution exists, it turns out 
that the optimal solution is often not unique. Therefore, it is 
typical to look for the solution that requires the least effort, 
as measured by the magnitude of the control vector. This 
objective can be expressed as the mixed optimization 
problem: 

Given a matrix CB and a vector up, find a vector u 
such that 

  (4) 

is minimized, subject to . 
The mixed optimization problem combines the error and 
control minimization problems into a single problem through 
the use of a small parameter . The vector up is a preferred 
value of the control vector (typically zero). If the parameter 

 is small, priority is given to error minimization over 
control minimization, as is normally desired. Often, the 
mixed problem may be solved faster, and with better 
numerical properties, than when the error and control 
minimization problems are solved sequentially [1]. 

The norm used in the optimization objective is a design 
choice that has more consequences than might be expected. 
The l1 norm of a vector x is the sum of the absolute values of 
the elements of the vector, while the l2 norm is the usual 
Euclidean norm. Algorithms have been proposed for both 
norms and the results of the optimization problems are 
sometimes quite different. 

B. Optimization using the l1 norm 
In this section, we review how the mixed l1 optimization 
problem can be converted to a linear program of small size, 
following the presentation of [1]. Further derivations later in 
the paper will build on this background and use the notation. 
 A standard linear programming problem consists of 
finding a vector x such that 
  (5) 
is minimized, subject to  
  (6) 
In (6), vector inequalities are to be interpreted element-by-

element. Alternative formulations exist, replacing  
by , and by . However, these differences 
are not significant and the present form is preferable for the 
control allocation problem.  

For the conversion of the mixed optimization problem, 
define the function   

  (7) 

This function is to be interpreted element-by-element in the 
vector case. We assume that the preferred vector satisfies 

. This condition may be eliminated without 

much difficulty, once the technique is understood. Define 
  (8) 

so that 

  (9) 

Similarly, define 
  (10) 
so that 
  (11) 
where is some upper bound on the achievable error, 

e.g., . 

With these definitions, the optimization problem 
involves a system of n linear equations 
  (12) 

and the cost criterion 

  (13) 

Therefore, defining the vector , the 

linear programming problem is specified by 

  (14) 

Note that the A matrix of the linear programming problem 
has as many rows as the CB matrix. For the standard case 
with a 3-dimensional vector ad, the number of rows is only 
3. This size is very small in linear programming, so the 
problem can be solved in a few iterations using, for example, 
the simplex algorithm. The algorithm is guaranteed to find 
an optimal solution in a finite period of time (if anticycling 
procedures are used [1]), it is easy to code, and it works well 
in practice. 

Speed of algorithm execution can be minimized by taking 
advantage of particular aspects of the control allocation 
problem.  In particular, an initialization phase can be 
avoided if the simplex algorithm is directly started with a so-
called basic feasible solution. A basic feasible solution is a 
vector x that solves Ax=b and is such that all elements of x 



  

are at their limits except q elements, where q is the number 
of rows of A. The mixed optimization algorithm can be 
initialized with u=up as a feasible solution, so that 

  (15) 

In general, q elements of e+ and e- will be equal to zero, 
leaving only q elements (or fewer) different from zero. 
These elements are the basic variables of the initial feasible 
solution.  

III. CONTROL ALLOCATION WITH RESOURCE BALANCING 

A. Properties of l1 optimization problems and resource 
balancing 
Linear programming theory implies certain properties of 

the solution of the mixed l1 optimization problem. 
Specifically, if the matrix CB has 3 rows, all the elements of 
the optimal vector x except 3 are either at their upper limit or 
at their lower limit. In terms of the control vector, this 
property implies that all but three control variables (or less) 
are either at the upper limit, at the lower limit, or at the 
preferred position. If the vector ad cannot be achieved in any 
direction, all the control variables are at one of the limits or 
at the preferred positions. The desirability of this property 
may be debated: on the one hand, it makes sense if the 
algorithm does not use ineffective surfaces. On the other 
hand, it is desirable to see all surfaces move together to 
achieve the desired moment. A more balanced distribution of 
the required effort to the control surfaces reduces the 
chances of encountering the control surface rate limits. 

 In this section, we consider control minimization using 
the l∞ norm 
  (16) 

The l∞ norm of a vector is the maximum of the absolute 
values of the elements of the vector. It is also called the sup 
norm.  For control optimization, the l∞ norm in 
  (17) 

leads to an optimization criterion referred to as a min-max 
criterion, since the objective is to minimize the maximum 
value (in absolute terms) of the elements of the vector. This 
criterion has been used in a variety of networking control 
problems, including communication networks [14] and 
computer networks [11]. Typically, this criterion arises when 
attempting to balance the loads among multiple resources, 
such as processors or communication nodes.  

In control allocation, use of the l∞ norm implies that one 
attempts to minimize the deflection of the actuators in the 
min-max sense. It does not matter how many actuators 
move, the maximum deflection should just be as small as 
possible. The solution that is obtained reflects this choice, by 
providing a more balanced distribution of the deflections 
than with the l1 norm. Interestingly, the control allocation 
problems using the l∞ norm can be converted to linear 
programs that are similar to the l1 linear programs, and 

solved using the same algorithms [2].  

B. Mixed l1-l∞ optimization 
We consider the optimization of the criterion 
  (18) 

In other words, the l1 norm is used for the error minimization 
and the l∞ norm is used for control minimization, with both 
criteria mixed in a single, mixed optimization criterion. In 
[2], it was shown that a small modification of the approach 
used for mixed l1 optimization yielded the desired linear 
program. It was also found that the problem could be solved 
with the l∞ norm used for error minimization, but with no 
clear benefit and an additional computational cost.  

Here, we show that a further modification yields the 
solution of a new problem where the actuator deflections are 
weighted in the computation of the l∞ norm as per unit 
values, where a unit is the maximum deflection of the 
actuator. The solution is not a trivial rescaling of the control 
variables, because the weighting may be different for 
positive and negative deflections. 

 Introduce an additional variable u*, which is intended to 
become the l∞ norm of the normalized u-up (less than 1). 
Next, vectors δu+ and δu- are introduced such that 

  (19) 

Using the same notation as for the l1 optimization, a linear 
program can be defined with the cost criterion 

  (20) 

and the optimization vector 
  (21) 

The linear program to be solved is  

 (22) 

 
where Ia×b is the identity matrix of dimension a×b, 0a×b is a 
matrix of dimension a×b filled with zeros, 1a×b is a matrix of 
dimension a×b filled with ones, and . As noted 
earlier, the algorithm enables a normalization of a positive 



  

deflection by the positive limit and a possibly different 
normalization of a negative deflection by the negative limit. 

Since the control allocation problem can be converted to 
a linear program, standard algorithms can be applied to solve 
it efficiently.  Initialization with a basic feasible solution can 
be performed as for the l1 optimization, by adding to the 
original basic variables the new variables δu+ and δu-. The 
major drawback is that the number of rows has grown 
considerably. From q rows (typically 3), the number has 
grown to q+2p (where p is the number of actuators). 
Nevertheless, such problems can still be solved very quickly 
on standard computing hardware. Studies of the mixed l1-l∞ 
control allocation problem without normalization 
demonstrated some advantages of this algorithm over the 
mixed l1 algorithm, including robustness to actuator failures 
and lower sensitivity to nonlinearities in the actuator 
effectiveness [2]. These advantages carry over to the 
normalized algorithm, in addition to some further reduction 
in sensitivity, as will be discussed in the next section. 

IV. SENSITIVITY OF CONTROL ALLOCATION ALGORITHMS 

A. Benefits of low sensitivity and metrics 
Computational studies have shown that the solution of 

control allocation methods can be sensitive to the value of 
the desired acceleration vector. A high sensitivity may yield 
to actuator rate saturation in the case of rapid changes of 
command, especially if the control allocation solutions are 
implemented in a look-up table, or if the rate limits are not 
inserted in the problem formulation. Reducing the sensitivity 
lowers the risk that rate limits will be encountered. 

In order to quantify the sensitivity of the algorithms to the 
data, a sensitivity metric was computed to assess how much 
the solution changes in a neighborhood of a given input 
vector . The sensitivity metric compares the computed 
effector deflections for a given desired acceleration vector 
and the computed deflections for the same desired 
acceleration vector with a small constant vector added to it. 
The sensitivity for an acceleration vector  is defined to be 

  (23) 

where  is the vector of control surface deflections 
computed by the algorithm for  ,  is the vector of 
control surface deflections for , and   is a small 
acceleration vector. The total sensitivity of a set of 
acceleration vectors, S, is given by 

   (24) 

where size(S) is the number of elements in the set S. 

B. Results 
The simplex algorithms described above were used to 

implement the l1 optimization, the l1-l∞ optimization, and the 

l1-l∞ optimization with normalization. Computations were 
performed on an aircraft model based on Lockheed Martin's 
ICE (innovative control effectors) tailless aircraft model 
found in [3]. It has 11 actuators: left elevon, right elevon, 
pitch flaps, left all-moving tip, right all-moving tip, pitch 
thrust vectoring, yaw thrust vectoring, left spoiler slots, right 
spoiler slots, left outboard leading-edge flaps, and right 
outboard leading-edge flaps. The CB matrix associated with 
an output vector composed of pitch rate, roll rate, and yaw 
rate is given in [3] as 

 (25) 

for a flight condition at Mach 0.4 and 15,000 ft altitude. The 
position limits are given in [4] as 
  (26) 

  (27) 
The limits of the spoiler slot deflectors were lowered from 
60 degrees to 10 degrees in [4] to reduce nonlinear 
interactions between the spoiler slot deflectors and the 
elevons. The same limits were used here, although the 
nonlinear effects were not part of the evaluation. In the 
computations,  and . 

Figs. 1-2 compare the results of computations for the ICE 
model with pure roll accelerations given as the desired 
accelerations (i.e., the pitch and yaw acceleration 
components were identically zero). The simulation had 110 
input points with roll accelerations from 0.0 to 1.1 times the 
maximum attainable roll acceleration of 351.9 deg/s2. For 
the sensitivity analysis, ∆ had a roll acceleration equal to 2.0 
and pitch and yaw accelerations identically zero. 

Fig. 1 shows the sensitivities of the algorithms at each 
point. An interesting observation in Fig. 1 is that all the 
algorithms show increased sensitivity when the commanded 
accelerations approach the achievable acceleration limits. 
This “terminal” sensitivity is a problematic feature for all 
algorithms used for control allocation [10]. 

Fig. 2 shows the commanded control surface deflections 
for the ICE model using the three algorithms. Comparison of 
the plots in Fig. 2 reveals that the allocation of the control 
surfaces was more distributed in solutions using the l∞ norm. 
The l∞ norm results in a type of resource balancing, where 
the resource is the desired command and the algorithm 
balances this resource among various actuators. Examination 
of Figs. 1-2 shows the sensitivity of the algorithms increases 
once one of the control surfaces becomes saturated. 

An acceleration error for each algorithm was computed as 
the  norm of the difference between the accelerations 
resulting from the commanded deflections and the desired 
accelerations. The acceleration error is given by 



  

  (28) 

where  is the vector of desired accelerations and  is the 
vector of commanded deflections determined for  by the 
algorithm. For all three algorithms, the acceleration errors 
were essentially zero and were within the numerical noise 
floor when the desired accelerations were achievable. This 
observation means that the solutions are the same as would 
be obtained with a two-step optimization procedure, where 
error is minimized first and control is minimized within this 
solution as a secondary objective. 

The sensitivity of the algorithms was analyzed for points 
randomly sampled from one of two sets: a cube containing 
the attainable moment set (AMS) or the boundary of the 
AMS (we use the standard terminology of [9], although our 
set is an achievable acceleration set). Computations using 
these two sets allow examination of the overall algorithm 
sensitivity and the terminal sensitivity at the AMS boundary. 

Fig. 3(a) shows the mean total sensitivity for the first case. 
Ten sets of 500 desired accelerations were randomly 
sampled from a cube with its boundary outside the attainable 
moment set (see table I for the cube limits). The sensitivity 
calculation used random  vectors of length 3.0. Each 
marker in Fig. 3 represents the mean total sensitivity of an 
algorithm for a specified value of ε. The mixed l1-l∞ 
optimization with normalization was less sensitive than the 
mixed l1-l∞ optimization algorithm, which was less sensitive 
than the mixed l1 algorithm. For both the l1 algorithm and the 
l1-l∞ normalized algorithm, a small trade-off was observed 
between the sensitivity of the algorithm and the value of ε. 
For the mixed l1-l∞ optimization algorithms, the sensitivities 
are relatively similar for the values of ε used in the 
computations. 

A total acceleration error was computed to assess the 
acceleration errors for the algorithms over a set of points. 
The total acceleration error for a set, S, is given by 

   (29) 

where  is the vector of desired accelerations,  is the 
vector of deflections determined for  and size(S) is the 
number of elements in the set S. All three algorithms had 
total acceleration errors of 25.09 deg/s2 for points sampled 
from the cube around the AMS. The total errors were large 
because each set had unattainable points, resulting in large 
errors that dominated the smaller errors.  

Fig. 3(b) shows the total sensitivity for points randomly 
sampled from the AMS boundary. These results tell a similar 
story to the results of Fig. 3(a), except the sensitivity 
magnitudes are larger for points sampled from the AMS 
boundary. Mean total acceleration errors are given in table II 
for the mixed l1 algorithm. The acceleration errors increased 
with ε, due to the increased priority given to control 
minimization. These results suggest a trade-off between 
performance (error) and cost (control) for the l1 algorithm on 
the AMS boundary. Zero acceleration errors were observed 

for both mixed l1-l∞ optimization algorithms, suggesting no 
trade-off between error and control for these algorithms.  

V. CONCLUSIONS 
We presented a new algorithm for control allocation that 

makes use of mixed l1-l∞ optimization with normalization. 
This algorithm allows the control surface deflections to be 
more evenly allocated among the available control surface 
resources. The sensitivity of the mixed l1 optimization, the 
mixed l1-l∞ optimization, and the mixed l1-l∞ optimization 
with normalization was examined. The mixed l1-l∞ 
optimization with normalization had the lowest sensitivity 
overall, although high sensitivities were observed for all 
algorithms near the boundary of the AMS. 
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Fig. 1. Sensitivities of l1, l1-l∞, and l1-l∞ normalized optimization algorithms 
for pure roll acceleration. 
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Fig. 2. Control surface deflections for pure roll acceleration for (a) l1, (b) l1-
l∞, and (c) l1-l∞ normalized optimization algorithms. 
 
 
 
 
 
 

 

 
Fig. 3. Mean total sensitivity for l1 optimization, l1-l∞ optimization, and l1-l∞ 

normalized optimization for (a) accelerations from cube around AMS and 
(b) accelerations from AMS boundary. 
 
 
Table I. Acceleration limits (deg/s2) for cube around AMS. 
 

Limits Pitch  Roll  Yaw  

Negative 
(deg/s2) 

-333.098 -351.941 -25.772 

Positive 
(deg/s2) 

249.234 351.941 25.772 

 
 
 
Table II. Total acceleration errors (deg/s2) l1 algorithm with input from 
AMS boundary. 
 

Value of epsilon Accel. Error (deg/s2) 

1e-6 6.8e-9 

1e-5 1.2e-8 

1e-4 1.2e-8 

1e-3 4.2e-4 

1e-2 7.2e-3 

 
       


