
Chapter 10: Verification and Validation
Lawrence Markosian, Martin S. Feather, David Brinza

Overview

This chapter considers the influences and challenges to Verification and Validation of
SHM systems. The chapter first considers V&V practices as seen in commercial aircraft
avionics, and then goes on to consider the special challenges that arise when pursuing
V&V of SHM systems utilized in NASA spacecraft. The chapter concludes by
considering the V&V planned for a new ground-based SHM system that will monitor the
preparation for launch of space vehicles. This new system will deploy several forms of
SHM technologies, the V&V of which is discussed.

10.1 Introduction

Verification and Validation (V&V) of System Health Management (SHM) systems is
challenging but necessary to ensure mature system robustness and reliability. The factors
that most influence SHM’s V&V needs stem from two main sources – the system of
which SHM is a part, and the implementation of SHM itself. The system of which SHM
is a part levies requirements on SHM – for example, the need for SHM to respond within
a given time period with a stipulated level of confidence in the correctness of its response.
The combination of these externally imposed requirements, coupled with the manner in
which SHM will be utilized, drive much of the V&V process. Also highly influential is
the nature of the SHM implementation. Often it takes a combination of techniques to
implement an SHM system. These techniques include well-understood algorithms for
low-level data analysis, validation and reporting; traditional capabilities for fault
detection, isolation and recovery; and, at the more novel end, Artificial Intelligence (AI)
techniques for state estimation and planning. Here we focus on their ramifications for
V&V and certification. We consider the internal challenges to V&V that will arise from
use of this range of SHM techniques.

The conjunction of these external and internal influences on SHM V&V, and the
challenges that stem from them, is the focus of this chapter. We outline existing V&V
approaches and analogs in other software application areas, and possible new approaches
to the V&V challenges for space exploration SHM. We also describe ongoing work
towards the V&V of a specific application of several SHM technologies, and its
ramifications for the V&V issues that this chapter raises.

10.2 Existing Software V&V

Embedded systems perform safety critical roles, for space flight, commercial aircraft
avionics, defense, medical devices, nuclear power, and transportation. We begin by
looking at existing V&V for SHM as seen in one of these areas, commercial aircraft
avionics. This area has many parallels to the safety- and mission-critical needs that
predominate in other aerospace applications. We then suggest that the existing NASA

Stephen B. Johnson � 1/13/10 8:05 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/13/10 8:11 PM

Stephen B. Johnson � 1/13/10 8:13 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/13/10 8:13 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/13/10 8:13 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/13/10 8:21 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/13/10 8:21 PM

Deleted:

Deleted: exhibit a

hierarchy of requirements, policies, standards and procedures relevant to software has
close parallels with those seen in the other safety critical areas.

Avionics V&V - Safety-critical software for commercial aircraft undergoes certification
by the Federal Aviation Administration, which includes V&V in accordance with
RTCA/DO-178B. This document is recognized as the means for evaluating software for
compliance with the relevant Federal Aviation Regulations/Joint Aviation Regulations
(FARs/JARs) for embedded systems in commercial aircraft. A useful paper (Johnson
1998) provides interpretation of RTCA/DO-178B; it was prepared by a Boeing
participant in the RTCA committee responsible for DO-178B. The paper describes the
intent and rationale of DO-178B. The derivation of the software approval guidelines
from the Federal Aviation Regulations (FARs) to DO-178B is discussed in the paper to
clarify its relationship to the government regulations. An explanation of the Designated
Engineering Representative (DER) system is also provided in the paper along with a
discussion of the safety process to describe the environment in which DO-178B is used.

The DO-178B/ED-12B Software Verification Process defines specific verification
objectives that must be satisfied; these include:

a. Verification of software development processes,
b. Review of software development life cycle data,
c. Functional Verification of software

i. Requirements-based testing and analysis
ii. Robustness testing

d. Structural Coverage Analysis

Verification of the software development processes - is accomplished by a combination
of reviews and analyses. For software requirements, these include reviews of the quality
of the requirements themselves, a requirements trace from system-level to low-level
(code), and checks of their compatibility with the hardware; verifiability; conformance
with standards; accuracy, correctness and behavior of algorithms. The software
architecture is reviewed and analyzed for compatibility with the high-level requirements
and target hardware. Conformance of the software architecture to standards, verifiability,
consistency and portioning integrity is also reviewed. The source code is also subjected to
compliance and traceability to requirements. Conformance of the source code to
standards, code verifiability, accuracy and consistency are also reviewed and analyzed.
The integration process is verified by examination of the data and memory maps (detect
memory overlaps or missing components).

DO-178B section 11 stipulates a number of data requirements: plans, standards,
procedures, and products (including the source code and executable code) that document
this certification. These are:

Plan for Software Aspects of Certification
Software Development Plan
Software Verification Plan
Software Configuration Management Plan
Software Quality Assurance Plan

Stephen B. Johnson � 1/13/10 8:27 PM

Stephen B. Johnson � 1/13/10 8:23 PM

Stephen B. Johnson � 1/13/10 8:22 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/13/10 8:22 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/13/10 8:30 PM

Stephen B. Johnson � 1/13/10 8:35 PM

Stephen B. Johnson � 1/13/10 8:32 PM
Formatted: Indent: First line: 0.25"

Comment: Define the acronyms.

Deleted:

Deleted:

Deleted:

Software Requirements Standards
Software Design Standards
Software Code Standards
Software Requirements Data
Software Design Description
Source Code
Executable Object Code
Software Verification Cases and Procedures
Software Verification Results
Software Life Cycle Environment Configuration Index
Software Configuration Index
Problem Reports
Software Configuration Management Records
Software Quality Assurance Records
Software Accomplishment Summary

The review of software development life cycle data - includes assessment of the test
results, configuration management and quality assurance aspects for the development.
The testing portion, due to its complexity, is described in detail below. The control of the
configuration of the software, including identification of configuration items,
establishment of configuration item baselines, change control data, and traceability
throughout the development cycle is reviewed and analyzed. Problem reporting, tracking
and corrective action records are reviewed for adequacy, and verification of a change is
confirmed via examination of configuration records. The software quality assurance
records are reviewed to provide confidence that the software life cycle processes have
been followed and that deficiencies encountered in the life cycle are detected, evaluated,
tracked and resolved.

Functional verification of the software - is performed at three levels. (1)
Hardware/software integration testing is performed to verify the correct operation of the
software in the target computer environment. (2) Software integration testing verifies the
interrelationships between software requirements and components and the
implementation of the software components within the architecture. (3) Low-level testing
verifies the implementation of software low-level requirements. These requirements-
based tests are performed to verify correct functionality of the software in both normal
range test cases and in robustness test cases. The normal range test cases utilize valid
representative input values drawn from those normal input ranges (typically utilizing
values at the range boundaries, and representative interior values), and use them to
exercise the transitions possible in normal operation. The robustness test cases inject
invalid input values, values that would generate arithmetic overflows or attempt to
provoke transitions that are not allowed. The software should follow expected behavior
for the abnormal cases.

Structural coverage analysis - is generally perceived to be the most difficult task to
undertake in the testing process. Furthermore, certifying real-time executable code with
an operating system that is tightly integrated with the hardware, cache, interrupts,

Stephen B. Johnson � 1/13/10 8:42 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/13/10 8:43 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/13/10 8:49 PM
Formatted: Font:Not Italic, Underline

memory management, and process/task management, can make structural testing even
more difficult. These low-level aspects create a significant challenge to the verification
process. Three primary levels of structural testing are invoked according to the criticality
level of the software (Table 2) in DO-178B certifications:

• Statement Coverage (SC): Every statement in the program has been invoked or
used at least once. This is the most common use of the term “code coverage.”

• Decision Coverage (DC): Every point of entry and exit in the program has been
invoked at least once and that each decision in the program has been taken on all
possible (Boolean) outcomes at least once. Essentially, this means that every
Boolean statement has been evaluated both TRUE and FALSE.

• Modified Condition Decision Coverage (MCDC): Every point of entry and exit in
the program has been invoked at least once, that every decision in the program
has taken all possible outcomes at least once, and that each condition in a decision
has been shown to independently affect that decision's outcome. Complex
Booleans need to have truth tables developed to set each variable (inside a
Boolean expression) to both TRUE and FALSE.

For a tutorial on MCDC, see [Hayhurst et al., 2001]
In DO-178B terms, software has a criticality level, ranging from the most critical

(“Level A”), down to “Level E”. “Level A” software requires all three levels of structural
testing be performed.

Performing this code coverage exercise is possible using manual methods, but this
process is now readily facilitated by utilizing commercial code coverage tools. Numerous
code coverage tool vendors now supply testing tools that create the appropriate test
outputs to demonstrate and satisfy compliance with DO-178B.

NASA Requirements, Policies, Standards and Procedures Relevant to Software -The
current NASA Software Safety Standard is NASA-STD-8719.13b, dated July 8, 2004,
which applies to all safety-critical software acquired or produced by NASA. By reference
this includes NASA Software Assurance Standard, NASA-STD-8739.8, dated July 28,
2004. This in turn includes by reference NASA Software Engineering Requirements,
NPR 7150.2, Sept. 27, 2004. The latter characterizes “Class A Human Rated Software
Systems” as:

Applies to all space flight software subsystems (ground and flight) developed

and/or operated by or for NASA to support human activity in space and that interact
with NASA human space flight systems. Space flight system design and associated
risks to humans are evaluated over the program's life cycle, including design,
development, fabrication, processing, maintenance, launch, recovery, and final
disposal. Examples of Class A software for human rated space flight include but are
not limited to: guidance; navigation and control; life support systems; crew escape;
automated rendezvous and docking; failure detection, isolation and recovery; and
mission operations.

The classifications in NPR 7150.2 are important because, inter alia, the software

engineering requirements, including V&V, depend on the classification. SHM software is

Stephen B. Johnson � 1/13/10 9:00 PM
Formatted: Indent: Left: 0.25", Tabs:
-0.88", List tab + Not at 0.75"
Stephen B. Johnson � 1/13/10 9:00 PM

Stephen B. Johnson � 1/13/10 9:01 PM
Formatted: Indent: Hanging: 0.25"
Stephen B. Johnson � 1/13/10 9:00 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/13/10 9:01 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/13/10 9:12 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/13/10 9:12 PM
Formatted: Indent: Left: 0.25", First line:
0.25"

Stephen B. Johnson � 1/13/10 9:13 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/13/10 9:12 PM
Formatted: Font:Not Italic, Underline

Deleted:

clearly Class A by this definition. NPR 7150.2 also “provides a common set of generic
requirements for software created and acquired by or for NASA...” Included in this
document is a summary of the requirements with respect to software created and acquired
by NASA. Figure 10-1, taken from this NPR, shows the relationships among the various
relevant NASA requirements, policies, standards, procedures and guidance.

[INSERT FIGURE 10-1 HERE]

The net result of these governing documents is an approach to V&V that has close
parallels with those followed in other safety-critical application areas. Indeed, NASA’s
Software Working Group is developing mappings between the NASA Software
Engineering Requirements, NPR 7150.2, and select industry standards. A mapping to
NASA’s Software Assurance Standard exists, and (at the time of writing) mappings to the
Software Engineering Institute’s Capability Maturity Model Integration® (CMMI®), and
to the Institute of Electrical and Electronics Engineers standard IEEE 12207, are “under
review.”

V&V for Spacecraft Fault Protection - Fault Protection (FP) software on existing
NASA robotic spacecraft is a special case of SHM. In general, SHM goes beyond such
FP in two major aspects: the need for reasoning, primarily as a consequence of the state-
space explosion, and, in many applications, the focus on maintaining capability rather
than the simpler task of averting catastrophe. Nevertheless, it is worth first considering
how V&V is performed for FP before turning attention to SHM in general.

Ideally, the development process of a spacecraft’s FP starts with a detailed fault tree
and Failure Modes and Effects Criticality Analysis (FMECA) effort that produces a ”fault
set". A fault set is the list of faults that the spacecraft or system might encounter; the fault
set can then be subdivided into a "protected fault set" (those for which FP is to be
responsible for diagnosing and responding to) and an "unprotected fault set." (those for
which FP is not responsible). To allocate faults between these two sets, a clear definition
of the project’s fault tolerance is needed - is it to be single or dual fault tolerant? is the
requirement to be fault tolerant or failure tolerant? etc. Having this fault set early in the
project’s life cycle allows for design and risk trade offs as the hardware is selected. It also
provides a basis for the amount of redundancy selected for the hardware. Once the
protected fault set is determined the fault injection requirements can be specified for the
ground support equipment to be used to test the hardware and software.

This is an ideal approach – however, in practice, this rarely occurs in its ideal form.
As helpful as it would be to have the full fault set early in the project, the project often
does not have resources to dedicate systems engineers to a thorough fault tree and
FMECA effort in early design. Usually, one gets either a fault tree or a FMECA drafted.
This means that in practice there is an initial fault set but it is often very partial. The same
is true of the fault injection requirements, which, in practice, will be only a partial set in
the initial stages. The best way to overcome these departures from the ideal is to ensure
that both fault set development and fault injection requirements identification are on-
going processes with milestones at Preliminary Design Review (PDR), Critical Design

Stephen B. Johnson � 1/13/10 9:13 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/13/10 9:18 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/13/10 9:22 PM

Stephen B. Johnson � 1/13/10 9:22 PM

Stephen B. Johnson � 1/13/10 9:23 PM

Stephen B. Johnson � 1/13/10 9:23 PM

Stephen B. Johnson � 1/13/10 9:23 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/13/10 9:23 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/13/10 9:23 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/13/10 9:26 PM

Deleted: In order t

Deleted: of the mission

Deleted: the

Deleted: mission

Deleted:

Review (CDR) and individual FP reviews so that the process can be kept somewhat
current.

Finally, the FP testing process is itself constrained by project priorities. There is a
theoretical desire to begin FP testing early and have it stay in step with the other software
and hardware testing. However, in practice the FP testing starts out with low priority,
increasing as the overall testing program matures. Logic dictates that in a prioritized
environment, there is no need for fault protection testing until the core nominal hardware
and software is working. As the testing progresses and confidence in the nominal system
matures, then attention turns to the off-nominal cases in which FP plays a central role.

FP testing has the same three levels of V&V as the other areas. It begins with
verifying the basic functionality of the fault protection software itself, that is, the fault
protection governing software and the monitors and responses. One of the detailed
methods used to accomplish this is to “enable” the monitors as soon as possible after a
flight software delivery to ensure maximum testing time for detecting errors. The
remediation functions are exercised later in the test process as they become available.
This testing can range from basic fault testing to a more extreme “stress testing” that
involves cascading faults, envelope testing and heavy concurrent load testing. The stress
testing completes the triple of verifying requirements, validating capabilities and then
stress testing to find out where the system truly fails.

Example of Industry V&V Current Practice: Space Shuttle Main Engine
Controller - The Block II Space Shuttle Main Engine (SSME) Hardware Simulation
Laboratory II (HSL II) is the facility utilized for the verification of the SSME Controller
(SSMEC) test and flight software. The SSMEC software is used at Stennis Space Center
(SSC) for engine checkout and to conduct hot-fire certification tests of the SSME, at
Johnson Space Center (JSC) Shuttle Avionics Integration Laboratory (SAIL) supporting
the Shuttle Integration Testing, at Kennedy Space Center (KSC) to checkout the SSME in
the engine shop, and at KSC to control the SSME during the launch of the Shuttle. The
flow for SSMEC software development is shown in Figure 10-2. The HSL is also used
for Avionics integration of hardware prior to installation on the SSME and for Avionics
hardware anomaly resolution.

[INSERT FIGURE 10-2]

The HSL is an automated verification facility. Laboratory software was developed to
accomplish automated testing, digital and analog fault insertion, data collection and
analysis, and laboratory calibration. SSMEC software changes are generated using
Requirement Change Notices (RCNs), Design Change Notices (DCNs) and Code Change
Notices (CCNs), as appropriate. SSMEC software verification is conducted in the HSL II
at MSFC and software certification is conducted on the engine hot-fire test stand at SSC.
Changes (RCN/DCN/CCN) are delivered to Rocketdyne HSL personnel at MSFC, who
review the changes. Test procedures are generated and/or modified to verify the new
requirements or design changes. An executable image compare is performed following
each compilation. This compare, against a known base, is used to verify that only the
intended software modules were affected and to assist in identifying areas of retest. Each

Stephen B. Johnson � 1/13/10 9:28 PM

Stephen B. Johnson � 1/13/10 9:29 PM

Stephen B. Johnson � 1/13/10 9:29 PM

Stephen B. Johnson � 1/13/10 9:30 PM

Stephen B. Johnson � 1/13/10 9:33 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/13/10 9:33 PM

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

change is then verified in the HSL II. All discrepancies found during the verification
process are reported on an SN. Complete, post verification change packages are provided
to the SSMEC software community. Rocketdyne at CSL prepares a Hotfire Simulation
Request Package that specifies the software configuration, test profile, and special tests,
as required. The hotfire simulation and special tests are performed at the HSL II.

In addition, a database compare is performed on the software that is to be used for
engine hotfire test. Upon completion of these tests and approval by MSFC, the software
is authorized for engine hotfire test at SSC. Engine hotfire tests certify the SSMEC
software. Upon completion of the software certification and approval of the ECP and the
associated Verification Complete Package by MSFC, the software is then acceptable for
STS flight (Fiorucci et al 2000).

10.3 Feasibility and Sufficiency of Existing Software V&V Practices for SHM
Here we consider whether the existing software development practices can be

feasibly applied as-is to SHM systems, and whether those practices will provide
sufficient levels of confidence in SHM systems.

Feasibility - NASA’s Human-Rating Certification process is defined in NPR 8705.2A
(effective date: 2/7/2005). The objective of the human-rating certification process is to
document that the critical engineering requirements, health requirements, and safety
requirements have been met for a space system that provides “maximum reasonable
assurance” that the system's failure will not result in a crew or passenger fatality or
permanent disability. This NPR covers numerous aspects of certification, including
certification of software. One of the software aspects covered is testing, where one
requirement is:

1.6.7.1 The Program Manager shall perform testing to verify and validate the
performance, security, and reliability of all critical software across the entire
performance envelope (or flight envelope) including mission functions, modes, and
transitions
SHM clearly contains “critical software” and hence is subject to this testing

requirement. However, the very nature of SHM poses significant challenges to meeting
this requirement, above and beyond challenges shared by most forms of mission-critical
software. Specifically, SHM, by definition, deals with off-nominal conditions in each of
its roles (it must recognize, diagnose and respond to: early indications of impending
failure, the presence of performance degradations, and failures that have occurred).
Several V&V challenges stem from this: it is hard to know that all the significant possible
failure modes have been identified (especially for relatively novel components and for
conventional components operating in novel conditions); for any given failure mode, its
characteristics may not be well understood; there are many ways in which off-nominal
conditions can arise (consider all the parts that could fail, and the varying implications of
such failure depending on when in the mission it occurs), and the combinations of such
failures are vastly more numerous. For example, if there are 1,000 individual possible
failures, then there are potentially 1,000,000 pairs of such failures (while not every pair
will be possible, nevertheless, the number of feasible pairs of failures will tend towards
the square of the number of individual failures). This has specific relevance to the

Stephen B. Johnson � 1/13/10 9:35 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/13/10 9:37 PM

Stephen B. Johnson � 1/13/10 9:36 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/13/10 9:36 PM
Formatted: Indent: Left: 0.25", First line:
0.25"
Stephen B. Johnson � 1/13/10 9:36 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/13/10 9:37 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/13/10 9:38 PM

Stephen B. Johnson � 1/13/10 9:39 PM
Formatted: Font:Not Italic, Underline

Deleted:

Deleted: is a large number of

feasibility of meeting fault tolerance requirements that may be applicable. For example,
another Human Rating requirement states:

3.1.1 Space systems shall be designed so that no two failures result in crew or
passenger fatality or permanent disability.
In more general terms, the challenges posed by SHM systems are such that it is hard

to assure completeness of models of failure, it is hard to assure that those models are
correct, and it is hard to test/inspect/review the very many failure scenarios. While any
given failure scenario may itself have a very low likelihood of occurrence, SHM must be
prepared to deal correctly with whichever ones do manifest themselves in the course of
the mission, so V&V must address a large fraction of these to achieve the levels of
assurance required.

In response to these questions of feasibility, the response could be to evolve the
requirements, standards, etc. accordingly, or to leave them as-is and instead rely on
provisions for exceptions1, deviations2 and waivers3 from these requirements. In practice
waivers have been common. However, since they contradict the intent and effect of
requirements, and introduce inconsistencies in the certification process, it is preferable to
recognize early-on which requirements cannot be met, and revise these requirements as
necessary to preclude reliance upon waivers. The lack of feasibility for “complete” V&V
of SHM under the two-fault design requirement invokes a need to redefine the V&V test
requirements. One could establish a V&V testing “floor” in which every fault symptom is
simulated in the full flight software environment and the SHM response is verified.

Sufficiency - Another question to ask of the existing standards is whether they are
sufficient to achieve the levels of assurance desired of SHM systems. We begin by noting
that even the most stringent of the structural testing levels – the Modified Condition
Decision Coverage (MCDC), cannot fully test a realistic software application. To do so
would require “path” coverage – testing of every unique sequence of execution through
the code. Path coverage is not guaranteed by MCDC. In MCDC each condition is tested
largely independently of other decisions in the program, and in a program with n binary
decision points there are 2n independent decisions, each of which defines a possible path
through the program. Of these, the number that are “feasible” (that is, that can actually be
executed by some combination of input data values) is also on the order of 2n. Thus only
a relatively small portion of the possible execution paths are tested even under MCDC.
For event-driven (reactive) systems the situation is even worse. SHM systems fall
squarely into this category. As described in the previous subsection, the number of
possible behaviors can be a huge number, and the small proportion covered by MCDC
would leave most untested.

Further challenges stem from the unusual structure of SHM software as compared to
the more traditional forms of spacecraft software for which the standards, etc., were

1 An exception to a requirement can be provided if that requirement is not applicable to every

component of the system.
2 A deviation from a requirement can be provided if the requirement cannot be met but there is an

alternative method of reducing system risk to an “equivalent or lower” level.
3 A waiver of a requirement may be requested if the requirement is unsatisfied and there is

therefore an increased risk.

Stephen B. Johnson � 1/13/10 9:39 PM
Formatted: Font:Not Italic
Stephen B. Johnson � 1/13/10 9:39 PM
Formatted: Indent: Left: 0.25", First line:
0.25"
Stephen B. Johnson � 1/13/10 9:39 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/13/10 9:39 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/13/10 9:40 PM

Stephen B. Johnson � 1/14/10 7:55 PM
Formatted: Indent: First line: 0.25"

Deleted:

crafted. SHM software sometimes makes use of Artificial Intelligence techniques, and is
architected accordingly. Specifically, such software typically has both a large, complex
“reasoning engine”, and “models” (e.g., a model might describe the operating modes of
the telecommunications system) over which that reasoning engine operates.

For SHM software that uses sophisticated reasoning engines, the implications for
V&V are several:

• conventional approaches to certification, such as measures of code coverage used
to gauge the thoroughness of testing, do not take into account those models. In
conventional terms, the models would look like data, and typical code coverage
metrics would fail to capture the need for coverage of not only the reasoning
engine’s code, but also the data encoded within the models.

• the overall SHM system’s behavior might be sensitive to small changes in either
of the reasoning engine itself (e.g., a small change to a heuristic might lead to
drastic changes in performance) or the models (a small change to a model might
push the reasoning engine into previously unexplored regimes of behavior) – it is
hard to predict (and therefore hard to be sure to have adequately exercised with
testing) when and how these small changes will affect SHM behavior

• the performance (run time, memory consumption, CPU utilization) of reasoning
engines themselves, because of their heuristic nature, is hard to guarantee. If they
are operating close to the computational “cliff” (where performance degrades
rapidly as the problem complexity increases only slightly), they will exhibit
occasional wild fluctuations from “normal” – for many runs it may perform
within expected bounds, but once in a while, the performance is extremely poor
(slow, huge memory usage, …).

SHM must correctly report failure conditions, and, importantly, must avoid “false
alarms”. Both of these require that SHM take as input uncertain data, and yield
information and decisions with high(er) certainty. For example, SHM needs to
distinguish engine failure from failure of the sensor(s) monitoring the engine’s health
(those sensors are fallible devices, and may themselves fail; in fact, sensors are generally
considered less reliable than the components they are monitoring). The SHM algorithms
(and implementation thereof) that perform its certainty-increasing process must be
extremely reliable, since they will be in continuous operation.

Lastly, many of the systems whose health SHM is to manage will themselves contain
software. In such cases SHM may be expected to be cognizant of, and responsive to, the
health of those systems’ software. However, software “failure” does not completely
parallel hardware “failure” (software doesn’t “wear out”, rather, during operation a latent
defect – “bug” – in the software may become manifest in the particular execution path it
follows). Therefore it is less well understood whether SHM techniques can accommodate
failure modes that have their origin in latent software defects (predict them for prognosis
purposes, diagnose them once they have occurred, and in either case know what to do in
response). There are approaches to containing faults within the software systems itself:
traditional exception handling is code to trap and respond appropriately to faults, e.g.,
divide-by-zero. N-version programming (Avizienis & Chen, 1977] suggests software
redundancy, by comparing the results returned by N programs that have been
independently developed from the same specification. However, experiments in (Knight
& Leveson 1986) showed that there can be less benefit gained by N-version

Stephen B. Johnson � 1/14/10 7:59 PM

Stephen B. Johnson � 1/14/10 7:59 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:00 PM

Stephen B. Johnson � 1/14/10 8:01 PM
Formatted: Indent: Left: 0.25", Tabs:Not
at 0.75"

Stephen B. Johnson � 1/14/10 8:01 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:03 PM

Stephen B. Johnson � 1/14/10 8:05 PM

Stephen B. Johnson � 1/14/10 8:05 PM

Stephen B. Johnson � 1/14/10 8:05 PM
Formatted: Font:Not Italic, Underline

Deleted: often

Deleted: T

Deleted:

Comment: I think you really mean “failure” in this
context, not “fault”.

Comment: Again, I think this means “failure”, not
fault.

programming than one might wish for, and of course the expense of two or more software
development efforts is itself an impediment. The Space Shuttle uses a form of N-version
programming: in addition to four computers loaded with the same Primary Avionics
Software System software (thus providing redundancy protection against hardware
problems), a fifth computer contains a different set of software, programmed by a
different company to a reduced set of requirements (to perform just the essential guidance,
navigation and control functions during the critical phases of ascent and entry).

For detection of failures that evade such containment, runtime software-fault
monitoring (for a recent survey, see (Delgado et al. 2004) is an approach in which the
software’s execution-time behavior is compared to specified properties; non-compliance
with one or more of those properties would be an input to SHM.

10.4 Opportunities for Emerging V&V Techniques Suited to SHM

The unusual nature of SHM software raises both challenges for V&V and
certification (outlined in the previous section), and opportunities to amplify the efficacy
of existing techniques, and to make use of some new and emerging V&V techniques that
offer the promise of overcoming some of those key challenges. This section describes the
origins of those opportunities, and gives some representative examples of emerging V&V
techniques.

SHM Architecture - Emerging forms of SHM are likely to be architected using a
combination of hierarchical composition (with each subsystem performing its own health
management, but propagating its status, and if necessary the faults it cannot manage
locally, to the system of which it is a part, and so on), and model-based reasoning where a
generic reasoning engine operates over system-specific models.

Hierarchical composition potentially favors V&V by allowing analysis itself to take
advantage of the hierarchy, subdividing the V&V into manageable portions. V&V of this
kind, often referred to as “hierarchical verification” or “compositional verification”, is an
area of current interest within the V&V community. For a discussion of some of the
issues, see (Martin & Shukla 2003); for an example of a whole workshop focused on the
topic, see (de Boer & Bonsangue 2004). Some of this work has been applied to NASA
missions, e.g., (Giannakopoulou & Penix 2001).

Model-based approaches to SHM yield an SHM system architecture divided into a
generic, and therefore reusable, reasoning engine, and system-specific models. The
reasoning engine itself is a non-trivial piece of software, and so the correctness of its
implementation needs to be checked. However, since it will be reused from application to
application, the effort it takes to check that implementation can be amortized over those
multiple applications.

Whatever the architecture, V&V of SHM will require assuring the correctness of its
core algorithms (e.g., voting schemes); this kind of problem has long been appropriate for
formal methods such as theorem proving e.g., (Rushby 1991). Also, SHM systems may
be expected to be amenable to traditional software reliability engineering techniques
based on measurements of defect discovery and removal during development and test:
see (Musa)998], (Vouck 2000) for overviews of this field. Methods that can expand the
information gained from individual test cases would be useful for testing of the numerous
behaviors that SHM systems can exhibit – an example of such a method is the

Stephen B. Johnson � 1/14/10 8:06 PM

Stephen B. Johnson � 1/14/10 8:06 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:06 PM

Stephen B. Johnson � 1/14/10 8:06 PM
Formatted: Indent: First line: 0.25"

Deleted: lt

Deleted:

recognition of inconsistent uses of shared variables in a test run, even if no classical race
condition occurs within that run (Artho et al. 2003), (Artho et al. 2004). (Bensalem &
Havelund 2005) describes a similar approach to deadlock detection.

Models Used in SHM - In order that SHM can perform its reasoning (e.g., diagnose the
cause of a fault from a set of symptoms), those models are designed to be machine-
manipulable, by the SHM reasoning engine itself. V&V can also benefit from such
machine-manipulable models. As stated in (Menzies & Pecheur 2005), “These models
are often declarative and V&V analysts can exploit such declarative knowledge for their
analysis”.

Many of the emerging V&V techniques perform analysis – for V&V purposes – over
the same kinds of models that SHM utilizes. The adoption of those V&V techniques in
traditional software settings has always been impeded by the need to construct such
models by hand, from the various forms of system documentation intended for human,
but not computer, perusal (e.g., requirements stated in paragraphs of English). This has
made them costly and time-consuming to use, and as a result their application has, in
practice, been limited to only the most critical core elements of software and system
designs (for an in-depth discussion, see (Rushby 1993)). A representative example drawn
from the spacecraft fault protection domain is (Schneider et al 1998)’s use of “model
checking” applied to the checkpoint and rollback scheme of a dually redundant spacecraft
controller. In contrast, in model-based SHM, such models are available early in the
lifecycle, the ideal time to benefit from the results of analysis. Automatic translation from
the form of SHM-like models to the form of V&V models has been shown to be feasible,
e.g., (Pingree et al. 2002) illustrates such an approach in which they translate statecharts
into the input form for the model checker SPIN; (Pecheur & Simmons 2000) translate
models in Livingstone (a model-based health management system (Williams & Nayak
1996)) into the model checker SMV. (Penix et al. 1998) reports experiments to translate
AI planner domain models into SMV, SPIN and Murphi model checkers, allowing a
comparison of how the different systems would support specific types of validation tasks.

Traditional techniques such as testing can also leverage the availability of such
models. For example, (Blackburn et al. 2002) describes test automation (generation of the
test cases, test drivers, and test result evaluation) utilizing models, demonstrated on the
ill-fated Mars Polar Lander software design. Human-conducted activities such as reviews
and inspections may be well-suited to scrutiny of declarative models.

Another source of opportunity offered by model-based reasoning is that the reasoning
software can yield both its result (e.g., a diagnosis), and the chain of reasoning that led to
that result. That chain of reasoning provides opportunities for cross-checking – not only
checking that the result is correct, but also that it is correct for the right reasons (e.g., all
the appropriate information was taken into account when arriving at its conclusion). For
an example of this used during testing of an AI planner, see (Feather & Smith 2001).

An important property of SHM systems is that they are adequate to support diagnosis
of a specified class of faults. Often termed diagnosability, this means that using the
information available from sensors, the capability of the SHM system to distinguish
whenever the system is in a fault state, and if so, disambiguate which fault state it is. Note
that this is a property of a combination of the system itself (what states it can exhibit), the

Stephen B. Johnson � 1/14/10 8:08 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/14/10 8:08 PM
Formatted: Underline
Stephen B. Johnson � 1/14/10 8:08 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/14/10 8:08 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/14/10 8:08 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:10 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/14/10 8:10 PM

Stephen B. Johnson � 1/14/10 8:11 PM
Deleted:

Deleted: is always able

sensors (what information about the system state they make available to SHM), and the
reasoning capabilities of the SHM system itself. For example, if among the system’s
possible behaviors there are two scenarios that lead to system states required to be
distinguished, and yet the sensor information made available to the SHM system is
exactly the same for both those scenarios, then it would clearly be impossible for the
SHM system to make the distinction. For a discussion of diagnosability and approaches
to its attainment, see (Sampath et al. 1995) and (Jiang et al. 2002). An approach to
verification of this property is described in (Cimatti et al. 2003).

For V&V of the system as a whole, (Lindsey & Pecheur 2003) and (Lindsey &
Pecheur 2004) discuss an approach that focuses on advanced simulation of the actual
software (as opposed to verification of the model only). Concretely, this has been
implemented in the Livingstone PathFinder (and Titan PathFinder) framework. Although
this approach does not address diagnosability directly, it can catch diagnosis errors that
may be traced back to diagnosability issues. They discuss an application of this approach
to the main propulsion feed subsystem of the X-34 space vehicle.

Planning Systems in SHM - In addition to diagnosing the health status of the systems
they monitor, many SHM systems will be required to plan the appropriate actions to
recover from unhealthy states, and to execute those actions. Model-based techniques will
likely play an increasingly prominent role in the planning and execution stages, just as in
the diagnosis. Artificial Intelligence techniques for response planning have the same
reasoning engine + models architecture, and so are prone to the same V&V challenges
and opportunities as diagnosis systems. In addition, a plan execution system
(“executive”) is needed to execute the plans. V&V of this software system must ensure
that the execution of the commands and the response of the fault protection system
conforms to pre-planned behavior. (Varma et al. 2005) discusses an executive built with
plan verifiability in mind. (Brat et al. 2003) describes the results of applying several
verification tools to an executive for a robotic Martian rover.

SHM of Software Systems - Advances in the understanding of faults in software
systems will be applicable when, as is very likely, SHM has within its scope the
management of systems with significant reliance on software.

Risk analysis methods that serve to identify software vulnerabilities have been
adapted for software systems – Software Failure Modes Effects and Criticality Analysis
(SFEMCA) (Hall et al. 1983), and Software Fault Tree Analysis (SFTA) (Leveson 1995).
Ongoing work in this area includes means to combine these approaches (Lutz &
Woodhouse 1999), and to apply quantitative techniques adapted from Probabilistic Risk
Assessment (PRA) to software (Li et al 2003), (Feather 2004).

Detection of software faults during operation will be a key element of SHM. The field
of “runtime software-fault monitoring” is surveyed in (Delgado et al. 2004); for an
application to fault protection on a space system, see (Drusinsky & Watney 2003).

10.5 V&V Considerations for SHM Sensors and Avionics

Stephen B. Johnson � 1/14/10 8:11 PM

Stephen B. Johnson � 1/14/10 8:11 PM

Stephen B. Johnson � 1/14/10 8:12 PM

Stephen B. Johnson � 1/14/10 8:13 PM

Stephen B. Johnson � 1/14/10 8:13 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/14/10 8:13 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/14/10 8:13 PM
Formatted: Font:Not Italic, Underline

Deleted:

Deleted:

Deleted:

Deleted:

SHM relies on information derived from sensors, signal conditioning, data conversion
and data processing hardware to assess the state of the system. The performance of the
SHM system is dependent upon the fault coverage by the sensors embedded in the
vehicle. The quality of data from the sensors and the overall reliability of the hardware of
the SHM system are critical to SHM performance. In addition to meeting functional
requirements, the SHM system must be certified to operate reliably in the intended
environment.

Flight Hardware V&V - Spaceflight hardware is generally developed via a
requirements-driven process where the capabilities, performance specifications and
physical characteristics are developed within the constraints of mission resource
allocations. High-level (system) requirements are translated into lower-level requirements,
ultimately resulting in specifications that become the basis for hardware design.
Validation is performed via thorough requirements traces (upward and downward) to
ensure correct requirements are established at all levels. Throughout the hardware
development, the compliance of the hardware design with the requirements is verified
early in design reviews and later, in the hardware test program. Often a matrix is
generated and maintained to track the verification of the hardware against requirements
on that hardware. A performance baseline for verification of hardware functionality is
established prior to subjecting the hardware to a battery of environmental tests.
Abbreviated functional testing is frequently performed during the series of environmental
tests (i.e. between vibration tests on each axis of the hardware). Testing of payload or
subsystem avionics hardware is generally performed at the electronics box level prior to
delivery to the space vehicle for integration.

System-level functional testing is often performed with engineering model or
prototype subsystem hardware early in the integration phase. Testbeds are frequently
employed to develop system-level functionality (command and data handling
subsystems). Flight hardware can be verified in testbeds that have the appropriate
interfaces and hardware protection. During integration of the space vehicle, flight
hardware subsystems are typically connected to the space vehicle power and data systems
via a “safe-to-mate” verification procedure. Pin-level verification of the interfaces is
performed through “break-out box” equipment until the unit being integrated has been
powered and proper communication is verified. Only then is the unit directly mated to the
flight system connectors. After all of the flight hardware has been integrated, system-
level testing is completed. Spacecraft typically undergo system-level environmental
testing (Electromagnetic Interference/Electromagnetic Compatibility, vibration, acoustic,
system thermal-vacuum tests) to verify system performance in simulated launch and
space environments.

Sensor Data V&V - Due to the potentially large number of sensors, many of which are
exposed to harsh environments, the SHM system must be tolerant of sensor faults. The
processes for the selection, qualification and installation of sensors are important factors
for minimizing sensor faults. An SHM system should be able to validate sensor readings
and diagnose sensor faults in real-time. The area of Sensor Failure Detection, Isolation
and Accommodation (SFDIA) is being addressed by two conceptually different
approaches: physical and analytical redundancy.

Stephen B. Johnson � 1/14/10 8:14 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:15 PM

Stephen B. Johnson � 1/14/10 8:15 PM

Stephen B. Johnson � 1/14/10 8:14 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:17 PM

Stephen B. Johnson � 1/14/10 8:17 PM

Stephen B. Johnson � 1/14/10 8:17 PM

Stephen B. Johnson � 1/14/10 8:17 PM

Stephen B. Johnson � 1/14/10 8:18 PM

Deleted: I

Deleted:

Deleted: Robotic s

Deleted: MI

Deleted: M

Deleted:

Deleted:

Physical Redundancy - Traditional flight control systems deploy triple or quadruple
physical redundancy in their network of sensors to achieve the level of reliability
necessary for manned spacecraft or aircraft certification. Physical redundancy SFDIA
techniques are based on voting and mid-value selection schemes. It is clear that there are
penalties such as mass, power, volume, and cost associated with a physical redundancy
approach to the SFDIA problem.

Analytical Redundancy - Most of the current research activities on SFDIA focus on the
use of analytical redundancy techniques. A partial list of analytical SFDIA techniques
includes Generalized Likelihood Ratio (GLR); Multiple Model, Extended, and Iterative
Extended Kalman Filtering (MMKF, EKF and IEKF); Sequential Probability Likelihood
Ratio Test (SPLRT), and Generalized Likelihood Test/Maximum Likelihood Detector
(GLT/MLD). These techniques feature a continuous monitoring of the measurements
from the sensors. At nominal conditions, these signals follow some known patterns with a
certain degree of uncertainty due to the presence of system and measurement noise.
However, when sensor failure occurs, the observable outputs deviate from the predicted
values calculated on-line or off-line from an estimation scheme generating a residual. A
sensor failure can be declared when the associated residual exceeds, for a single or for
multiple time instants, a certain numerical threshold.

Analytical redundancy and Bayesian decision theory were combined to produce a
sensor validation system concept for real-time monitoring of Space Shuttle Main Engine
telemetry (see (Bickford et al. 1999)).The validation system, as illustrated in the block
diagram below (Figure 10-3), was implemented in Ada and hosted on a Boeing X-33
prototype flight computer (R3000 at 25 MHz). SSME telemetry was played back at real-
time rate through the system at the Marshall Avionics System Testbed (MAST). Data
from 50 SSME flight firings were processed at real-time rates and 3 sensor failures were
correctly identified.

[INSERT FIGURE 10-3]

More recently, neural network (NN) approaches to sensor data validation have been

developed. As an example, data from a Boeing 737 was processed via a NN-based on-
line learning scheme (Napolitano et al. 1999). The Extended Back Propagation (EBP)
algorithm was used by the authors for the on-line learning. The algorithm was selected
for its performance in terms of learning speed, convergence time, and stability when
compared to the conventional Back Propagation (BP) algorithm. The SFDIA scheme is
illustrated in the block diagram shown in Figure 10-4. It consists of a main NN (MNN)
and a set of ‘n’ decentralized NNs (DNNs), where ‘n’ is the number of the sensors in the
flight control system for which a SFDIA is desired. The outputs of the MNN replicate,
through on-line prediction, the actual measurements from the ‘n’ sensors with one time
instant delay, that is a prediction of the state at time ‘k’ using measurements from ‘k-l’ to
‘k-p’ to be compared with the actual measurement at time ‘k’. In their study, the authors
processed flight data obtained from about 10,000 seconds of B737 flight recorder data to
train the MNN and DNNs. Simulated sensor failures were injected to test the response of
the NN. They were able to demonstrate rapid on-line learning and proper identification of

Stephen B. Johnson � 1/14/10 8:17 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:19 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:19 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:20 PM
Formatted: Indent: First line: 0.25"

a variety of sensor failures both hard (complete sensor signal loss) and soft (drift) and to
have the failed sensor data accommodated by the physical model adapted by the on-line
learning process.

[INSERT FIGURE 10-4 HERE]

10.5 V&V Planning for a Specific SHM Application

Here we present an example of NASA’s highest software integrity levels of a new
ground-based system, intended to monitor the preparation for launch of a space vehicle.

Application Description - The specific application of SHM we focus on here is for use
during preparation and testing of a launch vehicle, a process that can take several days.
During this time the final assembly of the launch vehicle is conducted, it is loading with
fuel, etc., and tests are performed to ensure its launch readiness. Prototyping and
development efforts are underway that plan deployment of a series of SHM systems in
this setting. The first step is to be the deployment of an SHM system to monitor one of
the launch vehicles subsystems and its associated ground support equipment. This first
deployment will be fed live data during the launch preparation, but will play no formal
role in the launch decision processes. This will provide the opportunity to demonstrate
the functioning of the prototype in the real setting. Development of SHM capabilities for
other vehicle subsystems is also taking place, and planning is underway for how to
integrate SHM across the multiple vehicle subsystems.

The goal of this SHM system is to reduce launch delays for launch vehicles.
Historically, the Space Shuttle program has seen almost half of its launches delayed by at
least a day after the start of the two-day countdown. The majority of these delays have been
caused by hardware problems (a minority by weather conditions). This SHM system is
intended to reduce the length of delays caused by hardware problems, by speeding up faults’
detection, isolation and recovery (FDIR), whether they are faults in the launch vehicle itself,
or faults in the ground support equipment involved in the vehicle’s preparation.

The ongoing prototyping and development efforts are exploring a combination of
three major approaches to fault detection, isolation and recovery, namely data-driven,
model-based and rule-based. For a general discussion of the relevance of these
approaches to FDIR (and of tools that support them), see (Schwabacher & Waterman
2008). The project has selected, for each of these three approaches, an existing tool that
supports the approach. These selections are briefly introduced next, and then explored in
more detail from a V&V and certification perspective in the sections that follow.

• Inductive Monitoring System (IMS), developed by David Iverson at NASA ARC
(Iverson 2004), was selected to perform data-driven FDIR. IMS is being studies
for use in fault detection (i.e., the “D” part of FDIR).

• Testability Engineering and Maintenance System (TEAMS), a commercial product
from Qualtech Systems Inc. (QSI 2008), was selected to perform model-based fault
isolation (i.e., the “I” part of FDIR).

• Spacecraft Health INference Engine (SHINE), developed at JPL (James &
Atkinson 1990) was selected to perform rule-based FDIR. SHINE is being studied
for use in two roles, as a pre-processor of the raw sensor values input to the

Stephen B. Johnson � 1/14/10 8:20 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:21 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:22 PM
Formatted: Indent: Left: 0.25", Tabs:
-1.88", List tab + Not at 1"

Stephen B. Johnson � 1/14/10 8:22 PM
Deleted: diagnosis

overall SHM system, and as the inference engine for selection of the appropriate
recovery action once a fault has been detected and isolated (i.e., the “R” part of
FDIR).

Data-driven Fault Detection Using IMS - In general, data driven approaches start with
data representative of a system’s behaviors, and learn, using various machine-learning
techniques, characteristics of those behaviors. During operation, data from the operating
system is then compared against these learned characteristics to make determination of
the system’s status (e.g., whether it is operating “normally”). There are a variety of
learning techniques that data driven approaches have adopted, and a plethora of tools
supporting them.

For this application, failures in the vehicle subsystems and its ground support
equipment are rare (but potentially very significant). Hence data representative of their
nominal (failure-free) behaviors is readily available, data representative of their failure
behaviors much less so. The project has therefore selected an approach referred to as
“one-class learning”, in which the learning is performed by feeding the system only one
type of data, in this case, data of failure-free (“nominal”) system behaviors. During
operation, data that does not exhibit the learnt characteristics is deemed “anomalous”.
More specifically, the project has the goal of learning characteristics that span nearly all
forms of nominal operation, and hence data that does not exhibit the learnt characteristics
will be “anomalous”. This provides a means for anomaly detection (detecting that
something is different from normal). Also, to some extent this data driven approach may
be an aid to fault isolation (determining the location of the problem). This is done by
reporting not only when operational data is faulty, but also providing information as to
which of the characteristics of that data deviate from nominal, and by how much.

The specific data-driven tool that this application has selected is the Inductive
Monitoring System (IMS), developed by David Iverson at NASA ARC (Iverson 2004).
IMS learns “clusters” from nominal training data, those clusters representing modes of
the system. Each element of the training data comprises a set of sensor-value pairs (one
sensor value for each of the sensors being monitored). Notionally, each element of the
training data is a point located in a multi-dimensional space, one dimension per sensor;
the extent of that dimension is the range of values that sensor can exhibit. As learning
takes place, the training data’s points are aggregated into “clusters”, each of which is a
hyper-rectangle in a multi-dimensional space. Roughly speaking, training data’s points
that are close to one another in the multi-dimensional space become aggregated into the
same cluster, defined as the hyper-rectangle bounding that aggregation of points. The
result of learning is thus a set of clusters, each one representing a nominal operating
mode of the system (nominal because they were learnt from nominal behaviors’ data,
recall). During operation, IMS checks whether the point in the multi-dimensional space
represented by system’s sensor values falls within, or sufficiently close to, an existing
cluster. If so, IMS deems the system to be nominal; if not, it deems the system to be
anomalous. Furthermore, IMS also locates the cluster nearest that point, and reports
which of the sensor values are out of that cluster’s bounds and by how much (obviously
there will be at least one such sensor value, otherwise the point will be inside the cluster,
and deemed nominal).

Stephen B. Johnson � 1/14/10 8:22 PM

Stephen B. Johnson � 1/14/10 8:22 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/14/10 8:22 PM

Stephen B. Johnson � 1/14/10 8:23 PM

Stephen B. Johnson � 1/14/10 8:23 PM

Stephen B. Johnson � 1/14/10 8:24 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/14/10 8:24 PM

Stephen B. Johnson � 1/14/10 8:24 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:25 PM

Stephen B. Johnson � 1/14/10 8:25 PM

Deleted:

Deleted:

Deleted: faulty

Deleted: fault

Deleted: wrong

Deleted: , or more specifically, faulty

Deleted: if it is deemed faulty,

Influence of IMS’ Development on V&V - IMS is a relatively mature tool, has seen use
in NASA, and recently received certification as a monitoring application for the
International Space Station’s Control Moment Gyroscopes. Furthermore, it supports the
“one-class learning” that best matches the situation at hand (predominantly data of
nominal system operation), and employs algorithms for its learning and operations phases
that are relatively easy to understand, and execute efficiently (in terms of memory and
computing resources). These factors weighed in favor of selection of IMS as the tool of
choice to represent data-driven approaches. These same factors also favorably influence
the V&V that will be required for its uses within the project.

V&V of the Inputs to IMS - IMS has two phases, its training phase, and its operations
phase (the project does not plan to continue IMS’ training during operations). During its
training phase, it takes as input sensor values of representative nominal system behaviors.
For many of the vehicle subsystems, data on their nominal behaviors exists, and its
“nominality” is not in doubt. As the scope expands to encompass additional subsystems,
some of those will be relatively novel, and historical data on their operation (nominal or
otherwise), or of the operation of equivalently similar subsystems, will be in short supply.
In some instances by the time the scope encompasses those additional subsystems,
sufficient data on those subsystems’ behaviors will exist (because there will have been
tests run on the subsystems, and actual deployment and operation of those systems in
earlier launches). When this will not be the case, there will be the need to generate the
training data by other means, primarily through the execution of high-fidelity simulators
of the subsystem in question. Those simulators must themselves be certified to the same
level as that sought for the application (namely, Class A and human rated, safety critical
standards of certification). Even so, it is widely recognized that simulators will not yield
perfect data (e.g., they typically do not recreate the real-life nature and distribution of
“noise” on data lines). The differences have the potential to upset IMS’ performance (e.g.,
noise in the data during actual operation might make a data point incorrectly appear to be
within a nominal cluster, thus masking a fault – a “false negative”, or incorrectly appear
outside of a nominal cluster – a “false positive”). A V&V challenge will be the
determination of whether the training data is sufficiently realistic in these respects.

V&V of the Training and Operations Phases of IMS - During the training phase, IMS
forms the clusters that characterize nominal modes of operation. During its operations
phase it computes the location of the point formed from data from the subsystem sensors’
data with respect to those previously formed clusters.

Both of these phases are conceptually relatively straightforward, meaning it is
plausible to consider constructing a “reference implementation” of each. As described in
(Curran 2003), characteristics of a Reference Implementation are:

(1) Developed concurrently with spec and test suite
(2) Verifies that specification is implementable
(3) Enables the test suite to be tested
(4) Serves as Gold Standard against which other implementations can be measured
(5) Helps to clarify intent of specification where conformance tests are inadequate.

Stephen B. Johnson � 1/14/10 8:25 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:26 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:26 PM

Stephen B. Johnson � 1/14/10 8:26 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/14/10 8:26 PM

Stephen B. Johnson � 1/14/10 8:27 PM
Formatted: Indent: First line: 0.25"

Deleted:

Deleted:

Reference implementations of IMS’ training phase and operations phase need not
perform as efficiently as the actual IMS implementation, thus permitting very
straightforward implementation – so straightforward that their correctness can be verified
by inspection. We would use these reference implementations during testing as follows:
For testing of the training phase of IMS, the same training data would be fed (in the same
order) to both the IMS implementation, and the reference implementation. Comparing the
clusters formed by each of these would be means to verify the correctness of the IMS
training phase implementation. For testing of the operations phase of IMS, the same
cluster definitions and the same sensor values would be fed to both the IMS
implementation, and the reference implementation. Comparing the outputs (indications of
whether the sensor data represents a fault condition, and if so, by how it differs from the
nearest cluster of data) returned by each of these would be means to verify the
correctness of the IMS operations phase implementation.

These uses of reference implementations permit testing IMS with any well-formed
data: it could be historical data (which, as we have mentioned, will predominantly
represent nominal behaviors), synthesized data (e.g., through guided simulation) of
behaviors that transition from nominal conditions to failure conditions, or even randomly
generated data. This flexibility makes it easy to generate a large number of test cases, and
the reference implementation serves as an automatic “test oracle” – both of these factors
are important to make practical the large amount of testing of IMS. Extensive testing of
the application’s major SHM systems, of which IMS is one, will be a necessity for the
level of V&V that is required for the application’s certification.

V&V of the Data Structures Generated by IMS - The pivotal data structures as far as IMS
is concerned are those representing clusters – the intermediary between IMS’ training
phase and its operations phase. The previous section discussed how a reference
implementation could be used during testing to verify correctness of the IMS training
phase implementation, i.e., to check whether the implementation adhering to its
specification. In addition, there is need to verify those clusters in the broader context of
their use with the application. That is, verification that their use lead to attainment of the
application requirements (most specifically, those requirements pertaining to upper limits
on false positive and false negative rates of anomaly detection). While the end-to-end
testing of the application system as a whole will address much of that, there is also the
need to focus V&V attention on the clusters themselves. There is a reason why they are
worthy of such attention: during the IMS training phase, cluster formation depends on
several adjustable parameters (e.g., for a training data point that is not within an existing
cluster, how close it must be to existing cluster to cause that cluster to be expanded to
encompass that point, rather than using the point as the genesis of a new cluster).
Depending on the settings of these parameters, the same training data could lead to
different sets of clusters. Different cluster sets potentially could lead to different results
when used at runtime. One way to investigate this during V&V is to look at the clusters
themselves. Since each cluster is intended to characterize a mode of nominal subsystem
operation, the two key concerns are (1) whether the sensor values corresponding to some
nominal operation could denote a point falling outside of all the existing clusters (in
which case a false positive would ensue) and (2) whether the sensor values corresponding

Stephen B. Johnson � 1/14/10 8:27 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:28 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:28 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:28 PM
Deleted: fault

to some faulty operation could denote a point within a cluster (in which case a false
negative would ensue). Each of these concerns could be explored as follows:

• Select points in the multi-dimensional space of possible sensor values:
o For (1), false positive concerns, a strategy for selection of points is to pick

ones just beyond the limit of where IMS would cease to declare a point to
be nominal (e.g., by extending the “corners” of clusters out a little); this is
inspired by the concept boundary testing of conventional software.

o For (2), false negative concerns, a possible strategy for selection of points
is to locate ones that are within an existing IMS cluster, but are “far from”
the data points that led to the creation of that cluster.

• Drive the vehicle simulator to (try to) reach that point; this could be an
impediment, especially if it requires significant manual effort. We note, however,
that (Gundy-Burlet et al. 2008) reports use of a method (“TAR3”) for such
guiding of complex simulations.

• Check whether IMS would declare that a “nominal” point with whether the
simulated vehicle and equipment are in a “nominal” state at that point.

V&V of the Runtime Performance of IMS - IMS does not use heuristic reasoning, so it
avoids the concern that small changes to heuristics can induce high variances in runtime
performance (time and/or space). Generally speaking, IMS’ runtime performance
depends on how many sensors’ values are being handled, and how many clusters the
current sensors’ values have to be compared to. The number of sensors is predetermined,
and the number of clusters is established during the training phase. Hence for runtime
behavior, it is plausible to verify that IMS’ performance will remain within bounds by
analysis of the IMS runtime code, and by keeping track of “high watermarks” of time and
space consumption during extensive testing.

V&V of the False Alarm Rate and Missed Detection Rate of IMS - The maximum
allowable false alarm rate (false positives) and missed detection rate (false negatives) for
IMS will be derived from the requirements on the entire application. Since the
application’s purpose is to reduce launch delays, false alarms need to be limited because
they cause unnecessary interruptions to the launch preparation; missed (or delayed)
detections need to be limited because the longer their discovery is delayed, the more time
and effort it takes to correct them – and of course failure to discover them at all prior to
launch could threaten the vehicle and its mission.

The flowdown of the requirements that will determine these limits is yet to be
performed. Some failure modes will be more likely than others, and some will have more
severe consequences if not discovered in a timely fashion than others; it is possible that
these differences might their way into the requirements on IMS (setting it limits that vary
from one failure mode to another). Generally speaking, false alarms during anomaly
detection are much less critical than would be missed detections. Furthermore, IMS can
return a measure of how far from nominal the current sensor values lie, both as an overall
distance, and specifically on a sensor-by-sensor basis. This information might be further
cause to grant IMS some leniency on the limit on its false alarm rates.

Stephen B. Johnson � 1/14/10 8:30 PM

Stephen B. Johnson � 1/14/10 8:30 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:30 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:30 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:31 PM

Deleted: is

Deleted: fault

Model-based Fault Diagnosis Using TEAMS - Model-based diagnostic algorithms
encode human knowledge via a hand-coded representation of the system. Such a model
can be physics-based (encapsulating first principles knowledge using systems of
differential equations, for example), or can use other representations such as hierarchical
declarative models. The specific model-based tool that this application has selected is
Testability Engineering and Maintenance System (TEAMS), a commercial product from
Qualtech Systems Inc. (QSI 2008). Use of TEAMS involves the creation of hierarchical
model of the system and a qualitative model of failure propagation through that system. QSI
provides TEAMS Designer, used to create TEAMS models, and TEAMS-RT, a real-time
diagnostic tool that uses the TEAMS models to diagnose faults.

V&V of the Inputs to TEAMS - TEAMS has two phases, its model construction phase
(done using the TEAMS-Designer tool), and its operations phase (done using TEAMS-
RT). During its model construction phase, model building experts trained in the use of
TEAMS-Designer make use of system information captured in FMECA reports, fault
trees, schematic diagrams, instrumentation lists, and other technical documentation. From
these inputs they build models of how failure effects propagate through the vehicle
subsystems and its ground support equipment. Although modeling experts are required to
build these models, the results are expected to be easy for discipline engineers to
understand. Thus human experts can be used to review the results of the model building
effort. In addition, it is feasible to automate some consistency checks between the
information contained in the inputs, and the models constructed from those inputs (e.g.,
check that every failure mode in the FMECA reports is represented within the failure
effect propagation model).

V&V of the Transformation and Operations Phases of TEAMS - TEAMS-Designer
transforms the failure effect propagation models into a “dependency matrix” (D-matrix),
a two-dimensional structure that encodes the relationship between failure modes and
observable symptoms. During the operations phase TEAMS-RT takes this D-matrix as an
input, along with discretized (e.g., pass/fail, or low/medium/high) results from sensors.
From these inputs TEAMS-RT uses abductive reasoning to compute the states of the
vehicle subsystem and its ground support equipment components that would account for
those symptoms. The resulting diagnosis classifies each component into one of four
states: unknown (if the symptoms information pertaining to that component is currently
unavailable), otherwise good, bad, or suspect (the last case corresponding to a component
that is one of several whose failure would account for a symptom of failure). In addition,
it is possible for TEAMS-RT to take into account failure probabilities – the failure rates
of the components, and the imperfections (false alarms, missed detections) of the sensors
that provide the symptoms. It is yet to be determined what of this range of capabilities
that TEAMS-RT offers will be utilized by the application.

Factors that may Complicate V&V of TEAMS - During the launch preparation and
testing process the vehicle and the ground support equipment connected to it make
transitions (e.g., as different test equipment is connected) between major modes of
operation. When these are modeled within TEAMS, the net result is a D-Matrix that is
reconfigured on-the-fly (by TEAMS-RT) to match the current operating mode. If we
view the D-matrix as a critical intermediate data structure whose correctness of

Stephen B. Johnson � 1/14/10 8:33 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:32 PM

Stephen B. Johnson � 1/14/10 8:32 PM

Stephen B. Johnson � 1/14/10 8:32 PM

Stephen B. Johnson � 1/14/10 8:33 PM
Formatted: Font:Not Italic, Underline
Stephen B. Johnson � 1/14/10 8:33 PM

Stephen B. Johnson � 1/14/10 8:33 PM

Stephen B. Johnson � 1/14/10 8:34 PM

Stephen B. Johnson � 1/14/10 8:34 PM
Formatted: Font:Not Italic, Underline

Deleted: ults

Deleted: may be

Deleted: ult

Deleted: ult

Deleted:

Deleted:

construction and interpretation is important to V&V (in addition to V&V of the overall
application’s outwardly discernable behavior), then we may be faced with the challenge
of having to V&V not just one, but a plethora of D-matrices.

A future challenge is that as the project extends from its initial prototype application
to just one vehicle subsystem to multiple subsystems, the question will arise as to
whether to build one giant model encompassing them all, or have a combination of
smaller models – models of the individual subsystems and models of their interactions.
These different architectures could have ramifications for recertification – when
something is changed about a vehicle subsystem and/or its ground support equipment,
how localized will be the effect of that change on the D-matrix or matrices?

Rule-driven Fault Recovery using SHINE - Rule-based systems attempt to capture
expert knowledge about a system in the form of deduction rules, each of which consists
of a precondition and a postcondition. During operation of a rule-based system, an
inference engine attempts to match the precondition of each rule against a system state
(that is, the free variables of the precondition are instantiated with the values of state
variables in the selected state), and, for each match—set of values for which the
precondition evaluates to true—the state is updated with the additional information
provided by the instantiation of the postcondition. Inference engines in rule-based
systems vary in how they order rule application for matching, and in whether or how
confidence measures are applied. Typically, rules are applied repeatedly until the rules
have been exhaustively applied. Rule-based systems vary widely in their design and are
often tuned for specific classes of applications.

The specific data-driven tool that this application has selected is Spacecraft Health
Inference Engine (SHINE). Originally developed at JPL, SHINE has been used in a
number of aerospace applications. It is designed to generate high-performance, low-
footprint C code that can be used in real-time systems. For this application, SHINE is to
be used to select response recommendations for failure conditions in ground support
equipment and related vehicle equipment. The inputs to SHINE include current operating
conditions, fault isolation results, subsystem configurations, and constraints on the
availability of a recovery procedure. In the heavily-scripted activities preceding a launch,
an appropriate response to each possible fault is determined based on prior simulation
and analysis, so SHINE’s output is the selection of one of a finite set of possible
responses, not the generation or synthesis of a new response.

V&V of the Inputs to SHINE - SHINE has two phases, its conversion phase, and its
operations phase. During its conversion phase, it takes as input a set of rules, and
converts these into efficient C code. It is this C code that is then run during the operations
phase to make the selection of the recovery response. The rules that are input to SHINE’s
conversion phase will be gathered from experts who can characterize the selection
process as a set of rules that apply under various conditions. V&V of the rule base itself
can be performed to check for well-formedness properties of the set of rules – e.g.,
consistency, completeness, disjointness (one rule does not overlap another), liveness (no
infinite chains), freedom from dead code. In addition we expect to produce system
invariants, which (like the use of invariants in design-by-contract) must hold in all system
states.

Stephen B. Johnson � 1/14/10 8:34 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:35 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:35 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:35 PM

Stephen B. Johnson � 1/14/10 8:36 PM

Stephen B. Johnson � 1/14/10 8:36 PM
Formatted: Font:Not Italic, Underline

Deleted: lt

Deleted:

V&V of the Conversion and Operations phases of SHINE - In its conversion phase,
SHINE analyzes the rules with respect to one another, derives a dependency graph of
their possible global interactions and opportunities for sharing, and transforms that
dependency graph into a dataflow representation to eliminate pattern-matching operations
and maximize parallelism. It produces as output C (or if so desired C++) code that
executes the rules very efficiently. The generated code does not make use of dynamic
memory allocation or recursion, making the V&V and certification of that code easier.

V&V of the runtime performance and correctness of the SHINE-generated C code - The
plan here was to focus V&V on the C code generated by SHINE’s conversion phase
(rather than on the conversion phase itself). This will be accomplished by testing and
analysis. The types of analysis to be performed will include static analysis for structural
coding errors, and worst-case timing analysis. Testing will be requirements-based: for
each requirement, a verification requirement will be derived that specifies the test that
will be performed and the success criteria. Typical requirements will include a “single
fault correctness criterion”, such as “The recovery actions recommended by the system
shall match the correct recovery actions for at least xx% of the time intervals that present
single-fault failure modes.” The corresponding verification requirement (stated less
formally) is: “This requirement will be verified by testing, where the set of test cases
covers all single-fault failure modes. These cases will be specified by a test engineer and
will have inputs that specify a fault and a context, as well as the correct recovery
recommendation. The test will be considered successful if xx% of the recovery
recommendations produced by the SHINE application match the correct recovery
recommendation produced by the test designer.” In even a limited ground-based
application, there are several hundred possible faults, and potentially hundreds of
contexts in which one or more faults can occur.

This example suggests important issues in testing rule-based systems, including the
large state space and the labor-intensive nature of test case development. We would like
to have historical ground support equipment and vehicle data that provide an adequate
basis for testing; however, in this case, the historical data are almost entirely nominal,
and do not present the range of faults or contexts needed for coverage of either the
recovery recommendations or of the mapping from input data to recovery
recommendations. In such cases simulation may provide an adequate set of test inputs,
but the problem of developing a test oracle remains labor-intensive, relying on an
engineering expert.

V&V Considerations for the Application as a Whole - Previously the application of V&V
to the three major SHM technologies that this application is employing was discussed. In
addition, a significant portion of the V&V effort will be devoted to testing the correctness
of the entire application against its requirements. The following will be critical aspects of
this:

• Decomposition of the high-level requirement – reducing launch delays for launch
vehicles – down to the level of detailed requirements against which to test the
application.

Stephen B. Johnson � 1/14/10 8:36 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:37 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:37 PM

Stephen B. Johnson � 1/14/10 8:37 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:38 PM

Stephen B. Johnson � 1/14/10 8:37 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:38 PM

Stephen B. Johnson � 1/14/10 8:38 PM
Formatted: Font:Not Italic, Underline

Stephen B. Johnson � 1/14/10 8:39 PM
Formatted: Indent: Left: 0.25", Tabs:
-1.88", List tab + Not at 0.75"

Deleted:

Deleted:

Deleted:

• Determination of how many test cases, and of what kinds, will be needed to achieve
the requisite levels of confidence in the correctness of the application. Because two of
the three SHM technologies involve significant use of models (the clusters generated
and used by IMS, and the failure effect propagation models and their encoding into
D-matrices used by TEAMS), conventional measures of code coverage as the means
to assess sufficiency of testing may well be insufficient.

• Feasible generation of the test cases themselves – minimizing the amount of manual
effort that will be required to generate a test case, including determination of the
correctness of the application’s execution against that test case. As we have indicated
earlier, nominal data may be plentiful for many of the vehicle subsystems (or their
equivalent). However, data representative of fault conditions is typically in short
supply.

The project is proceeding by first developing prototype FDIR applications focused on
selected vehicle subsystems, and plans their deployment in a live setting, but outside of the
launch decision processes. During this initial focus on specific vehicle subsystems, V&V will
be similarly focused. This gives the project the opportunity to test out its approach to their
development and deployment, V&V included. Just as the project as a whole plans for
extending to more of the vehicle subsystems, and integrated FDIR among them, the V&V
effort also has this longer term objective in mind.

10.6 Summary

It is apparent that a combination of multiple V&V approaches is required for SHM.
For example, depending on the SHM architecture, traditional testing approaches may be
adequate and appropriate for some layers of SHM functionality, whereas the use of AI
techniques such as reasoning under uncertainty and mission planning (and re-planning)
have characteristics that set them apart and challenge standard V&V techniques. Most
notably, AI techniques based on explicit use of model-based reasoning exhibit
algorithmic and implementation intricacies (within their AI reasoners themselves) on a
par with other complex software systems, but in addition the behaviors they may exhibit
during operation depend critically on the models themselves (elements that traditional
V&V has not had to deal with). Fortuitously, the additional V&V challenges their model-
based nature gives rise to are balanced by the enhanced opportunities to apply certain
V&V techniques, especially those based on analytic methods.

The function of SHM is to increase the reliability of the system whose health it
manages. To do this, SHM must, in the vast majority of cases, correctly ascertain the
status of the system, despite the fallibility of both the system itself and also the sensors
that monitor the status of the system. Thus the reliability of the SHM’s core functionality
(e.g., its voting algorithms that adjudicate among multiple – some possibly erroneous –
readings from multiple sensors) must be among the most reliable software systems on the
entire vehicle. These considerations, coupled with the non-traditional architecture that
many SHM systems employ (notably model-based reasoning), call into question both the
feasibility and adequacy of existing standards, practices, etc., for V&V and certification if
they are to encompass SHM. Overall, therefore, it is necessary to modify V&V and
certification process to permit the use of SHM, to find the right mix of V&V and
certification methods to match the architecture of the vehicle and SHM system, and to
guide the maturation of emerging V&V techniques to support their application to SHM.

Stephen B. Johnson � 1/14/10 8:39 PM

Stephen B. Johnson � 1/14/10 8:39 PM

Stephen B. Johnson � 1/14/10 8:39 PM

Stephen B. Johnson � 1/14/10 8:40 PM
Formatted: Indent: First line: 0.25"

Stephen B. Johnson � 1/14/10 8:40 PM
Formatted: Indent: First line: 0.25"
Stephen B. Johnson � 1/14/10 8:40 PM
Formatted: Font:Not Italic, Underline

Deleted: lt

Deleted: -

Deleted:

Acknowledgments

The research described in this paper was carried out by NASA Ames Research Center
and the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space administration. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not constitute or imply its endorsement by the United States Government
or the Jet Propulsion Laboratory, California Institute of Technology.

References

[Artho 2003] Artho, Cyrille, Klaus Havelund and Armin Biere. 2003. “High-
level data races,” Software Testing, Verification and Reliability 13,
no 4 (November 2003): 207-227.

[Artho 2004] Artho, Cyrille, Klaus Havelund and Armin Biere. 2004. “Using
Block-Local Atomicity to Detect Stale-Value Concurrency
Errors,” 2nd International Symposium on Automated Technology
for Verification and Analysis (October 2004): 150-164.

[Bensalem, 2005] Bensalem, Saddek and Klaus Havelund. 2005. “Dynamic Deadlock
Analysis of Multi-Threaded Programs,” Parallel and Distributed
Systems: Testing and Debugging (PADTAD) Track of the 2005
IBM Verification Conference (November 2005): 208-223.

[Avizienis, 1977] Avizienis, A. & Liming Chen. 1977. “On the implementation of N-
version programming for software fault tolerance during
execution,” IEEE International Computer Software and
Applications Conference (November 1977): 149-155.

[Bickford, 1999] Bickford, R.L, et al. 1999. “Real-Time Sensor Data Validation for
Space Shuttle Main Engine Telemetry Monitoring,” AIAA-1999-
2531. AIAA/ASME/SAE/ASEE 35th Joint Propulsion Conference
and Exhibit (June 1999).

[Blakburn, 2002] Blackburn, Mark, et al. 2002. “Mars Polar Lander fault
identification using model-based testing” 8th IEEE International
Conference on Engineering of Complex Computer Systems
(December 2002):163-169.

[Brat, 2003] Brat, Guillaume, at al. 2003. “Experimental Evaluation of
Verification and Validation Tools on Martian Rover Software,”
Formal Methods in System Design 25, issue 2: 167-198.

[Cimatti, 2003] Cimatti, Alessandro, Charles Pecheur and Roberto Cavada. 2003.
“Formal Verification of Diagnosability via Symbolic Model
Checking” 18th International Joint Conference on Artificial
Intelligence (August 2003): 501-503.

[Curran, 2003] Curran, Patrick. 2003. “Conformance Testing: An Industry
Perspective,” Java Conformance Testing, Sun Microsystems.

Stephen B. Johnson � 1/14/10 8:41 PM
Formatted: Indent: First line: 0.25"

[de Boer, 2003] de Boer, F. and M. Bonsangue (eds). 2003. Proceedings of the
Workshop on the Verification of UML Models. Electronic Notes in
Theoretical Computer Science 101 (2004): 1-179.

[Delgado, 2004] Delgado, N., A.Q. Gates and S. Roach. 2004. “A Taxonomy and
Catalog of Runtime Software-Fault Monitoring Tools,” IEEE
Transactions on Software Engineering 30 no 12 (December 2004):
859-872.

[Drusinsky, 2003] Drusinsky, Doron and Garth Watney. 2003. “Applying Run-Time
Monitoring to the Deep-Impact Fault Protection Engine,” 28th
Annual NASA Goddard Software Engineering Workshop (Dec.
2003):127-133.

[Feather, 2001] Feather, Martin S. and Benjamin Smith. 2001. “Automatic
Generation of Test Oracles – From Pilot Studies to Application,”
Automated Software Engineering (Kluwer); 8 no 1 (January 2001):
31-61.

[Feather, 2001] Feather, Steven Fickas S. and N-A Razermera-Mamy. 2001.
“Model-Checking for Validation of a Fault Protection System,”
IEEE 6th International Symposium on High Assurance Systems
Engineering (October 2001): 32-41.

[Feather, 2004] Feather, Martin S. 2004. “Towards a Unified Approach to the
Representation of, and Reasoning with, Probabilistic Risk
Information about Software and its System Interface,” 15th IEEE
International Symposium on Software Reliability Engineering
(November 2004): 391-402.

[Fiorucci, 2000] Fiorucci, T.R, D.R. Lakin II and T.D. Reynolds, T.D. 2000.
“Advanced Engine Health Management Applications of the SSME
Real-Time Vibration Monitoring System,” 36th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, AIAA 2000-3622 (July 2000).

[Fudge, 2003] Fudge, M., T. Stagliano and S. Tsiao. 2003. “Non-Traditional
Flight Safety Systems & Integrated Vehicle Health Management
Methods: Descriptions of Proposed & Existing Systems and
Enabling Technologies & Verification Methods,” Final Report for
the Office of the Associate Administrator for Commercial Space
Transportation, FAA, Section AST-300. August 26, 2003.

[Giannakopoulou , 2001] Giannakopoulou, Dimitra and John Penix.
2001. “Component Verification and Certification in NASA
Missions,” 4th ICSE Workshop on Component-Based Software
Engineering (May 2001).

[Gundy-Burlet , 2008] Gundy-Burlet, Karen et al. 2008. “Parameteric Analysis of Antares
Re-Entry Guidance Algorithms using Advanced Test Generation
and Data Analysis,” 9th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (February 2008).

[Hall, 1983] Hall, Fred M., Raymond A. Paul and Wendy E. Snow. 1983.
“Hardware/Software FMEA”, Annual Reliability and
Maintainability Symposium (January 1983): 320-327.

[Hayhurst, 2001] Hayhurst, K. et al. 2001. “A practical Tutorial on Modified
Condition / Decision Coverage,” NASA/TM-2001-210876, 2001.
http://www.cs.virginia.edu/~jck/cs651/papers/NASA-2001-
tm210876%20MCDC.pdf

[James, 1990] James, M. and D. Atkinson. 1990. “Software for Development of
Expert Systems,” NASA Technology Briefs (1990) 14, no 6.

[Jiang, 2002] Jiang, Shenbing and Ratnesh Kumar. 2002. “Failure Diagnosis of
Discrete Event Systems with Linear-time Temporal Logic
Specifications,” IEEE Transactions on Automatic Control 49 no 6
(June 2004): 934-945.

[Johnson, 1998] Johnson, Leslie A. (Schad). 1998. DO-178B, “Software
Considerations in Airborne Systems and Equipment Certification”,
available at:
http://www.stsc.hill.af.mil/crosstalk/1998/10/schad.asp

[Knight, 1986] Knight, John C. and Nancy G. Leveson. 1986. “An experimental
evaluation of the assumption of independence in multiversion
programming,” IEEE Transactions on Software Engineering 12 no
1 (January 1986): 96-109.

[Leveson, 1995] Leveson, Nancy. 1995. Safeware, System Safety and Computers.
Addison-Wesley.

[Bin, 2003] Bin Li, Bin et al. 2003. “Integrating software into PRA,” 14th
International Symposium on Software Reliability Engineering
(Novemver 2003): 457 – 467.

[Lindsey, 2004] Lindsey, T. and C. Pecheur. 2004. “Simulation-Based Verification
of Autonomous Controllers with Livingstone PathFinder,” Tenth
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Springer LNCS 2988: 357-
371.

[Lindsey, 2003] Lindsey, A.E. and C. Pecheur. 2003. “Simulation-Based
Verification of Livingstone Applications,” Workshop on Model-
Checking for Dependable Software-Intensive Systems (June 2003).

[Lutz, 1991] Lutz, Robyn R. and Robert M. Woodhouse. 1991. “Bi-directional
Analysis for Certification of Safety-Critical Software,” 1st
International Software Assurance Certification Conference
(February 1999).

[Martin, 2003] Martin, Grant. & Sandeep Shukla. 2003. “Panel: hierarchical and
incremental verification for system level design: challenges and
accomplishments”, Formal methods and models for Co-Design
(June 2003): 97-99.

[Menzies, 2005] Menzies, Tim. and Charles Pecheur. 2005. “Verification and
Validation and Artificial Intelligence,” Zelkowitz, M. (ed.),
Advances in Computers, Volume 65. Elsevier.

[Meyer, 1993] Meyer, Claudia M. and June F. Zakrajsek. 1993. Rocket Engine
Failure Detection Using System Identification Techniques, NASA
Contractor Report 185259, AAIA-90-1993.

[Musa, 1998] John Musa. 1998. Software Reliability Engineering, McGraw-Hill,
New York.

[Napolitano, 1999] Napolitano, M. et al. 1999. “Application of a Neural Sensor
Validation Scheme to Actual Boeing 737 Flight Data” AIAA-
1999-4236, AIAA Guidance, Navigation, and Control Conference
and Exhibit, (August 1999): 9-11.

[Nelson, 2002] Nelson, Stacy and Charles Pecheur. 2002. “Formal Verification of
a Next-Generation Space Shuttle,” FAABS 2002: Second
Workshop on Formal Aspects of Agent-Based Systems, Springer
LNCS, vol. 2699 (October 2002): 53-67.

[Pecheur, 2000] Pecheur, Charles and Reid Simmons. 2000. “From Livingstone to
SMV: Formal Verification for Autonomous Spacecrafts,” 1st
Goddard Workshop on Formal Approaches to Agent-Based
Systems (April 2000): 5-7.

[Penix, 2998] Penix, John, Charles Pecheur and Klaus Havelund. 1998. “Using
Model Checking to Validate AI Planner Domain Models,” SEL'98:
23rd Annual Software Engineering Workshop, (December 1998).

[Pingree, 2002] Pingree, Paula et al. 2002. “Validation of Mission Critical
Software Design and Implementation using Model Checking”, The
21st Digital Avionics Systems Conference, 1 (October 2002): 6A4-
1 – 6A4-12.

[Qualtech, 2008] Qualtech Systems Inc. 2008 Web site. http://teamqsi.com/
[Rushby, 1991] Rushby, John. 1991. “Formal verification of algorithms for critical

systems,” Conference on Software for Critical Systems (1991): 1-
15.

[Rushby, 1993] Rushby, John. 1993. Formal Methods and the Certification of
Critical Systems, Technical Report CSL-93-7, Dec 1993, SRI
International, Menlo Park, CA.

[Sampath, 1995] Sampath, Meera et al. 1995. “Diagnosability of Discrete-Event
Systems,” IEEE Transactions on Automatic Control 40 no 9
(September 1995): 1555-1575.

[Schneider, 1998] Schneider, Francis et al. 1998. “Validating requirements for fault
tolerant systems using model checking,” 3rd International
Conference on Requirements Engineering (April 1998): 4-13.

[Schwabacher , 2008] Schwabacher, Mark and Robert Waterman. 2008. “Pre-Launch
Diagnostics for Launch Vehicles”, IEEE Aerospace Conference
(March 2008): 1-8.

[Tumer, 1999] Tumer, Irem and Anupa Bajwa. 1999. “A survey of aircraft
engine health monitoring systems,” AIAA-99-2528. 35th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference (June
1999).

[Verma, 2005] Verma, Vandi et al. 2005. “Plan Execution Interchange Language
(PLEXIL) for Command Execution,” International Symposium on
Artificial Intelligence, Robotics and Automation in Space
(iSAIRAS) (September 2005).

[Wasserman, 1997] Wasserman, Hal and Manuel Blum, M. 1997. “Software Reliability
via Run-Time Result-Checking,” JACM 44 no 6 (November
1997): 826-849.

[Williams, 1996] Williams, Brian, C. and P. Pandurang Nayak. 1996. “A Model-
based Approach to Reactive Self-Configuring Systems,” National
Conference on Artificial Intelligence: 971-978.

