
Chapter 10: Verification and Validation 
Lawrence Markosian, Martin S. Feather, David Brinza 

 
 
Overview 

This chapter considers the influences and challenges to Verification and Validation of 
SHM systems. The chapter first considers V&V practices as seen in commercial aircraft 
avionics, and then goes on to consider the special challenges that arise when pursuing 
V&V of SHM systems utilized in NASA spacecraft. The chapter concludes by 
considering the V&V planned for a new ground-based SHM system that will monitor the 
preparation for launch of space vehicles. This new system will deploy several forms of 
SHM technologies, the V&V of which is discussed. 

 
 

10.1 Introduction 

Verification and Validation (V&V) of System Health Management (SHM) systems is 
challenging but necessary to ensure mature system robustness and reliability. The factors 
that most influence SHM’s V&V needs stem from two main sources – the system of 
which SHM is a part, and the implementation of SHM itself. The system of which SHM 
is a part levies requirements on SHM – for example, the need for SHM to respond within 
a given time period with a stipulated level of confidence in the correctness of its response. 
The combination of these externally imposed requirements, coupled with the manner in 
which SHM will be utilized, drive much of the V&V process. Also highly influential is 
the nature of the SHM implementation. Often it takes a combination of techniques to 
implement an SHM system. These techniques include well-understood algorithms for 
low-level data analysis, validation and reporting; traditional capabilities for fault 
detection, isolation and recovery; and, at the more novel end, Artificial Intelligence (AI) 
techniques for state estimation and planning. Here we focus on their ramifications for 
V&V and certification. We consider the internal challenges to V&V that will arise from 
use of this range of SHM techniques. 

The conjunction of these external and internal influences on SHM V&V, and the 
challenges that stem from them, is the focus of this chapter. We outline existing V&V 
approaches and analogs in other software application areas, and possible new approaches 
to the V&V challenges for space exploration SHM. We also describe ongoing work 
towards the V&V of a specific application of several SHM technologies, and its 
ramifications for the V&V issues that this chapter raises. 

 
 

10.2 Existing Software V&V 

Embedded systems perform safety critical roles, for space flight, commercial aircraft 
avionics, defense, medical devices, nuclear power, and transportation. We begin by 
looking at existing V&V for SHM as seen in one of these areas, commercial aircraft 
avionics. This area has many parallels to the safety- and mission-critical needs that 
predominate in other aerospace applications. We then suggest that the existing NASA 
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hierarchy of requirements, policies, standards and procedures relevant to software has 
close parallels with those seen in the other safety critical areas. 

 
 

Avionics V&V - Safety-critical software for commercial aircraft undergoes certification 
by the Federal Aviation Administration, which includes V&V in accordance with 
RTCA/DO-178B. This document is recognized as the means for evaluating software for 
compliance with the relevant Federal Aviation Regulations/Joint Aviation Regulations 
(FARs/JARs) for embedded systems in commercial aircraft. A useful paper (Johnson 
1998) provides interpretation of RTCA/DO-178B; it was prepared by a Boeing 
participant in the RTCA committee responsible for DO-178B. The paper describes the 
intent and rationale of DO-178B.  The derivation of the software approval guidelines 
from the Federal Aviation Regulations (FARs) to DO-178B is discussed in the paper to 
clarify its relationship to the government regulations. An explanation of the Designated 
Engineering Representative (DER) system is also provided in the paper along with a 
discussion of the safety process to describe the environment in which DO-178B is used. 

The DO-178B/ED-12B Software Verification Process defines specific verification 
objectives that must be satisfied; these include:  

 
a. Verification of software development processes, 
b. Review of software development life cycle data, 
c. Functional Verification of software 

i. Requirements-based testing and analysis 
ii. Robustness testing 

d. Structural Coverage Analysis  
 

Verification of the software development processes - is accomplished by a combination 
of reviews and analyses. For software requirements, these include reviews of the quality 
of the requirements themselves, a requirements trace from system-level to low-level 
(code), and checks of their compatibility with the hardware; verifiability; conformance 
with standards; accuracy, correctness and behavior of algorithms. The software 
architecture is reviewed and analyzed for compatibility with the high-level requirements 
and target hardware. Conformance of the software architecture to standards, verifiability, 
consistency and portioning integrity is also reviewed. The source code is also subjected to 
compliance and traceability to requirements. Conformance of the source code to 
standards, code verifiability, accuracy and consistency are also reviewed and analyzed. 
The integration process is verified by examination of the data and memory maps (detect 
memory overlaps or missing components). 

DO-178B section 11 stipulates a number of data requirements: plans, standards, 
procedures, and products (including the source code and executable code) that document 
this certification. These are: 

Plan for Software Aspects of Certification 
Software  Development Plan 
Software Verification Plan 
Software Configuration Management Plan 
Software Quality Assurance Plan 
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Software Requirements Standards 
Software Design Standards 
Software Code Standards 
Software Requirements Data 
Software Design Description 
Source Code 
Executable Object Code 
Software Verification Cases and Procedures 
Software Verification Results 
Software Life Cycle Environment Configuration Index 
Software Configuration Index 
Problem Reports 
Software Configuration Management Records 
Software Quality Assurance Records 
Software Accomplishment Summary 
 

The review of software development life cycle data - includes assessment of the test 
results, configuration management and quality assurance aspects for the development. 
The testing portion, due to its complexity, is described in detail below. The control of the 
configuration of the software, including identification of configuration items, 
establishment of configuration item baselines, change control data, and traceability 
throughout the development cycle is reviewed and analyzed. Problem reporting, tracking 
and corrective action records are reviewed for adequacy, and verification of a change is 
confirmed via examination of configuration records. The software quality assurance 
records are reviewed to provide confidence that the software life cycle processes have 
been followed and that deficiencies encountered in the life cycle are detected, evaluated, 
tracked and resolved. 

 
Functional verification of the software - is performed at three levels. (1) 
Hardware/software integration testing is performed to verify the correct operation of the 
software in the target computer environment. (2) Software integration testing verifies the 
interrelationships between software requirements and components and the 
implementation of the software components within the architecture. (3) Low-level testing 
verifies the implementation of software low-level requirements. These requirements-
based tests are performed to verify correct functionality of the software in both normal 
range test cases and in robustness test cases. The normal range test cases utilize valid 
representative input values drawn from those normal input ranges (typically utilizing 
values at the range boundaries, and representative interior values), and use them to 
exercise the transitions possible in normal operation. The robustness test cases inject 
invalid input values, values that would generate arithmetic overflows or attempt to 
provoke transitions that are not allowed. The software should follow expected behavior 
for the abnormal cases. 
 
Structural coverage analysis - is generally perceived to be the most difficult task to 
undertake in the testing process. Furthermore, certifying real-time executable code with 
an operating system that is tightly integrated with the hardware, cache, interrupts, 
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memory management, and process/task management, can make structural testing even 
more difficult. These low-level aspects create a significant challenge to the verification 
process. Three primary levels of structural testing are invoked according to the criticality 
level of the software (Table 2) in DO-178B certifications: 

• Statement Coverage (SC): Every statement in the program has been invoked or 
used at least once. This is the most common use of the term “code coverage.”  

• Decision Coverage (DC): Every point of entry and exit in the program has been 
invoked at least once and that each decision in the program has been taken on all 
possible (Boolean) outcomes at least once. Essentially, this means that every 
Boolean statement has been evaluated both TRUE and FALSE. 

• Modified Condition Decision Coverage (MCDC): Every point of entry and exit in 
the program has been invoked at least once, that every decision in the program 
has taken all possible outcomes at least once, and that each condition in a decision 
has been shown to independently affect that decision's outcome. Complex 
Booleans need to have truth tables developed to set each variable (inside a 
Boolean expression) to both TRUE and FALSE. 

For a tutorial on MCDC, see [Hayhurst et al., 2001] 
In DO-178B terms, software has a criticality level, ranging from the most critical 

(“Level A”), down to “Level E”. “Level A” software requires all three levels of structural 
testing be performed.  

Performing this code coverage exercise is possible using manual methods, but this 
process is now readily facilitated by utilizing commercial code coverage tools. Numerous 
code coverage tool vendors now supply testing tools that create the appropriate test 
outputs to demonstrate and satisfy compliance with DO-178B.  

 
 

NASA Requirements, Policies, Standards and Procedures Relevant to Software -The 
current NASA Software Safety Standard is NASA-STD-8719.13b, dated July 8, 2004, 
which applies to all safety-critical software acquired or produced by NASA. By reference 
this includes NASA Software Assurance Standard, NASA-STD-8739.8, dated July 28, 
2004. This in turn includes by reference NASA Software Engineering Requirements, 
NPR 7150.2, Sept. 27, 2004. The latter characterizes “Class A Human Rated Software 
Systems” as: 

 
Applies to all space flight software subsystems (ground and flight) developed 

and/or operated by or for NASA to support human activity in space and that interact 
with NASA human space flight systems. Space flight system design and associated 
risks to humans are evaluated over the program's life cycle, including design, 
development, fabrication, processing, maintenance, launch, recovery, and final 
disposal. Examples of Class A software for human rated space flight include but are 
not limited to: guidance; navigation and control; life support systems; crew escape; 
automated rendezvous and docking; failure detection, isolation and recovery; and 
mission operations.  

 
The classifications in NPR 7150.2 are important because, inter alia, the software 

engineering requirements, including V&V, depend on the classification. SHM software is 

Stephen B. Johnson � 1/13/10 9:00 PM
Formatted: Indent: Left:  0.25", Tabs:
-0.88", List tab + Not at  0.75"
Stephen B. Johnson � 1/13/10 9:00 PM

Stephen B. Johnson � 1/13/10 9:01 PM
Formatted: Indent: Hanging:  0.25"
Stephen B. Johnson � 1/13/10 9:00 PM
Formatted: Indent: First line:  0.25"
Stephen B. Johnson � 1/13/10 9:01 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/13/10 9:12 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/13/10 9:12 PM
Formatted: Indent: Left:  0.25", First line: 
0.25"

Stephen B. Johnson � 1/13/10 9:13 PM
Formatted: Indent: First line:  0.25"
Stephen B. Johnson � 1/13/10 9:12 PM
Formatted: Font:Not Italic, Underline

Deleted:  



 

clearly Class A by this definition. NPR 7150.2 also “provides a common set of generic 
requirements for software created and acquired by or for NASA...”  Included in this 
document is a summary of the requirements with respect to software created and acquired 
by NASA.  Figure 10-1, taken from this NPR, shows the relationships among the various 
relevant NASA requirements, policies, standards, procedures and guidance.  

 
[INSERT FIGURE 10-1 HERE] 
 

The net result of these governing documents is an approach to V&V that has close 
parallels with those followed in other safety-critical application areas. Indeed, NASA’s 
Software Working Group is developing mappings between the NASA Software 
Engineering Requirements, NPR 7150.2, and select industry standards. A mapping to 
NASA’s Software Assurance Standard exists, and (at the time of writing) mappings to the 
Software Engineering Institute’s Capability Maturity Model Integration® (CMMI®), and 
to the Institute of Electrical and Electronics Engineers standard IEEE 12207, are “under 
review.” 

 
 

V&V for Spacecraft Fault Protection - Fault Protection (FP) software on existing 
NASA robotic spacecraft is a special case of SHM. In general, SHM goes beyond such 
FP in two major aspects: the need for reasoning, primarily as a consequence of the state-
space explosion, and, in many applications, the focus on maintaining capability rather 
than the simpler task of averting catastrophe. Nevertheless, it is worth first considering 
how V&V is performed for FP before turning attention to SHM in general. 

Ideally, the development process of a spacecraft’s FP starts with a detailed fault tree 
and Failure Modes and Effects Criticality Analysis (FMECA) effort that produces a ”fault 
set". A fault set is the list of faults that the spacecraft or system might encounter; the fault 
set can then be subdivided into a "protected fault set" (those for which FP is to be 
responsible for diagnosing and responding to) and an "unprotected fault set." (those for 
which FP is not responsible). To allocate faults between these two sets, a clear definition 
of the project’s fault tolerance is needed - is it to be single or dual fault tolerant? is the 
requirement to be fault tolerant or failure tolerant? etc. Having this fault set early in the 
project’s life cycle allows for design and risk trade offs as the hardware is selected. It also 
provides a basis for the amount of redundancy selected for the hardware. Once the 
protected fault set is determined the fault injection requirements can be specified for the 
ground support equipment to be used to test the hardware and software. 

This is an ideal approach – however, in practice, this rarely occurs in its ideal form. 
As helpful as it would be to have the full fault set early in the project, the project often 
does not have resources to dedicate systems engineers to a thorough fault tree and 
FMECA effort in early design. Usually, one gets either a fault tree or a FMECA drafted. 
This means that in practice there is an initial fault set but it is often very partial. The same 
is true of the fault injection requirements, which, in practice, will be only a partial set in 
the initial stages. The best way to overcome these departures from the ideal is to ensure 
that both fault set development and fault injection requirements identification are on-
going processes with milestones at Preliminary Design Review (PDR), Critical Design 
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Review (CDR) and individual FP reviews so that the process can be kept somewhat 
current. 

Finally, the FP testing process is itself constrained by project priorities. There is a 
theoretical desire to begin FP testing early and have it stay in step with the other software 
and hardware testing. However, in practice the FP testing starts out with low priority, 
increasing as the overall testing program matures. Logic dictates that in a prioritized 
environment, there is no need for fault protection testing until the core nominal hardware 
and software is working. As the testing progresses and confidence in the nominal system 
matures, then attention turns to the off-nominal cases in which FP plays a central role. 

FP testing has the same three levels of V&V as the other areas. It begins with 
verifying the basic functionality of the fault protection software itself, that is, the fault 
protection governing software and the monitors and responses. One of the detailed 
methods used to accomplish this is to “enable” the monitors as soon as possible after a 
flight software delivery to ensure maximum testing time for detecting errors. The 
remediation functions are exercised later in the test process as they become available. 
This testing can range from basic fault testing to a more extreme “stress testing” that 
involves cascading faults, envelope testing and heavy concurrent load testing. The stress 
testing completes the triple of verifying requirements, validating capabilities and then 
stress testing to find out where the system truly fails. 

 
 

Example of Industry V&V Current Practice:  Space Shuttle Main Engine 
Controller - The Block II Space Shuttle Main Engine (SSME) Hardware Simulation 
Laboratory II (HSL II) is the facility utilized for the verification of the SSME Controller 
(SSMEC) test and flight software. The SSMEC software is used at Stennis Space Center 
(SSC) for engine checkout and to conduct hot-fire certification tests of the SSME, at 
Johnson Space Center (JSC) Shuttle Avionics Integration Laboratory (SAIL) supporting 
the Shuttle Integration Testing, at Kennedy Space Center (KSC) to checkout the SSME in 
the engine shop, and at KSC to control the SSME during the launch of the Shuttle. The 
flow for SSMEC software development is shown in Figure 10-2. The HSL is also used 
for Avionics integration of hardware prior to installation on the SSME and for Avionics 
hardware anomaly resolution. 

 
[INSERT FIGURE 10-2] 
 

The HSL is an automated verification facility. Laboratory software was developed to 
accomplish automated testing, digital and analog fault insertion, data collection and 
analysis, and laboratory calibration. SSMEC software changes are generated using 
Requirement Change Notices (RCNs), Design Change Notices (DCNs) and Code Change 
Notices (CCNs), as appropriate. SSMEC software verification is conducted in the HSL II 
at MSFC and software certification is conducted on the engine hot-fire test stand at SSC. 
Changes (RCN/DCN/CCN) are delivered to Rocketdyne HSL personnel at MSFC, who 
review the changes. Test procedures are generated and/or modified to verify the new 
requirements or design changes. An executable image compare is performed following 
each compilation. This compare, against a known base, is used to verify that only the 
intended software modules were affected and to assist in identifying areas of retest. Each 
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change is then verified in the HSL II. All discrepancies found during the verification 
process are reported on an SN. Complete, post verification change packages are provided 
to the SSMEC software community. Rocketdyne at CSL prepares a Hotfire Simulation 
Request Package that specifies the software configuration, test profile, and special tests, 
as required. The hotfire simulation and special tests are performed at the HSL II. 

In addition, a database compare is performed on the software that is to be used for 
engine hotfire test. Upon completion of these tests and approval by MSFC, the software 
is authorized for engine hotfire test at SSC. Engine hotfire tests certify the SSMEC 
software. Upon completion of the software certification and approval of the ECP and the 
associated Verification Complete Package by MSFC, the software is then acceptable for 
STS flight (Fiorucci  et al 2000). 

 
 

10.3 Feasibility and Sufficiency of Existing Software V&V Practices for SHM 
Here we consider whether the existing software development practices can be 

feasibly applied as-is to SHM systems, and whether those practices will provide 
sufficient levels of confidence in SHM systems. 

 
 

Feasibility - NASA’s Human-Rating Certification process is defined in NPR 8705.2A 
(effective date: 2/7/2005). The objective of the human-rating certification process is to 
document that the critical engineering requirements, health requirements, and safety 
requirements have been met for a space system that provides “maximum reasonable 
assurance” that the system's failure will not result in a crew or passenger fatality or 
permanent disability. This NPR covers numerous aspects of certification, including 
certification of software. One of the software aspects covered is testing, where one 
requirement is: 

1.6.7.1 The Program Manager shall perform testing to verify and validate the 
performance, security, and reliability of all critical software across the entire 
performance envelope (or flight envelope) including mission functions, modes, and 
transitions 
SHM clearly contains “critical software” and hence is subject to this testing 

requirement. However, the very nature of SHM poses significant challenges to meeting 
this requirement, above and beyond challenges shared by most forms of mission-critical 
software. Specifically, SHM, by definition, deals with off-nominal conditions in each of 
its roles (it must recognize, diagnose and respond to: early indications of impending 
failure, the presence of performance degradations, and failures that have occurred). 
Several V&V challenges stem from this: it is hard to know that all the significant possible 
failure modes have been identified (especially for relatively novel components and for 
conventional components operating in novel conditions); for any given failure mode, its 
characteristics may not be well understood; there are many ways in which off-nominal 
conditions can arise (consider all the parts that could fail, and the varying implications of 
such failure depending on when in the mission it occurs), and the combinations of such 
failures are vastly more numerous. For example, if there are 1,000 individual possible 
failures, then there are potentially 1,000,000 pairs of such failures (while not every pair 
will be possible, nevertheless, the number of feasible pairs of failures will tend towards 
the square of the number of individual failures). This has specific relevance to the 
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feasibility of meeting fault tolerance requirements that may be applicable. For example, 
another Human Rating requirement states: 

3.1.1 Space systems shall be designed so that no two failures result in crew or 
passenger fatality or permanent disability. 
In more general terms, the challenges posed by SHM systems are such that it is hard 

to assure completeness of models of failure, it is hard to assure that those models are 
correct, and it is hard to test/inspect/review the very many failure scenarios. While any 
given failure scenario may itself have a very low likelihood of occurrence, SHM must be 
prepared to deal correctly with whichever ones do manifest themselves in the course of 
the mission, so V&V must address a large fraction of these to achieve the levels of 
assurance required. 

In response to these questions of feasibility, the response could be to evolve the 
requirements, standards, etc. accordingly, or to leave them as-is and instead rely on 
provisions for exceptions1, deviations2 and waivers3 from these requirements. In practice 
waivers have been common. However, since they contradict the intent and effect of 
requirements, and introduce inconsistencies in the certification process, it is preferable to 
recognize early-on which requirements cannot be met, and revise these requirements as 
necessary to preclude reliance upon waivers. The lack of feasibility for “complete” V&V 
of SHM under the two-fault design requirement invokes a need to redefine the V&V test 
requirements. One could establish a V&V testing “floor” in which every fault symptom is 
simulated in the full flight software environment and the SHM response is verified. 

 
 

Sufficiency - Another question to ask of the existing standards is whether they are 
sufficient to achieve the levels of assurance desired of SHM systems. We begin by noting 
that even the most stringent of the structural testing levels – the Modified Condition 
Decision Coverage (MCDC), cannot fully test a realistic software application. To do so 
would require “path” coverage – testing of every unique sequence of execution through 
the code. Path coverage is not guaranteed by MCDC. In MCDC each condition is tested 
largely independently of other decisions in the program, and in a program with n binary 
decision points there are 2n independent decisions, each of which defines a possible path 
through the program. Of these, the number that are “feasible” (that is, that can actually be 
executed by some combination of input data values) is also on the order of 2n. Thus only 
a relatively small portion of the possible execution paths are tested even under MCDC. 
For event-driven (reactive) systems the situation is even worse. SHM systems fall 
squarely into this category. As described in the previous subsection, the number of 
possible behaviors can be a huge number, and the small proportion covered by MCDC 
would leave most untested. 

Further challenges stem from the unusual structure of SHM software as compared to 
the more traditional forms of spacecraft software for which the standards, etc., were 

                                                
1 An exception to a requirement can be provided if that requirement is not applicable to every 

component of the system.  
2 A deviation from a requirement can be provided if the requirement cannot be met but there is an 

alternative method of reducing system risk to an “equivalent or lower” level. 
3 A waiver of a requirement may be requested if the requirement is unsatisfied and there is 

therefore an increased risk. 
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crafted. SHM software sometimes makes use of Artificial Intelligence techniques, and is 
architected accordingly. Specifically, such software typically has both a large, complex 
“reasoning engine”, and “models” (e.g., a model might describe the operating modes of 
the telecommunications system) over which that reasoning engine operates.  

For SHM software that uses sophisticated reasoning engines, the implications for 
V&V are several:  

• conventional approaches to certification, such as measures of code coverage used 
to gauge the thoroughness of testing, do not take into account those models. In 
conventional terms, the models would look like data, and typical code coverage 
metrics would fail to capture the need for coverage of not only the reasoning 
engine’s code, but also the data encoded within the models.  

• the overall SHM system’s behavior might be sensitive to small changes in either 
of the reasoning engine itself (e.g., a small change to a heuristic might lead to 
drastic changes in performance) or the models (a small change to a model might 
push the reasoning engine into previously unexplored regimes of behavior) – it is 
hard to predict (and therefore hard to be sure to have adequately exercised with 
testing) when and how these small changes will affect SHM behavior 

• the performance (run time, memory consumption, CPU utilization) of reasoning 
engines themselves, because of their heuristic nature, is hard to guarantee. If they 
are operating close to the computational “cliff” (where performance degrades 
rapidly as the problem complexity increases only slightly), they will exhibit 
occasional wild fluctuations from “normal” – for many runs it may perform 
within expected bounds, but once in a while, the performance is extremely poor 
(slow, huge memory usage, …).  

SHM must correctly report failure conditions, and, importantly, must avoid “false 
alarms”. Both of these require that SHM take as input uncertain data, and yield 
information and decisions with high(er) certainty. For example, SHM needs to 
distinguish engine failure from failure of the sensor(s) monitoring the engine’s health 
(those sensors are fallible devices, and may themselves fail; in fact, sensors are generally 
considered less reliable than the components they are monitoring). The SHM algorithms 
(and implementation thereof) that perform its certainty-increasing process must be 
extremely reliable, since they will be in continuous operation. 

Lastly, many of the systems whose health SHM is to manage will themselves contain 
software. In such cases SHM may be expected to be cognizant of, and responsive to, the 
health of those systems’ software. However, software “failure” does not completely 
parallel hardware “failure” (software doesn’t “wear out”, rather, during operation a latent 
defect – “bug” – in the software may become manifest in the particular execution path it 
follows). Therefore it is less well understood whether SHM techniques can accommodate 
failure modes that have their origin in latent software defects (predict them for prognosis 
purposes, diagnose them once they have occurred, and in either case know what to do in 
response). There are approaches to containing faults within the software systems itself: 
traditional exception handling is code to trap and respond appropriately to faults, e.g., 
divide-by-zero. N-version programming (Avizienis & Chen, 1977] suggests software 
redundancy, by comparing the results returned by N programs that have been 
independently developed from the same specification. However, experiments in (Knight 
& Leveson 1986) showed that there can be less benefit gained by N-version 
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programming than one might wish for, and of course the expense of two or more software 
development efforts is itself an impediment. The Space Shuttle uses a form of N-version 
programming: in addition to four computers loaded with the same Primary Avionics 
Software System software (thus providing redundancy protection against hardware 
problems), a fifth computer contains a different set of software, programmed by a 
different company to a reduced set of requirements (to perform just the essential guidance, 
navigation and control functions during the critical phases of ascent and entry).  

For detection of failures that evade such containment, runtime software-fault 
monitoring (for a recent survey, see (Delgado et al. 2004) is an approach in which the 
software’s execution-time behavior is compared to specified properties; non-compliance 
with one or more of those properties would be an input to SHM. 

 
10.4 Opportunities for Emerging V&V Techniques Suited to SHM 

The unusual nature of SHM software raises both challenges for V&V and 
certification (outlined in the previous section), and opportunities to amplify the efficacy 
of existing techniques, and to make use of some new and emerging V&V techniques that 
offer the promise of overcoming some of those key challenges. This section describes the 
origins of those opportunities, and gives some representative examples of emerging V&V 
techniques. 

 
SHM Architecture - Emerging forms of SHM are likely to be architected using a 
combination of hierarchical composition (with each subsystem performing its own health 
management, but propagating its status, and if necessary the faults it cannot manage 
locally, to the system of which it is a part, and so on), and model-based reasoning where a 
generic reasoning engine operates over system-specific models. 

Hierarchical composition potentially favors V&V by allowing analysis itself to take 
advantage of the hierarchy, subdividing the V&V into manageable portions. V&V of this 
kind, often referred to as “hierarchical verification” or “compositional verification”, is an 
area of current interest within the V&V community. For a discussion of some of the 
issues, see (Martin & Shukla 2003); for an example of a whole workshop focused on the 
topic, see (de Boer & Bonsangue 2004). Some of this work has been applied to NASA 
missions, e.g., (Giannakopoulou & Penix 2001). 

Model-based approaches to SHM yield an SHM system architecture divided into a 
generic, and therefore reusable, reasoning engine, and system-specific models. The 
reasoning engine itself is a non-trivial piece of software, and so the correctness of its 
implementation needs to be checked. However, since it will be reused from application to 
application, the effort it takes to check that implementation can be amortized over those 
multiple applications. 

Whatever the architecture, V&V of SHM will require assuring the correctness of its 
core algorithms (e.g., voting schemes); this kind of problem has long been appropriate for 
formal methods such as theorem proving e.g., (Rushby 1991). Also, SHM systems may 
be expected to be amenable to traditional software reliability engineering techniques 
based on measurements of defect discovery and removal during development and test: 
see (Musa )998], (Vouck 2000) for overviews of this field. Methods that can expand the 
information gained from individual test cases would be useful for testing of the numerous 
behaviors that SHM systems can exhibit – an example of such a method is the 
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recognition of inconsistent uses of shared variables in a test run, even if no classical race 
condition occurs within that run (Artho et al. 2003), (Artho et al. 2004). (Bensalem & 
Havelund 2005) describes a similar approach to deadlock detection.  

 
 

Models Used in SHM - In order that SHM can perform its reasoning (e.g., diagnose the 
cause of a fault from a set of symptoms), those models are designed to be machine-
manipulable, by the SHM reasoning engine itself. V&V can also benefit from such 
machine-manipulable models. As stated in (Menzies & Pecheur 2005), “These models 
are often declarative and V&V analysts can exploit such declarative knowledge for their 
analysis”.  

Many of the emerging V&V techniques perform analysis – for V&V purposes – over 
the same kinds of models that SHM utilizes. The adoption of those V&V techniques in 
traditional software settings has always been impeded by the need to construct such 
models by hand, from the various forms of system documentation intended for human, 
but not computer, perusal (e.g., requirements stated in paragraphs of English). This has 
made them costly and time-consuming to use, and as a result their application has, in 
practice, been limited to only the most critical core elements of software and system 
designs (for an in-depth discussion, see (Rushby 1993)). A representative example drawn 
from the spacecraft fault protection domain is (Schneider et al 1998)’s use of “model 
checking” applied to the checkpoint and rollback scheme of a dually redundant spacecraft 
controller. In contrast, in model-based SHM, such models are available early in the 
lifecycle, the ideal time to benefit from the results of analysis. Automatic translation from 
the form of SHM-like models to the form of V&V models has been shown to be feasible, 
e.g., (Pingree et al. 2002) illustrates such an approach in which they translate statecharts 
into the input form for the model checker SPIN; (Pecheur & Simmons 2000) translate 
models in Livingstone (a model-based health management system (Williams & Nayak 
1996)) into the model checker SMV. (Penix et al. 1998) reports experiments to translate 
AI planner domain models into SMV, SPIN and Murphi model checkers, allowing a 
comparison of how the different systems would support specific types of validation tasks.  

Traditional techniques such as testing can also leverage the availability of such 
models. For example, (Blackburn et al. 2002) describes test automation (generation of the 
test cases, test drivers, and test result evaluation) utilizing models, demonstrated on the 
ill-fated Mars Polar Lander software design. Human-conducted activities such as reviews 
and inspections may be well-suited to scrutiny of declarative models. 

Another source of opportunity offered by model-based reasoning is that the reasoning 
software can yield both its result (e.g., a diagnosis), and the chain of reasoning that led to 
that result. That chain of reasoning provides opportunities for cross-checking – not only 
checking that the result is correct, but also that it is correct for the right reasons (e.g., all 
the appropriate information was taken into account when arriving at its conclusion). For 
an example of this used during testing of an AI planner, see (Feather & Smith 2001). 

An important property of SHM systems is that they are adequate to support diagnosis 
of a specified class of faults. Often termed diagnosability, this means that using the 
information available from sensors, the capability of the SHM system to distinguish 
whenever the system is in a fault state, and if so, disambiguate which fault state it is. Note 
that this is a property of a combination of the system itself (what states it can exhibit), the 
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sensors (what information about the system state they make available to SHM), and the 
reasoning capabilities of the SHM system itself. For example, if among the system’s 
possible behaviors there are two scenarios that lead to system states required to be 
distinguished, and yet the sensor information made available to the SHM system is 
exactly the same for both those scenarios, then it would clearly be impossible for the 
SHM system to make the distinction. For a discussion of diagnosability and approaches 
to its attainment, see (Sampath et al. 1995) and (Jiang et al. 2002). An approach to 
verification of this property is described in (Cimatti et al. 2003).  

For V&V of the system as a whole, (Lindsey & Pecheur 2003) and (Lindsey & 
Pecheur 2004) discuss an approach that focuses on advanced simulation of the actual 
software (as opposed to verification of the model only). Concretely, this has been 
implemented in the Livingstone PathFinder (and Titan PathFinder) framework.  Although 
this approach does not address diagnosability directly, it can catch diagnosis errors that 
may be traced back to diagnosability issues. They discuss an application of this approach 
to the main propulsion feed subsystem of the X-34 space vehicle.  

 
 

Planning Systems in SHM - In addition to diagnosing the health status of the systems 
they monitor, many SHM systems will be required to plan the appropriate actions to 
recover from unhealthy states, and to execute those actions. Model-based techniques will 
likely play an increasingly prominent role in the planning and execution stages, just as in 
the diagnosis. Artificial Intelligence techniques for response planning have the same 
reasoning engine + models architecture, and so are prone to the same V&V challenges 
and opportunities as diagnosis systems. In addition, a plan execution system 
(“executive”) is needed to execute the plans. V&V of this software system must ensure 
that the execution of the commands and the response of the fault protection system 
conforms to pre-planned behavior. (Varma et al. 2005) discusses an executive built with 
plan verifiability in mind. (Brat et al. 2003) describes the results of applying several 
verification tools to an executive for a robotic Martian rover.  

 
 

SHM of Software Systems - Advances in the understanding of faults in software 
systems will be applicable when, as is very likely, SHM has within its scope the 
management of systems with significant reliance on software. 

Risk analysis methods that serve to identify software vulnerabilities have been 
adapted for software systems – Software Failure Modes Effects and Criticality Analysis 
(SFEMCA) (Hall et al. 1983), and Software Fault Tree Analysis (SFTA) (Leveson 1995). 
Ongoing work in this area includes means to combine these approaches (Lutz & 
Woodhouse 1999), and to apply quantitative techniques adapted from Probabilistic Risk 
Assessment (PRA) to software (Li et al 2003), (Feather 2004). 

Detection of software faults during operation will be a key element of SHM. The field 
of “runtime software-fault monitoring” is surveyed in (Delgado et al. 2004); for an 
application to fault protection on a space system, see (Drusinsky & Watney 2003). 

 
 

10.5 V&V Considerations for SHM Sensors and Avionics 
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SHM relies on information derived from sensors, signal conditioning, data conversion 
and data processing hardware to assess the state of the system. The performance of the 
SHM system is dependent upon the fault coverage by the sensors embedded in the 
vehicle. The quality of data from the sensors and the overall reliability of the hardware of 
the SHM system are critical to SHM performance. In addition to meeting functional 
requirements, the SHM system must be certified to operate reliably in the intended 
environment. 

 
Flight Hardware V&V - Spaceflight hardware is generally developed via a 
requirements-driven process where the capabilities, performance specifications and 
physical characteristics are developed within the constraints of mission resource 
allocations. High-level (system) requirements are translated into lower-level requirements, 
ultimately resulting in specifications that become the basis for hardware design. 
Validation is performed via thorough requirements traces (upward and downward) to 
ensure correct requirements are established at all levels. Throughout the hardware 
development, the compliance of the hardware design with the requirements is verified 
early in design reviews and later, in the hardware test program. Often a matrix is 
generated and maintained to track the verification of the hardware against requirements 
on that hardware. A performance baseline for verification of hardware functionality is 
established prior to subjecting the hardware to a battery of environmental tests. 
Abbreviated functional testing is frequently performed during the series of environmental 
tests (i.e. between vibration tests on each axis of the hardware). Testing of payload or 
subsystem avionics hardware is generally performed at the electronics box level prior to 
delivery to the space vehicle for integration. 

System-level functional testing is often performed with engineering model or 
prototype subsystem hardware early in the integration phase. Testbeds are frequently 
employed to develop system-level functionality (command and data handling 
subsystems). Flight hardware can be verified in testbeds that have the appropriate 
interfaces and hardware protection. During integration of the space vehicle, flight 
hardware subsystems are typically connected to the space vehicle power and data systems 
via a “safe-to-mate” verification procedure. Pin-level verification of the interfaces is 
performed through “break-out box” equipment until the unit being integrated has been 
powered and proper communication is verified. Only then is the unit directly mated to the 
flight system connectors. After all of the flight hardware has been integrated, system-
level testing is completed. Spacecraft typically undergo system-level environmental 
testing (Electromagnetic Interference/Electromagnetic Compatibility, vibration, acoustic, 
system thermal-vacuum tests) to verify system performance in simulated launch and 
space environments. 

 
Sensor Data V&V - Due to the potentially large number of sensors, many of which are 
exposed to harsh environments, the SHM system must be tolerant of sensor faults. The 
processes for the selection, qualification and installation of sensors are important factors 
for minimizing sensor faults. An SHM system should be able to validate sensor readings 
and diagnose sensor faults in real-time. The area of Sensor Failure Detection, Isolation 
and Accommodation (SFDIA) is being addressed by two conceptually different 
approaches: physical and analytical redundancy. 
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Physical Redundancy - Traditional flight control systems deploy triple or quadruple 
physical redundancy in their network of sensors to achieve the level of reliability 
necessary for manned spacecraft or aircraft certification. Physical redundancy SFDIA 
techniques are based on voting and mid-value selection schemes. It is clear that there are 
penalties such as mass, power, volume, and cost associated with a physical redundancy 
approach to the SFDIA problem. 

 
Analytical Redundancy - Most of the current research activities on SFDIA focus on the 
use of analytical redundancy techniques. A partial list of analytical SFDIA techniques 
includes Generalized Likelihood Ratio (GLR); Multiple Model, Extended, and Iterative 
Extended Kalman Filtering (MMKF, EKF and IEKF); Sequential Probability Likelihood 
Ratio Test (SPLRT), and Generalized Likelihood Test/Maximum Likelihood Detector 
(GLT/MLD). These techniques feature a continuous monitoring of the measurements 
from the sensors. At nominal conditions, these signals follow some known patterns with a 
certain degree of uncertainty due to the presence of system and measurement noise. 
However, when sensor failure occurs, the observable outputs deviate from the predicted 
values calculated on-line or off-line from an estimation scheme generating a residual. A 
sensor failure can be declared when the associated residual exceeds, for a single or for 
multiple time instants, a certain numerical threshold. 

Analytical redundancy and Bayesian decision theory were combined to produce a 
sensor validation system concept for real-time monitoring of Space Shuttle Main Engine 
telemetry (see (Bickford et al. 1999)).The validation system, as illustrated in the block 
diagram below (Figure 10-3), was implemented in Ada and hosted on a Boeing X-33 
prototype flight computer (R3000 at 25 MHz). SSME telemetry was played back at real-
time rate through the system at the Marshall Avionics System Testbed (MAST). Data 
from 50 SSME flight firings were processed at real-time rates and 3 sensor failures were 
correctly identified. 

 
[INSERT FIGURE 10-3] 

 
More recently, neural network (NN) approaches to sensor data validation have been 

developed. As an example, data from a Boeing 737 was processed via a NN-based on-
line learning scheme (Napolitano et al. 1999). The Extended Back Propagation (EBP) 
algorithm was used by the authors for the on-line learning. The algorithm was selected 
for its performance in terms of learning speed, convergence time, and stability when 
compared to the conventional Back Propagation (BP) algorithm. The SFDIA scheme is 
illustrated in the block diagram shown in Figure 10-4. It consists of a main NN (MNN) 
and a set of ‘n’ decentralized NNs (DNNs), where ‘n’ is the number of the sensors in the 
flight control system for which a SFDIA is desired. The outputs of the MNN replicate, 
through on-line prediction, the actual measurements from the ‘n’ sensors with one time 
instant delay, that is a prediction of the state at time ‘k’ using measurements from ‘k-l’ to 
‘k-p’ to be compared with the actual measurement at time ‘k’. In their study, the authors 
processed flight data obtained from about 10,000 seconds of B737 flight recorder data to 
train the MNN and DNNs. Simulated sensor failures were injected to test the response of 
the NN. They were able to demonstrate rapid on-line learning and proper identification of 
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a variety of sensor failures both hard (complete sensor signal loss) and soft (drift) and to 
have the failed sensor data accommodated by the physical model adapted by the on-line 
learning process. 

 
[INSERT FIGURE 10-4 HERE] 

 
 
10.5 V&V Planning for a Specific SHM Application 

Here we present an example of NASA’s highest software integrity levels of a new 
ground-based system, intended to monitor the preparation for launch of a space vehicle.  

 
Application Description - The specific application of SHM we focus on here is for use 
during preparation and testing of a launch vehicle, a process that can take several days. 
During this time the final assembly of the launch vehicle is conducted, it is loading with 
fuel, etc., and tests are performed to ensure its launch readiness. Prototyping and 
development efforts are underway that plan deployment of a series of SHM systems in 
this setting. The first step is to be the deployment of an SHM system to monitor one of 
the launch vehicles subsystems and its associated ground support equipment. This first 
deployment will be fed live data during the launch preparation, but will play no formal 
role in the launch decision processes. This will provide the opportunity to demonstrate 
the functioning of the prototype in the real setting. Development of SHM capabilities for 
other vehicle subsystems is also taking place, and planning is underway for how to 
integrate SHM across the multiple vehicle subsystems. 

The goal of this SHM system is to reduce launch delays for launch vehicles. 
Historically, the Space Shuttle program has seen almost half of its launches delayed by at 
least a day after the start of the two-day countdown. The majority of these delays have been 
caused by hardware problems (a minority by weather conditions). This SHM system is 
intended to reduce the length of delays caused by hardware problems, by speeding up faults’ 
detection, isolation and recovery (FDIR), whether they are faults in the launch vehicle itself, 
or faults in the ground support equipment involved in the vehicle’s preparation. 

The ongoing prototyping and development efforts are exploring a combination of 
three major approaches to fault detection, isolation and recovery, namely data-driven, 
model-based and rule-based. For a general discussion of the relevance of these 
approaches to FDIR (and of tools that support them), see (Schwabacher & Waterman 
2008). The project has selected, for each of these three approaches, an existing tool that 
supports the approach. These selections are briefly introduced next, and then explored in 
more detail from a V&V and certification perspective in the sections that follow. 

• Inductive Monitoring System (IMS), developed by David Iverson at NASA ARC 
(Iverson 2004), was selected to perform data-driven FDIR. IMS is being studies 
for use in fault detection (i.e., the “D” part of FDIR). 

• Testability Engineering and Maintenance System (TEAMS), a commercial product 
from Qualtech Systems Inc. (QSI 2008), was selected to perform model-based fault 
isolation (i.e., the “I” part of FDIR). 

• Spacecraft Health INference Engine (SHINE), developed at JPL (James & 
Atkinson 1990) was selected to perform rule-based FDIR. SHINE is being studied 
for use in two roles, as a pre-processor of the raw sensor values input to the 
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overall SHM system, and as the inference engine for selection of the appropriate 
recovery action once a fault has been detected and isolated (i.e., the “R” part of 
FDIR). 
 

Data-driven Fault Detection Using IMS - In general, data driven approaches start with 
data representative of a system’s behaviors, and learn, using various machine-learning 
techniques, characteristics of those behaviors. During operation, data from the operating 
system is then compared against these learned characteristics to make determination of 
the system’s status (e.g., whether it is operating “normally”). There are a variety of 
learning techniques that data driven approaches have adopted, and a plethora of tools 
supporting them.  

For this application, failures in the vehicle subsystems and its ground support 
equipment are rare (but potentially very significant). Hence data representative of their 
nominal (failure-free) behaviors is readily available, data representative of their failure 
behaviors much less so. The project has therefore selected an approach referred to as 
“one-class learning”, in which the learning is performed by feeding the system only one 
type of data, in this case, data of failure-free (“nominal”) system behaviors. During 
operation, data that does not exhibit the learnt characteristics is deemed “anomalous”. 
More specifically, the project has the goal of learning characteristics that span nearly all 
forms of nominal operation, and hence data that does not exhibit the learnt characteristics 
will be “anomalous”. This provides a means for anomaly detection (detecting that 
something is different from normal). Also, to some extent this data driven approach may 
be an aid to fault isolation (determining the location of the problem). This is done by 
reporting not only when operational data is faulty, but also providing information as to 
which of the characteristics of that data deviate from nominal, and by how much. 

The specific data-driven tool that this application has selected is the Inductive 
Monitoring System (IMS), developed by David Iverson at NASA ARC (Iverson 2004). 
IMS learns “clusters” from nominal training data, those clusters representing modes of 
the system. Each element of the training data comprises a set of sensor-value pairs (one 
sensor value for each of the sensors being monitored). Notionally, each element of the 
training data is a point located in a multi-dimensional space, one dimension per sensor; 
the extent of that dimension is the range of values that sensor can exhibit. As learning 
takes place, the training data’s points are aggregated into “clusters”, each of which is a 
hyper-rectangle in a multi-dimensional space. Roughly speaking, training data’s points 
that are close to one another in the multi-dimensional space become aggregated into the 
same cluster, defined as the hyper-rectangle bounding that aggregation of points. The 
result of learning is thus a set of clusters, each one representing a nominal operating 
mode of the system (nominal because they were learnt from nominal behaviors’ data, 
recall). During operation, IMS checks whether the point in the multi-dimensional space 
represented by system’s sensor values falls within, or sufficiently close to, an existing 
cluster. If so, IMS deems the system to be nominal; if not, it deems the system to be 
anomalous. Furthermore, IMS also locates the cluster nearest that point, and reports 
which of the sensor values are out of that cluster’s bounds and by how much (obviously 
there will be at least one such sensor value, otherwise the point will be inside the cluster, 
and deemed nominal). 
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Influence of IMS’ Development on V&V - IMS is a relatively mature tool, has seen use 
in NASA, and recently received certification as a monitoring application for the 
International Space Station’s Control Moment Gyroscopes. Furthermore, it supports the 
“one-class learning” that best matches the situation at hand (predominantly data of 
nominal system operation), and employs algorithms for its learning and operations phases 
that are relatively easy to understand, and execute efficiently (in terms of memory and 
computing resources). These factors weighed in favor of selection of IMS as the tool of 
choice to represent data-driven approaches. These same factors also favorably influence 
the V&V that will be required for its uses within the project. 

 
V&V of the Inputs to IMS - IMS has two phases, its training phase, and its operations 
phase (the project does not plan to continue IMS’ training during operations). During its 
training phase, it takes as input sensor values of representative nominal system behaviors. 
For many of the vehicle subsystems, data on their nominal behaviors exists, and its 
“nominality” is not in doubt. As the scope expands to encompass additional subsystems, 
some of those will be relatively novel, and historical data on their operation (nominal or 
otherwise), or of the operation of equivalently similar subsystems, will be in short supply. 
In some instances by the time the scope encompasses those additional subsystems, 
sufficient data on those subsystems’ behaviors will exist (because there will have been 
tests run on the subsystems, and actual deployment and operation of those systems in 
earlier launches). When this will not be the case, there will be the need to generate the 
training data by other means, primarily through the execution of high-fidelity simulators 
of the subsystem in question. Those simulators must themselves be certified to the same 
level as that sought for the application (namely, Class A and human rated, safety critical 
standards of certification). Even so, it is widely recognized that simulators will not yield 
perfect data (e.g., they typically do not recreate the real-life nature and distribution of 
“noise” on data lines). The differences have the potential to upset IMS’ performance (e.g., 
noise in the data during actual operation might make a data point incorrectly appear to be 
within a nominal cluster, thus masking a fault – a “false negative”, or incorrectly appear 
outside of a nominal cluster – a “false positive”). A V&V challenge will be the 
determination of whether the training data is sufficiently realistic in these respects.  

 
V&V of the Training and Operations Phases of IMS - During the training phase, IMS 
forms the clusters that characterize nominal modes of operation. During its operations 
phase it computes the location of the point formed from data from the subsystem sensors’ 
data with respect to those previously formed clusters. 

Both of these phases are conceptually relatively straightforward, meaning it is 
plausible to consider constructing a “reference implementation” of each. As described in 
(Curran 2003), characteristics of a Reference Implementation are:  

 
(1) Developed concurrently with spec and test suite 
(2) Verifies that specification is implementable 
(3) Enables the test suite to be tested 
(4) Serves as Gold Standard against which other implementations can be measured 
(5) Helps to clarify intent of specification where conformance tests are inadequate. 
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Reference implementations of IMS’ training phase and operations phase need not 
perform as efficiently as the actual IMS implementation, thus permitting very 
straightforward implementation – so straightforward that their correctness can be verified 
by inspection. We would use these reference implementations during testing as follows: 
For testing of the training phase of IMS, the same training data would be fed (in the same 
order) to both the IMS implementation, and the reference implementation. Comparing the 
clusters formed by each of these would be means to verify the correctness of the IMS 
training phase implementation. For testing of the operations phase of IMS, the same 
cluster definitions and the same sensor values would be fed to both the IMS 
implementation, and the reference implementation. Comparing the outputs (indications of 
whether the sensor data represents a fault condition, and if so, by how it differs from the 
nearest cluster of data) returned by each of these would be means to verify the 
correctness of the IMS operations phase implementation. 

These uses of reference implementations permit testing IMS with any well-formed 
data: it could be historical data (which, as we have mentioned, will predominantly 
represent nominal behaviors), synthesized data (e.g., through guided simulation) of 
behaviors that transition from nominal conditions to failure conditions, or even randomly 
generated data. This flexibility makes it easy to generate a large number of test cases, and 
the reference implementation serves as an automatic “test oracle” – both of these factors 
are important to make practical the large amount of testing of IMS. Extensive testing of 
the application’s major SHM systems, of which IMS is one, will be a necessity for the 
level of V&V that is required for the application’s certification.  
 
V&V of the Data Structures Generated by IMS - The pivotal data structures as far as IMS 
is concerned are those representing clusters – the intermediary between IMS’ training 
phase and its operations phase. The previous section discussed how a reference 
implementation could be used during testing to verify correctness of the IMS training 
phase implementation, i.e., to check whether the implementation adhering to its 
specification. In addition, there is need to verify those clusters in the broader context of 
their use with the application. That is, verification that their use lead to attainment of the 
application requirements (most specifically, those requirements pertaining to upper limits 
on false positive and false negative rates of anomaly detection). While the end-to-end 
testing of the application system as a whole will address much of that, there is also the 
need to focus V&V attention on the clusters themselves. There is a reason why they are 
worthy of such attention: during the IMS training phase, cluster formation depends on 
several adjustable parameters (e.g., for a training data point that is not within an existing 
cluster, how close it must be to existing cluster to cause that cluster to be expanded to 
encompass that point, rather than using the point as the genesis of a new cluster). 
Depending on the settings of these parameters, the same training data could lead to 
different sets of clusters. Different cluster sets potentially could lead to different results 
when used at runtime. One way to investigate this during V&V is to look at the clusters 
themselves. Since each cluster is intended to characterize a mode of nominal subsystem 
operation, the two key concerns are (1) whether the sensor values corresponding to some 
nominal operation could denote a point falling outside of all the existing clusters (in 
which case a false positive would ensue) and (2) whether the sensor values corresponding 
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to some faulty operation could denote a point within a cluster (in which case a false 
negative would ensue). Each of these concerns could be explored as follows: 
 

• Select points in the multi-dimensional space of possible sensor values: 
o For (1), false positive concerns, a strategy for selection of points is to pick 

ones just beyond the limit of where IMS would cease to declare a point to 
be nominal (e.g., by extending the “corners” of clusters out a little); this is 
inspired by the concept boundary testing of conventional software. 

o For (2), false negative concerns, a possible strategy for selection of points 
is to locate ones that are within an existing IMS cluster, but are “far from” 
the data points that led to the creation of that cluster.  

• Drive the vehicle simulator to (try to) reach that point; this could be an 
impediment, especially if it requires significant manual effort. We note, however, 
that (Gundy-Burlet et al. 2008) reports use of a method (“TAR3”) for such 
guiding of complex simulations. 

• Check whether IMS would declare that a “nominal” point with whether the 
simulated vehicle and equipment are in a “nominal” state at that point. 

 
V&V of the Runtime Performance of IMS - IMS does not use heuristic reasoning, so it 
avoids the concern that small changes to heuristics can induce high variances in runtime 
performance (time and/or space). Generally speaking, IMS’ runtime performance 
depends on how many sensors’ values are being handled, and how many clusters the 
current sensors’ values have to be compared to. The number of sensors is predetermined, 
and the number of clusters is established during the training phase. Hence for runtime 
behavior, it is plausible to verify that IMS’ performance will remain within bounds by 
analysis of the IMS runtime code, and by keeping track of “high watermarks” of time and 
space consumption during extensive testing. 

 
V&V of the False Alarm Rate and Missed Detection Rate of IMS - The maximum 
allowable false alarm rate (false positives) and missed detection rate (false negatives) for 
IMS will be derived from the requirements on the entire application. Since the 
application’s purpose is to reduce launch delays, false alarms need to be limited because 
they cause unnecessary interruptions to the launch preparation; missed (or delayed) 
detections need to be limited because the longer their discovery is delayed, the more time 
and effort it takes to correct them – and of course failure to discover them at all prior to 
launch could threaten the vehicle and its mission. 

The flowdown of the requirements that will determine these limits is yet to be 
performed. Some failure modes will be more likely than others, and some will have more 
severe consequences if not discovered in a timely fashion than others; it is possible that 
these differences might their way into the requirements on IMS (setting it limits that vary 
from one failure mode to another). Generally speaking, false alarms during anomaly 
detection are much less critical than would be missed detections. Furthermore, IMS can 
return a measure of how far from nominal the current sensor values lie, both as an overall 
distance, and specifically on a sensor-by-sensor basis. This information might be further 
cause to grant IMS some leniency on the limit on its false alarm rates. 
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Model-based Fault Diagnosis Using TEAMS - Model-based diagnostic algorithms 
encode human knowledge via a hand-coded representation of the system. Such a model 
can be physics-based (encapsulating first principles knowledge using systems of 
differential equations, for example), or can use other representations such as hierarchical 
declarative models.  The specific model-based tool that this application has selected is 
Testability Engineering and Maintenance System (TEAMS), a commercial product from 
Qualtech Systems Inc. (QSI 2008). Use of TEAMS involves the creation of hierarchical 
model of the system and a qualitative model of failure propagation through that system. QSI 
provides TEAMS Designer, used to create TEAMS models, and TEAMS-RT, a real-time 
diagnostic tool that uses the TEAMS models to diagnose faults. 
 
V&V of the Inputs to TEAMS - TEAMS has two phases, its model construction phase 
(done using the TEAMS-Designer tool), and its operations phase (done using TEAMS-
RT). During its model construction phase, model building experts trained in the use of 
TEAMS-Designer make use of system information captured in FMECA reports, fault 
trees, schematic diagrams, instrumentation lists, and other technical documentation. From 
these inputs they build models of how failure effects propagate through the vehicle 
subsystems and its ground support equipment. Although modeling experts are required to 
build these models, the results are expected to be easy for discipline engineers to 
understand. Thus human experts can be used to review the results of the model building 
effort. In addition, it is feasible to automate some consistency checks between the 
information contained in the inputs, and the models constructed from those inputs (e.g., 
check that every failure mode in the FMECA reports is represented within the failure 
effect propagation model). 
 
V&V of the Transformation and Operations Phases of TEAMS - TEAMS-Designer 
transforms the failure effect propagation models into a “dependency matrix” (D-matrix), 
a two-dimensional structure that encodes the relationship between failure modes and 
observable symptoms. During the operations phase TEAMS-RT takes this D-matrix as an 
input, along with discretized (e.g., pass/fail, or low/medium/high) results from sensors. 
From these inputs TEAMS-RT uses abductive reasoning to compute the states of the 
vehicle subsystem and its ground support equipment components that would account for 
those symptoms. The resulting diagnosis classifies each component into one of four 
states: unknown (if the symptoms information pertaining to that component is currently 
unavailable), otherwise good, bad, or suspect (the last case corresponding to a component 
that is one of several whose failure would account for a symptom of failure). In addition, 
it is possible for TEAMS-RT to take into account failure probabilities – the failure rates 
of the components, and the imperfections (false alarms, missed detections) of the sensors 
that provide the symptoms. It is yet to be determined what of this range of capabilities 
that TEAMS-RT offers will be utilized by the application. 
 
Factors that may Complicate V&V of TEAMS - During the launch preparation and 
testing process the vehicle and the ground support equipment connected to it make 
transitions (e.g., as different test equipment is connected) between major modes of 
operation. When these are modeled within TEAMS, the net result is a D-Matrix that is 
reconfigured on-the-fly (by TEAMS-RT) to match the current operating mode. If we 
view the D-matrix as a critical intermediate data structure whose correctness of 
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construction and interpretation is important to V&V (in addition to V&V of the overall 
application’s outwardly discernable behavior), then we may be faced with the challenge 
of having to V&V not just one, but a plethora of D-matrices. 

A future challenge is that as the project extends from its initial prototype application 
to just one vehicle subsystem to multiple subsystems, the question will arise as to 
whether to build one giant model encompassing them all, or have a combination of 
smaller models – models of the individual subsystems and models of their interactions. 
These different architectures could have ramifications for recertification – when 
something is changed about a vehicle subsystem and/or its ground support equipment, 
how localized will be the effect of that change on the D-matrix or matrices? 

 
Rule-driven Fault Recovery using SHINE - Rule-based systems attempt to capture 
expert knowledge about a system in the form of deduction rules, each of which consists 
of a precondition and a postcondition. During operation of a rule-based system, an 
inference engine attempts to match the precondition of each rule against a system state 
(that is, the free variables of the precondition are instantiated with the values of state 
variables in the selected state), and, for each match—set of values for which the 
precondition evaluates to true—the state is updated with the additional information 
provided by the instantiation of the postcondition. Inference engines in rule-based 
systems vary in how they order rule application for matching, and in whether or how 
confidence measures are applied. Typically, rules are applied repeatedly until the rules 
have been exhaustively applied. Rule-based systems vary widely in their design and are 
often tuned for specific classes of applications. 

The specific data-driven tool that this application has selected is Spacecraft Health 
Inference Engine (SHINE). Originally developed at JPL, SHINE has been used in a 
number of aerospace applications. It is designed to generate high-performance, low-
footprint C code that can be used in real-time systems. For this application, SHINE is to 
be used to select response recommendations for failure conditions in ground support 
equipment and related vehicle equipment. The inputs to SHINE include current operating 
conditions, fault isolation results, subsystem configurations, and constraints on the 
availability of a recovery procedure. In the heavily-scripted activities preceding a launch, 
an appropriate response to each possible fault is determined based on prior simulation 
and analysis, so SHINE’s output is the selection of one of a finite set of possible 
responses, not the generation or synthesis of a new response. 
 
V&V of the Inputs to SHINE - SHINE has two phases, its conversion phase, and its 
operations phase. During its conversion phase, it takes as input a set of rules, and 
converts these into efficient C code. It is this C code that is then run during the operations 
phase to make the selection of the recovery response. The rules that are input to SHINE’s 
conversion phase will be gathered from experts who can characterize the selection 
process as a set of rules that apply under various conditions. V&V of the rule base itself 
can be performed to check for well-formedness properties of the set of rules – e.g., 
consistency, completeness, disjointness (one rule does not overlap another), liveness (no 
infinite chains), freedom from dead code. In addition we expect to produce system 
invariants, which (like the use of invariants in design-by-contract) must hold in all system 
states.  
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V&V of the Conversion and Operations phases of SHINE - In its conversion phase, 
SHINE analyzes the rules with respect to one another, derives a dependency graph of 
their possible global interactions and opportunities for sharing, and transforms that 
dependency graph into a dataflow representation to eliminate pattern-matching operations 
and maximize parallelism. It produces as output C (or if so desired C++) code that 
executes the rules very efficiently. The generated code does not make use of dynamic 
memory allocation or recursion, making the V&V and certification of that code easier.  
 
V&V of the runtime performance and correctness of the SHINE-generated C code - The 
plan here was to focus V&V on the C code generated by SHINE’s conversion phase 
(rather than on the conversion phase itself). This will be accomplished by testing and 
analysis. The types of analysis to be performed will include static analysis for structural 
coding errors, and worst-case timing analysis. Testing will be requirements-based: for 
each requirement, a verification requirement will be derived that specifies the test that 
will be performed and the success criteria. Typical requirements will include a “single 
fault correctness criterion”, such as “The recovery actions recommended by the system 
shall match the correct recovery actions for at least xx% of the time intervals that present 
single-fault failure modes.” The corresponding verification requirement (stated less 
formally) is: “This requirement will be verified by testing, where the set of test cases 
covers all single-fault failure modes. These cases will be specified by a test engineer and 
will have inputs that specify a fault and a context, as well as the correct recovery 
recommendation. The test will be considered successful if xx% of the recovery 
recommendations produced by the SHINE application match the correct recovery 
recommendation produced by the test designer.” In even a limited ground-based 
application, there are several hundred possible faults, and potentially hundreds of 
contexts in which one or more faults can occur. 

This example suggests important issues in testing rule-based systems, including the 
large state space and the labor-intensive nature of test case development. We would like 
to have historical ground support equipment and vehicle data that provide an adequate 
basis for testing; however, in this case, the historical data are almost entirely nominal, 
and do not present the range of faults or contexts needed for coverage of either the 
recovery recommendations or of the mapping from input data to recovery 
recommendations. In such cases simulation may provide an adequate set of test inputs, 
but the problem of developing a test oracle remains labor-intensive, relying on an 
engineering expert. 

 
V&V Considerations for the Application as a Whole - Previously the application of V&V 
to the three major SHM technologies that this application is employing was discussed. In 
addition, a significant portion of the V&V effort will be devoted to testing the correctness 
of the entire application against its requirements. The following will be critical aspects of 
this: 
 

• Decomposition of the high-level requirement – reducing launch delays for launch 
vehicles – down to the level of detailed requirements against which to test the 
application. 
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• Determination of how many test cases, and of what kinds, will be needed to achieve 
the requisite levels of confidence in the correctness of the application. Because two of 
the three SHM technologies involve significant use of models (the clusters generated 
and used by IMS, and the failure effect propagation models and their encoding into 
D-matrices used by TEAMS), conventional measures of code coverage as the means 
to assess sufficiency of testing may well be insufficient. 

• Feasible generation of the test cases themselves – minimizing the amount of manual 
effort that will be required to generate a test case, including determination of the 
correctness of the application’s execution against that test case. As we have indicated 
earlier, nominal data may be plentiful for many of the vehicle subsystems (or their 
equivalent). However, data representative of fault conditions is typically in short 
supply. 
 

The project is proceeding by first developing prototype FDIR applications focused on 
selected vehicle subsystems, and plans their deployment in a live setting, but outside of the 
launch decision processes. During this initial focus on specific vehicle subsystems, V&V will 
be similarly focused. This gives the project the opportunity to test out its approach to their 
development and deployment, V&V included. Just as the project as a whole plans for 
extending to more of the vehicle subsystems, and integrated FDIR among them, the V&V 
effort also has this longer term objective in mind.  

 
10.6 Summary 

It is apparent that a combination of multiple V&V approaches is required for SHM. 
For example, depending on the SHM architecture, traditional testing approaches may be 
adequate and appropriate for some layers of SHM functionality, whereas the use of AI 
techniques such as reasoning under uncertainty and mission planning (and re-planning) 
have characteristics that set them apart and challenge standard V&V techniques. Most 
notably, AI techniques based on explicit use of model-based reasoning exhibit 
algorithmic and implementation intricacies (within their AI reasoners themselves) on a 
par with other complex software systems, but in addition the behaviors they may exhibit 
during operation depend critically on the models themselves (elements that traditional 
V&V has not had to deal with). Fortuitously, the additional V&V challenges their model-
based nature gives rise to are balanced by the enhanced opportunities to apply certain 
V&V techniques, especially those based on analytic methods.  

The function of SHM is to increase the reliability of the system whose health it 
manages. To do this, SHM must, in the vast majority of cases, correctly ascertain the 
status of the system, despite the fallibility of both the system itself and also the sensors 
that monitor the status of the system. Thus the reliability of the SHM’s core functionality 
(e.g., its voting algorithms that adjudicate among multiple – some possibly erroneous – 
readings from multiple sensors) must be among the most reliable software systems on the 
entire vehicle. These considerations, coupled with the non-traditional architecture that 
many SHM systems employ (notably model-based reasoning), call into question both the 
feasibility and adequacy of existing standards, practices, etc., for V&V and certification if 
they are to encompass SHM. Overall, therefore, it is necessary to modify V&V and 
certification process to permit the use of SHM, to find the right mix of V&V and 
certification methods to match the architecture of the vehicle and SHM system, and to 
guide the maturation of emerging V&V techniques to support their application to SHM. 
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