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ABSTRACT
Accurate simulation of the effects of integrating new technologies
into a complex system is critical to the modernization of our anti-
quated air traffic system, where there exist many layers of interact-
ing procedures, controls, and automation all designed to cooperate
with human operators. Additions of even simple new technologies
may result in unexpected emergent behavior due to complex hu-
man/machine interactions. One approach is to create high-fidelity
human models coming from the field of human factors that can sim-
ulate a rich set of behaviors. However, such models are difficult to
produce, especially to show unexpected emergent behavior com-
ing from many human operators interacting simultaneously within
a complex system. Instead of engineering complex human models,
we directly model the emergent behavior by evolving goal directed
agents, representing human users. Using evolution we can pre-
dict how the agent representing the human user reacts given his/her
goals. In this paradigm, each autonomous agent in a system pursues
individual goals, and the behavior of the system emerges from the
interactions, foreseen or unforeseen, between the agents/actors. We
show that this method reflects the integration of new technologies
in a historical case, and apply the same methodology for a possible
future technology.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Performance, Experimentation

Keywords
Emergent Behavior; Multiagent Learning

1. INTRODUCTION
Air traffic management is an incredibly complex problem, with

many layers of interacting procedures, controls, and automations,
all interacting in real-time with human operators. Developing a
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new piece of technology to fit into this framework is a challenging
process in which many unforeseen consequences. Thus, the abil-
ity to simulate new technologies within an air traffic management
framework is of the utmost importance.

One approach is to create a highly realistic simulation for the
entire system [13, 14], but in these cases, every technology in the
system must be modeled, and their interactions must be understood
beforehand. If this understanding is lacking, it may be difficult
to integrate them into such a framework [16]. With a sufficiently
complex system, missed interactions become a near-certainty.

Another approach is to use an evolutionary approach in which a
series of simple agents evolves a model the complex behavior of the
system through their interactions. Such agents have been used to
gain insight into such systems as macroeconomics [3, 4, 8] and sup-
ply chain management [2]. However, the problem of defining the
policies that the agents should follow is non-trivial, especially in the
case where the agents may act in a heterogeneous manner: devel-
opment of such agents can quickly become cyclical, with changes
to one agent necessitating changes to others. These approaches are
also prone to over-engineering and can quickly become too tailored
to the specific problem to offer any generality or reusability.

Instead, in this work we use an evolutionary algorithm on agent
policies to allow the agents to discover policies that meet certain
designer-specified goals. This then trades off designer workload
and required expertise for computing time. Such agents can de-
velop both simple policies that directly meet system goals as well as
more complex, emergent behaviors. We demonstrate this as a lens
for examining new potential technologies by examining the histor-
ical case of the Norden Bombsight, and another situation which
represents a possible future technology.

The major contributions of this work are to:

• Show that even simple behavioral models can be evolved that
have predictive value in assessing technology introduction by
exploring predicted outcomes of technology infusion

• Show that even with such simple evolved behavioral models,
complex "emergent" behavior (not predicted or expected) may
arise

The remainder of this work is organized as follows: In Section
2 we present background on evolutionary policy search and goal-
based agents, as well as introducing the historical case that we use
as a framework for our simulations. In Section 3 we present the
domains used in this paper. In Section 4 we describe the algorithms
used. In Section 5 we include the experimental parameters used for
our experiments. In Section 6 we include our experimental results
and Finally, in Section 7, we draw the conclusion of this work.



2. BACKGROUND
This work employs an evolutionary algorithm to search for agent

policies. In this section we describe these concepts and introduce
the historical case of the Norden Bombsight.

2.1 Learning Agents / Multiagent System
Learning agents are autonomous actors in a system which make

observations about their environment, reason based on these ob-
servations, perform actions that affect their environment, and use
feedback from the environment to update their policies [15]. In
a learning multiagent system, multiple agents are simultaneously
performing this process. These agents exist in other agents’ obser-
vations, and all actions taken affect the common environment [17].

2.2 Evolutionary Algorithms
We use an evolutionary algorithm in this work, in which agent

policies are represented by neural networks. We evaluate their fit-
ness with a calculation specific to each case that we present (Sec-
tion 4). Once completed, the policies with the lowest fitness are
removed from the system and replaced with slightly-modified ver-
sions of more successful policies. Over time, the population tends
toward more desirable policies [1].

2.3 Agent Simulation / Goal-Based Evaluation
Romano et al. state that “Intelligent agents can act as basic build-

ing blocks of an artificial society and be used to study the emer-
gency of the social behaviour. Agents can be autonomous, flexible,
adaptable and goal-directed" [12]. This lets “Behaviours ‘emerge’
from the actions of these diverse units in constant motion" [12].

We take a similar approach in this work, where we merely set
forth goals for the agents to achieve, and allow their collective
search for good policies to lead to behaviors that emerge. In many
cases these behaviors align with designer predictions, but unex-
pected behaviors can also emerge. In this way, the system designer
need only describe the desired outcome of the system behavior, and
not how the agents should go about reaching those goals.

Agent simulation has been used for modeling complex systems
like macro-economics [3, 4, 8]. In these situations, simple agents
interacting with the market mirror real-life observed phenomena,
like the creation of “bubbles" in the market [8]. Other agent-based
simulations have been used to investigate such systems as supply
chains [2], network security [9], maritime piracy [7], and evacua-
tion of dangerous environments [5, 11].

Authors investigating systems with agent-based simulation have
argued for the need of simplicity in the agent representation as
well [8, 9]. As LeBaron states, learning agents are put to use “that
are simple enough for easier analysis and interpretation, yet rich
enough to pursue many of the experiments in evolution and het-
erogeneity present in older, more complex frameworks" [8]. It is
not the complexity of an individual agent, but rather the interaction
between these agents in their shared environment, that creates the
complex emergent behaviors that can be observed.

2.4 The Norden Bombsight
To assist in examining the potential effects of a new technology

on a modern complex system, it is useful to consider the effects
that new technologies have had on complex systems in the past. In
this work we consider the well-documented historical case of the
Norden Bombsight.

In World War II, the Norden Bombsight was used by the United
States Army Air Force (USAAF) for their precision daylight raids
over Europe. While it had a number of drawbacks (such as requir-
ing visual contact with the desired target), it was widely adopted

and used in the European theatre, with the USAAF ordering 90,000
units, and training 50,000 bombardiers to use them at a develop-
ment cost of 1.5 billion USD [6].

The basic functionality of the Norden Bombsight was an analog
computer that was capable of calculating the location which a bomb
should be dropped to land on the sighted target, given inputs of air-
speed, altitude, and crosswind velocity [6]. This bombsight offered
an advantage over earlier tactics, which consisted of a visual release
method without the benefit of the analytical power of the Norden.
Even so, a potential problem arises: If a group of bombers in for-
mation are attempting to release their payloads to all contact the
same area, as they approach the release point, the separation of the
planes will reduce to a potentially dangerous level.

In the case of the physical world, new techniques are not adopted
without fully considering potential safety risks. This, combined
with the fact that the 50,000 trained bombardiers had varying skill
levels at the analog programming required by the Norden, resulted
in the decision by 1944 that the lead bomber should be the only one
using the Norden. The other bombers merely held formation with
respect to the lead, and released their payload when they saw the
lead bomber do so. This reduced the accuracy of the formation as
a function of the size of the formation and the ability of the pilots
to hold their position with respect to the bomber ahead of them, but
removed the problems of separation assurance.

Though the Norden Bombsight was not as revolutionary as it
was originally touted to be, nor was its use as successful as orig-
inally hoped, it still represented a new technology in an already-
existing, complex system, which changed the behaviors of the ac-
tors in the system. This is our basis for including this historical
example, which forms the framework for our Norden Bombsight
Domain (Section 3.1) in this work.

3. DOMAINS OF STUDY
In this work we use two domains of study to show how agents

can be evolved to discover emergent behavior.. The first is the Nor-
den Bombsight Domain (Section 3.1), which models the historical
example of the Norden Bombsight described in Section 2.4. The
second is the “Civilian ‘Cloud’ Domain", a related domain which
represents a possible future case of technology integration.

3.1 Norden Bombsight Domain (NBD)
In the Norden Bombsight Domain, a series of planes must coop-

eratively traverse a corridor from south to north, and pass as closely
as possible over a single point (target location) at the far end of the
corridor. The planes all travel at a constant speed. Each plane agent
senses local information using the following state variables:

1. dx: X-distance from target location

2. dy: Y-distance from target location

3. Vx: X-velocity

4. Vy: Y-velocity

5. px: X-distance to nearest other plane

6. py: Y-distance to nearest other plane

7. cx: X-distance to centroid of k nearest cloud centers

8. cy: Y-distance to centroid of k nearest cloud centers

and each plane agent takes action by selecting the bearing that they
wish to proceed toward. In the Norden Bombsight Domain, the
cloud states (7 and 8) have no bearing on the goals of the planes,
but they are included in the state to keep the simulations presented
in this work homogeneous.



After each agent chooses an action, system dynamics described
in Section 4 are then calculated, and the plane agents move to their
location for the next timestep. This process is repeated until all
planes exit one of the edges of the corridor or a set number of
timesteps has passed. At the end of each episode, the agents in
use are scored based on their performance measured on the goals
set forth for them. We use the exact same agent structure in 3 sepa-
rate cases, while changing the goals slightly in each case. The cases
for the Norden Bombsight Domain mirror the historical case of the
Norden Bombsight.

3.1.1 Case 1: Pre-Norden Bombsight
Before the integration of the Norden Bombsight, the USAAF

used pilot and bombardier visual cues to identify the target, but had
no precise way of calculating the ideal launch point.

We model this by making the agents’ goals to (i) pass through
the north end of the corridor, with no emphasis on passing over the
precise target point, and (ii) maintain separation assurance with the
other aircraft in flight.

3.1.2 Case 2: Full Norden Integration
With the integration of the Norden Bombsight, the USAAF had

the ability to precisely identify the target location, and the Norden
Bombsight itself was used as an autopilot for the plane on the final
approach, where it considered only its relative position to the pre-
cise target location when giving control commands to the bomber,
without considering the other planes in the formation in any way.

We model this by making each agent’s goal in this case to (i)
pass over the target point as precisely as possible, while ignoring
any contribution from separation assurance.

3.1.3 Case 3: Norden + Separation
The USAAF eventually settled on using the Norden Bombsight

on the lead bomber in the flight (with inactive backup devices on
other members of the formation), while all other bombers were to
maintain formation with respect to the lead plane. This had two
benefits: it reduced the system to an effectively centralized con-
troller, and removed the separation assurance problems that would
have been introduced by full integration (Case 2).

We model this as a multiagent system wherein the agents still
have the ability to override the autopilot for the sake of separation
assurance. The agents’ goals in this case are to (i) pass over the tar-
get point as precisely as possible while (ii) maintaining separation
assurance with the other aircraft in flight.

3.2 Civilian “Cloud" Domain (CCD)
While the Norden Bombsight Domain allows ready compari-

son to historical reality, we include a second, related domain to
show the general applicability of the methods used, and to remove
any possible bias due to the knowledge of historical outcomes that
might be present in the Norden Bombsight Domain.

In the Civilian Cloud Domain, the setup is much the same: a
set of planes must traverse a corridor from south to north using the
same state information as allowed in the Norden Bombsight Do-
main, and would ideally like to pass over a waypoint at the end of
the corridor. The complication arises by the introduction of areas of
the corridor that are preferably avoided. These areas may represent
turbulence, storms, other incidental planes in holding patterns, or
areas of poor visibility. For the ease of the reader, we collectively
term all of these areas to avoid “clouds", and represent them as a
single goal in the simulation.

We present three different cases in the Civilian Cloud Domain to
exhibit the types of behaviors that learning agents can develop.

3.2.1 Case 4: Explicit Cloud Avoidance, No Spacing
In this case, we model a system with each plane equipped with a

cloud-avoiding autopilot as it navigates through the corridor. Simi-
lar to Case 2, we define that these autopilots do not coordinate with
each other in any way.

We model this by making their goals (i) to make it through the
corridor to the target point successfully, while (ii) avoiding clouds.
Avoiding other aircraft is not involved in their utility function.

3.2.2 Case 5: Explicit Cloud Avoidance + Spacing
In a second iteration of the Civilian Cloud Domain, we model

a system in which each plane is equipped with a cloud-avoiding
autopilot which does have the explicit goal of avoiding separation
violations with other planes.

Their goals are to (i) make it through the corridor successfully,
while (ii) maintaining separation assurance from other planes, and
(iii) avoiding clouds.

3.2.3 Case 6: Implicit Cloud Avoidance
In our final case of the Civilian Cloud Domain, we model a sys-

tem in which the cloudy areas of the airspace are able to be sensed,
but avoiding clouds is not an explicit goal of the agents. How-
ever, in this case only, we remove their ability to sense other planes
while in cloudy regions of the airspace (within 50 units of a cloud
center), creating potentially dangerous conditions that are not ex-
plicitly within the utility function of the agents.

In this case, the agents’ goals are to (i) make it through the corri-
dor successfully, while (ii) maintaining separation assurance from
other planes. Though the cloudy areas of the space aren’t directly
within the utility function, planes within the cloudy regions may
experience un-sensed separation violations that occur, making the
cloudy regions potentially dangerous.

4. SIMULATION DETAILS
In both simulation domains, we use the same evolutionary algo-

rithm to execute a simulation. Certain steps do change depending
on the case. The overall simulation algorithm is presented as Al-
gorithm 1. The calculation of the utility based on the goals of the
agent for each case is shown in Algorithms 2 and 3.

4.1 Simulation Algorithms
In Algorithm 1, a population of neural networks is formed, and a

subset is selected to perform the first simulation. In this simulation,
at each timestep each agent senses information about its surround-
ings into the state vector Sa, and evaluates its neural network on
the state vector (NN (Sa)), before scaling its output to be in the
range [0:2π]. This value represents the desired heading θ̂a. The
actual heading for this timestep θa is then calculated as a weighted
average between θa for the previous timestep and θ̂a for the cur-
rent timestep, with a weighting factor ρ. In the event that θa and
θ̂a lie on opposite sides of the [0:2π] discontinuity, the smallest an-
gle between the two is measured and used for this calculation. The
plane’s x- and y-location are then updated. At this point, timestep-
level utilities are calculated (per F1 steps in Algorithm 2 or 3).

After the final timestep, the episode-end utilities are calculated
(F2), and the final utility for each agent used during that simula-
tion is calculated (F3). After all agents have been used in one of
the simulations, the m lowest-performing networks are removed,
and m new copies of surviving networks are produced. These new
networks have their weights modified with a 20% chance per link,
by adding a random number drawn from a normal distribution with
zero mean and standard deviation 0.2.



This process is repeated for each generation. This process is
uniform across all 6 cases presented here. The only changes to the
process are the steps marked F{1,2,3} and the sensing step in Case
6, in which agents cannot detect planes when they are within 50
units of a cloud center.

4.2 Goal Evaluation
The primary difference between the cases is the goals that the

agents are trying to meet, and how these affect their fitness calcula-
tion. In each case, the primary goal is to traverse the corridor from
south to north. To emphasize this over all other considerations, the
reward for successfully exiting the corridor to the north (usuccess)
is multiplied by a very large number (R), such that all solutions that
successfully complete this challenge will have a higher fitness than
those that do not. This is a form of lexicographic ordering [10],
with completion prioritized higher than all other goals, which are
weighted against each other. For ease, before applying weights to
the goals, they are normalized in the range [0:1], with the maximum
attainable goal taking on a value of 1.

4.2.1 Norden Bombsight Domain Goals
Algorithm 2 lays out the goals for the first 3 cases, which are

executed in the Norden Bombsight Domain. In the first case, at
each timestep the separation from the nearest plane is calculated,
and the separation assurance utility usep is updated. At the end of
the run, the binary success measure usuccess is calculated, which
is 1 if the plane successfully passes through the north end of the
corridor, and 0 if the plane either does not exit the corridor within
the allotted time, or exits out of one of the other sides. Finally,
these two rewards are combined to form the agent’s overall utility
U , which is used to determine which agents will be eliminated.

In the second case, the separation calculation is replaced by a
calculation for the closest distance the agent passed over the target
location, leading to utarget. The function dist(target) returns the
distance to the target, scaled between 0 and 1, with 1 being the

Algorithm 1 Simulation Process for NBD and CCD
1: Initialize population of n neural networks.
2: for generation = 1→ max_generations do
3: Select P neural networks not used yet this generation
4: Assign one of the P neural networks to each plane
5: for simulation = 1→ sims_per_gen do
6: for timestep = 1→ max_timesteps do
7: for a = 1→ P do
8: Sense: Sa ← {dx, dy, Vx, Vy, px, py, cx, cy}
9: Choose action: θ̂a ← NN (Sa) ∈ {0,2π}

10: Adjust plane heading: θa ← θa+ρ∗ (θa− θ̂a)
11: Update x-location: xa ← xa + |V | cos(θa)
12: Update y-location: ya ← ya + |V | sin(θa)
13: Calculate timestep-level goal values F1

14: end for
15: end for
16: for a = 1→ P do
17: Calculate end-of-simulation goal values F2

18: Calculate agent utility U F3

19: end for
20: end for
21: Remove m neural networks with lowest utility U
22: Create m neural networks, identical to surviving networks
23: Mutate the newly created networks
24: end for

maximum possible distance to the target. This value and usuccess

are the only contributions to the overall utility U in Case 2.
In the third case, both usep and utarget are calculated, and they

are combined in the final U calculation with weights Wsep and
Wtarget, respectively, which allows the system designer to specify
the perceived tradeoff between passing directly over the target and
maintaining separation assurance throughout the flight.

4.2.2 Civilian Cloud Domain Goals
Algorithm 3 lays out the goals for the final 3 cases, which are

executed in the Civilian Cloud Domain.
In Case 4, the goals are to proceed through the space without

coming too near the cloud regions, and pass over a target. No con-
sideration is given to the separation between airplanes.

In Case 5, we give the agents explicit utility for staying out of
the cloudy regions of the airspace, with ucloud, which is again ag-
gregated into U with weight Wcloud.

In Case 6, we do not explicitly give utility for avoiding cloudy
regions, but the agents benefit from avoiding these regions because
their sensors for the nearest plane (which does form part of the util-
ity calculation) are only effective outside of these regions: Staying
outside of cloudy regions becomes an implicitly coupled goal.

5. SIMULATION SETUP
In all experiments, we use a population of n = 110 agents of

8-input, 6-hidden unit, 1-output neural networks that are assigned

Algorithm 2 Goals for NBD Cases
Case 1: Pre-Norden Bombsight
F1: if(|px, py| < β), usep ← usep − (|px, py| − β)2
F2: if(run_success), usuccess = 1
F3: U = usuccess ∗R+ usep

Case 2: Full Adoption of Norden Bombsight
F1: utarget = max(utarget, 1− dist(target))
F2: if(run_success), usuccess = 1
F3: U = usuccess ∗R+ utarget

Case 3: Norden Bombsight + Separation
F1: if(|px, py| < β), usep ← usep − (|px, py| − β)2
F1: utarget = max(utarget, 1− dist(target))
F2: if(run_success), usuccess = 1
F3: U = usuccess ∗R+Wsep ∗ usep +Wtarget ∗ utarget

Algorithm 3 Goals for CCD Cases
Case 4: Cloud Avoidance, No Separation Assurance
F1: utarget = max(utarget, 1− dist(target))
F1: if(|px, py| < β), usep ← usep − (|px, py| − β)2
F2: if(run_success), usuccess = 1
F3: U = usuccess ∗R+Wcloud ∗ ucloud +Wtarget ∗ utarget

Case 5: Cloud Avoidance with Separation Assurance
F1: utarget = max(utarget, 1− dist(target))
F1: if(|px, py| < β), usep ← usep − (|px, py| − β)2
F1: ∀i if(dist(Ci) < βcloud), ucloud ← ucloud − dist(Ci)

−2

F2: if(run_success), usuccess = 1
F3: U = usuccess ∗ R +Wtarget ∗ utarget +Wsep ∗ usep +
Wcloud ∗ ucloud

Case 6: Implicit Cloud Avoidance
F1: if(|px, py| < β), usep ← usep − (|px, py| − β)2
F1: utarget = max(utarget, 1− dist(target))
F2: if(run_success), usuccess = 1
F3: U = usuccess ∗R+Wsep ∗ usep +Wtarget ∗ utarget



to P = 10 planes over sims_per_gen = 11 simulations each
generation, for max_generations = 500 generations. In each
simulation, the policies used are randomly selected from those that
have not been used in that generation.

We instruct the planes to maintain βplane = 15 units of separa-
tion from each other at all times, and the planes move at a rate of 10
units per timestep. We use an effective cloud radius of βcloud = 50
units. After each generation, m = 10 agents are removed from the
population and replaced with mutated copies of more-fit agents.

The agents start at the south end of the corridor, and are directed
toward a target in the center of the north end of the corridor, 1000
units away. All agents start with heading θa = π/2 (North). The
system dynamics are governed by the planes travelling at |V | = 10
units per timestep, and a heading adjustment coefficient of ρ =
0.5. Cases 1 and 2 involve no weights. In Cases 3-6, all weights are
set to a value of 1.0 unless otherwise noted in the results.

6. RESULTS
We present the outcome of the simulation for each case presented

in Section 3. The first three cases mimic the historical Norden
Bombsight, while the last three cases serve as a test case, without
the designer-side bias introduced by historical knowledge.

In every case we perform 30 statistical runs, and then present the
simulation output for the statistical run which attained the sum of
agent performance closest to the mean value across all 30 runs. We
offer these plots for each of the 6 cases representing the different
goal combinations that the agents were tested with (Figures 1–9).

Interpretation of Figures.
Each of the figures represents each aircraft by a distinct color-

symbol combination. The lines plot out each timestep, with the
symbols appearing every 10 timesteps. The planes proceed from
the bottom of the figure through the top. It is important to note that
if a plane travels in the x-direction, even if it appears to intersect
the path created by another plane, in many cases it is in the same
location many timesteps after the first plane was there.

Clouds are represented by grey circles, which represent the max-
imum radius at which the cloud will have effect on an agent’s re-
ward. Being closer to a cloud center is worse than being near the
edge, and passing over multiple clouds simultaneously has an ad-
ditional negative effect on the agent’s reward.

6.1 Case 1 Results
In Case 1, the agents seek to (i) pass through the north end of the

corridor, with no emphasis on passing over the target point, and (ii)
maintain separation assurance with the other aircraft in flight. This
represents the case in which the USAAF did not have an accurate
method for determining the ideal release point for their payloads.

The agents do not show a preference to where they exit the cor-
ridor, and are only concerned with staying spaced out with respect
to the other aircraft. The agents quickly converge on a solid policy:
move straight forward to the end of the corridor, and perform slight
corrections when too close to another plane. Other, more complex
methods may exist that could be discovered by a thorough consid-
eration of the problem by a human expert, but the simplest policies
are both easier to arrive at, and tend to be the most consistent per-
formers, resulting in this straightforward solution.

6.2 Case 2 Results
Within Case 2, the agents operate with the sole goal: (i) pass

over the target point as precisely as possible, while ignoring any
contribution from separation assurance. This represents a potential

outcome if the USAAF were to adopt a full-scale integration of the
Norden Bombsight

This leads to agent policies where the agents learn to direct them-
selves directly over the target location with no heed for other con-
cerns. This means that the planes would be travelling over the target
at very nearly the same time, making a very unsafe situation for all
involved. This result agrees with the USAAF determination not
to use the Norden Bombsight aboard all of the aircraft within the
formation, and is another case where a very simple policy leads to
high individual utility.

6.3 Case 3 Results
In Case 3, the agents have the two explicit goals of (i) to pass

over the target point as precisely as possible while (ii) maintain-
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Figure 1: Case 1 — Pre-Norden Bombsight.
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Figure 2: Case 2 — Full Norden Integration.



ing separation assurance with the other aircraft in flight. These two
goals are conflicting, however, so we examine the effect of differ-
ent weights on the paths chosen by the simulated aircraft. This
represents a partial integration of the Norden Bombsight.

A number of interesting phenomena arise. When spacing is given
a near-zero weight Wsep = 0.1 (Figure 3), the simulation reveals
that the aircraft will converge to the center target point at the top
of the corridor, as in Case 2. Some signs of separation concerns
do appear, however, as Figure 3 shows one of the aircraft peeling
off from the rest, in favor of maximizing its spacing utility over the
target utility. The agents also do not converge to as tight of a group
at the target point as in Case 2.

When we move the weight to consider separation Wsep = 0.5,
we find that there is a tradeoff that the agents begin to make, shown
by the simulation in Figure 4: there is less convergence toward the

Figure 3: Case 3 — Little weight on separation.
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Figure 4: Case 3 — Moderate weight on separation.

target point, and some of the agents choose to stay away from the
congested center area in favor of maintaining separation assurance.

As we increase the weight for separation equal to that of the
target weight Wsep = 1.0, the simulation shows that the planes
favor maintaining their spacing more than passing over the center
point, and spread out further. However, Figure 5 shows that the
agents begin to develop a secondary strategy: they take a longer
path toward the target, so that they arrive in the area at a later point
in time. Notice particularly in Figure 5 the three aircraft starting at
the right cross all the way behind the other planes to end up to the
left of their target. This longer path takes them longer to traverse
than the planes taking a more direct path, so they avoid separation
violations in this way.

This is taken to the extreme when we then reduce the target
weight toWtarget = 0.01 and the ideal separation to a larger value

Figure 5: Case 3 — Large separation weight.
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Figure 6: Case 3 — Large separation distance and weight.



βplane = 250 units. With these settings, agents become solely con-
cerned with staying in uncongested areas while traveling through
the airspace. Figure 6 shows that a few of the simulated agents
make large movements in the x-direction while traveling through
the corridor, and the remaining agents spread out as they travel.

This strategy is a result that is not immediately apparent by in-
spection of the problem. Crossing behind other planes in flight
is a somewhat unforeseen behavior that may not arise with hand-
designed agents. The evolutionary algorithm, however, led to these
policies through the agents simply seeking to maximize their utility
because it was an easily accessible solution that offered improve-
ment over more intuitive solutions.

6.4 Case 4 Results
In Case 4, we introduce the complication of clouds to avoid. This

creates the agent goals for this case of (i) to make it through the
corridor to the target point successfully, while (ii) avoiding clouds.
Avoiding other aircraft is not involved in their utility function.

The simulation shows that the agents learning on these goals very
successfully avoid the cloudy patch in the middle of the corridor,
and pass near the center of the corridor end. Due to spacing being
a non-concern for the agents in this case, they maintain very close
distance to each other as they pass directly through the corridor.

6.5 Case 5 Results
Case 5 presents the agents with 3 goals to balance: to (i) make it

through the corridor successfully, while (ii) maintaining separation
assurance from other planes, and (iii) avoiding clouds.

This leads to an unexpected emergent behavior that may initially
look quite disorganized, but has an underlying order. As the group
of agents passes by the right side of the central cloud region, the
agents peel off from the group one by one, making a complete turn
before proceeding to the end of the corridor. As they turn at var-
ious points, they increase the spacing between themselves and the
remainder of the formation, increasing their spacing utility, usep.
In other simulations, we observed agent behaviors that were simi-
lar with a left-handed turn, as well as behaviors where the agents
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Figure 7: Case 4 — Explicit cloud avoidance.

would split to two sub-formations performing this maneuver on ei-
ther side of the cloud formation.

With even weight on all three goals, this unexpected policy of
agents choosing to complete a full turn before proceeding to the end
of the corridor creates a higher utility value U than a more conven-
tional “laminar flow policy" like those seen in Figure 7. Executing
the turns at different points in the corridor leads to an intermediate
spreading of the planes, and also allow the agents to pass through
the end of the corridor at different points in time, allowing more
agents to pass closer to the center.

This type of emergent behavior manifested due to the evolution-
ary algorithm employed in this work, and outperformed our ear-
lier attempts and solving the problem with rule-based agent poli-
cies. While we were subsequently able to develop hand-coded poli-
cies that were superior to the evolved policy, the concept for these
policies was directly inspired by the results of the evolutionary al-
gorithm. Furthermore, the evolutionary algorithm that developed
these policies remains unchanged from the algorithm used in each
of the other cases, while the superior hand-coded policies required
both inspiration from the evolutionary algorithm and additional de-
velopment time.

6.6 Case 6 Results
In Case 6, we remove the penalty of the cloudy regions, creat-

ing the goals of (i) make it through the corridor successfully, while
(ii) maintaining separation assurance from other planes. We in-
troduce a simulated complication due to the clouds: the agent’s
ability to sense other nearby planes is inhibited by the clouds, cre-
ating an implicit goal that they should avoid the cloudy areas in or-
der to achieve their separation assurance goals. To make this case
more challenging we change the allocation of clouds throughout
the space so that the planes have a larger area to avoid.

The simulation reveals that the agents do learn to avoid the cloudy
areas, though not quite as severely as when the goal was explicitly
involved in their utility calculation. Passing through the cloudy
area is not a bad decision in and of itself, but when multiple agents
simultaneously choose to do so, they reduce each other’s utility
through the un-sensed separation violations.
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Figure 8: Case 5 — Explicit cloud avoidance and spacing.
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Figure 9: Case 6 — Implicit cloud avoidance.

7. CONCLUSION
In this work we have presented a method for the simulation of

complex systems to predict the effects of new technology integra-
tion in air traffic management through the use of evolutionary algo-
rithms. These evolutionary algorithms require the system designer
only to specify a goal for the system, and the resultant behaviors
achieve these goals in both expected and unforeseen manners.

We demonstrated the use of this technique in two domains, with
the algorithm unchanged between the 6 cases tested. In the his-
torical test cases, we arrive at the same conclusion that the histori-
cal system designers did: applying the Norden Bombsight to every
bomber would be a poor idea, as many separation assurance prob-
lems would arise. Considering the separation between the planes
as well as the precise location of the target is a better solution. This
supports our claim that an agent-based evolutionary algorithm ap-
proach can assist in assessing the value of new technologies.

In the future technology case of the Civilian Cloud Domain, the
simulation demonstrated that agents were able to balance multiple
simultaneous goals for an expected outcome when we specified ar-
eas of the airspace to be avoided, in the form of clouds. When
the agents also had to consider their separation from nearby planes,
however, they developed a set of radical behaviors which gained
higher utility than a more expected policy. This supports our claim
that evolutionary algorithms may develop complex emergent be-
haviors, even with relatively simple agents.

Finally, the evolutionary algorithm successfully learned the im-
plicit coupling between goals, even when one of the goals was not
explicitly a part of the fitness function. In this way the agents
learned to avoid the cloudy regions of the space because they neg-
atively affected their sensing ability, even when we removed any
direct consideration of the clouds from their utility function.

This type of approach — the use of agent-based evolutionary al-
gorithms — offers the ability to analyze hypothetical cases in air
traffic management before they are fully realized, and identify pos-
sibly dangerous interactions before risking human lives.
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