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Abstract

Portfolio methods support the combination of different algorithms and heuristics, including stochastic
local search (SLS) heuristics, and have been identified as a promising approach to solve computation-
ally hard problems. While successful in experiments, theoretical foundations and analytical results for
portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the
role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explana-
tions (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm
for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initial-
ization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics),
thereby enabling new analytical and experimental results.

Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms in-
cluding SGS, thereby enabling us to analytically form expected hitting time results that explain empirical
run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio.
To further illustrate the portfolio approach, we consider novel additive search heuristics for handling
determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach
adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the
additive measure by studying the dramatic impact of zero entries in conditional probability tables on the
number of zero-probability explanations, which again complicates the search process. We consider the
relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization,
to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT
algorithms and their descendants. Utilizing our Markov chain framework, we show that expected hitting
time is a rational function - i.e. a ratio of two polynomials - of the probability of applying an additive
search operator.

Experimentally, we report on synthetically generated BNs as well as BNs from applications, and
compare SGS’s performance to that of Hugin, which performs BN inference by compilation to and
propagation in clique trees. On synthetic networks, SGS speeds up computation by approximately two
orders of magnitude compared to Hugin. In application networks, our approach is highly competitive in
Bayesian networks with a high degree of determinism. In addition to showing that stochastic local search
can be competitive with clique tree clustering, our empirical results provide an improved understanding
of the circumstances under which portfolio-based SLS outperforms clique tree clustering and vice versa.
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1 Introduction

In this article we study the problem of computing a most probable explanation (MPE) in Bayesian networks
[72]. Informally, an MPE is an instantiation of all non-evidence nodes in a BN such that no other instantiation
has greater probability. MPE computation is a problem that is common to probabilistic formulations
of diagnosis, image processing, error correction decoding, and genetic linkage analysis [22, 23, 49, 82, 83].
Ideally, one would prefer to use exact algorithms for MPE computation – for example algorithms such
as clique tree clustering [2, 45, 80], conditioning, [37, 71, 72], variable elimination [47, 86], or branch-and-
bound [51—53]. However, the MPE problem is computationally hard [1, 81], and this hardness manifests
itself in slow execution times even in relatively simple networks that are used in current applications. The
complexity of structure-based algorithms depends on the treewidth of a BN’s underlying graph or the optimal
maximal clique size of a BN’s induced clique tree [3, 16, 18]. Due to their very large treewidths or optimal
maximal clique sizes, exact algorithms have proven to be infeasible or impractical in many application BNs.
Because of the limitations of exact algorithms, along with the importance of the MPE problem in appli-

cations, the development of improved algorithms for MPE computation is of great interest. Stochastic local
search (SLS) algorithms have proven to be competitive in solving computationally hard problems including
satisfiability (SAT) [27, 35, 76, 78, 79], the most probable explanation [39, 41, 48, 55, 61], and the maximum a
posteriori (MAP) hypothesis [68, 69]. Unfortunately, the theoretical understanding of SLS algorithms has
been lagging [33], and despite recent progress [32, 58, 63] it is clear that further advances are needed. This
work is part of a larger research effort where the ultimate goal is the development of highly adaptive but
well-understood SLS algorithms, including SLS algorithms for MPE computation in BNs. Progress on such
adaptive SLS algorithms has already been made, for example in the areas of adaptive noise [20, 31, 54] and
learning predictive models [36,43,74,85]. In these adaptive SLS algorithms, there is a need to search in the
space of SLS search parameters in addition to the fundamental SLS search process for an MPE. In other
words, there is a two-level or two-step process: object-level SLS search, and metal-level search for approxi-
mately optimal SLS parameters that control the object-level SLS search process. To make the vision of this
two-level or two-step process a reality, we believe that an improved understanding of the object-level search
space is essential, hence we set in this paper out to provide such improved understanding in the context of
portfolio methods.
Portfolio methods support the combination of a wide range of different algorithms, and have been identi-

fied as a promising research direction [25,26,38,39,61,85]. This article provides an improved understanding
of the role of portfolios of heuristics in stochastic local search. Algorithmically, we introduce a portfolio-
based stochastic local search approach which utilizes an initialization portfolio and a search portfolio. Our
approach is implemented in the Stochastic Greedy Search (SGS) system; two SGS algorithms called Sim-
pleSGS and OperatorSGS are presented in this article. The OperatorSGS algorithm is a portfolio-
based [25,38,61,85] approach to MPE computation using SLS. It provides a flexible and general framework
for stochastic explanation initialization and search. Specifically, OperatorSGS allows us to combine dif-
ferent initialization operators (or initialization heuristics) and different search operators (greedy and noisy
heuristics). Given our portfolio approach, one does not need to take a winner-takes-all approach to these
different heuristics or operators. Instead, one can combine (and eventually adaptively tune) them according
to the problem instance and application-specific requirements at hand. Within this portfolio framework, we
make progress related to the use of a variety of different initialization and search algorithm operators. We
introduce a novel augmented random walk model (Definition 54) and show that it induces a Markov chain
(Theorem 55), thereby enabling us to analytically form expected hitting time results that parallel empirical
run time results [58]. For a specific BN, we show the benefit of using a homogenous initialization portfolio
(see Definition 56 and Theorem 58).
To illustrate the portfolio approach, we consider novel heuristics for handling determinism in BNs.1

Our approach, which we here carefully relate to MAXSAT, adds rather than multiplies probabilities when
computing the utility of an explanation, and we therefore call it additive utility. Quantitatively, we study the
impact of zero entries in CPTs on the number of zero-probability explanations, and show dramatic increases
in the probability of a randomly picked BN explanation being zero as a function of the probability of a CPT
entry being zero, the number of BN nodes, and the BN node state space size (Theorem 13). Gain (i.e., change
in utility) functions merely measure the progress made when one BN node’s state is flipped in an explanation.

1There are several alternative, very different approaches, to handling determinism. Arithmetic circuits handle determinism
very well [4, 7], as does branch-and-bound that explores an AND/OR search tree [51—53], and one can also carefully encode a
BN into a weighted MAXSAT problem instance [67, 75] and then use a weighted MAXSAT solver [19, 29, 42, 44, 46, 84]. Since
the main emphasis in this article is on the portfoilo approach to SLS, with determinism handling serving as an illustration, we
leave detailed comparison to these alternative approaches to future work.
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The traditional gain function, multiplicative gain, computes change in an explanation’s probability resulting
from a flip. We carefully formalize and analyze multiplicative and additive gain. We consider the relationship
between MAXSAT and MPE, and show that additive utility (or gain) is a generalization of MAXSAT utility
(or gain) from the GSAT andWalkSAT algorithms and their descendants [35,76,78,79] to the probabilistic
setting. Both gain functions are utilized in greedy and noisy search operators, which make up the search
portfolio, where the noisy operators are used to effectively escape local but non-global optima. Let pA
be the probability of selecting an operator that uses additive gain. Utilizing the Markov chain framework
mentioned above, we show that expected hitting time h(pA) is a rational function P (pA)/Q(pA) of pA, where
P (pA) and Q(pA) are polynomials (Theorem 60).

Empirically, the performance of SGS is compared to that of the state-of-the-art inference system Hugin,
which implements a clique (or join) tree algorithm [2,14,45]. The clique tree algorithm can be used to compute
either marginals [45] or MPEs [14], and is among the most well-known inference methods for Bayesian
networks. We experiment with Hugin and SGS on both synthetic and application BNs. Comparisons to
Hugin show that Stochastic Greedy Search performs significantly better for certain randomly generated
Bayesian networks as well as for partly deterministic Bayesian networks from applications. We utilize an
experimental paradigm for generating hard and easy synthetic BN instances [57, 62]. In a bipartite BN,
let V be the number of root nodes and let C be the number of leaf nodes. Synthetic bipartite BNs of
increasing hardness can be generated by increasing C while keeping V constant [55, 62]. Our results on
synthetic BNs generated in this way, and where root nodes have uniform distributions and leaf node are
or-nodes, are as follows: As the C/V -ratio increases, the measured run times of both Hugin and SGS
increase at an approximately exponential rate as a function of increasing C/V -ratio. However, given a
suitable measure of gain, and specifically additive gain, SGS is approximately two orders of magnitude
faster than Hugin. Beyond synthetic BNs, we also found that our algorithm is quite effective on application
networks with substantial determinism, and in many cases it performs comparably to or better than Hugin.
In this article we highlight two reasons for SGS’s success in application BNs, namely the ability to exploit
different search operators in OperatorSGS as well as the use of the additive measure of gain. (Another
significant component in the success of SGS is the stochastic initialization portfolio, including its dynamic
programming and forward simulation algorithms [61,63]. The heuristics in the initialization portfolio suggest
good starting points to the stochastic local search component of SGS; see also [41,68,69].)
The rest of this article is organized as follows. Section 2 introduces the problem of computing a most

probable explanation (MPE) as well as related results, definitions, and notation. Section 3 discusses measures
of utility and gain which form the basis of all local search algorithms, including SGS, and pays special
attention to the additive approach. In Section 4 we describe the overall structure of our stochastic local search
approach, SGS. We present two SGS algorithms, namely SimpleSGS and OperatorSGS, and also discuss
related research. Section 5 discusses analytical results. In Section 6 we turn to the experimental results of
the article: Section 6.1 presents results for synthetically generated Bayesian networks, while in Section 6.2
we discuss experimental results for application BNs. Section 7 discusses related work and compares it to
our two SGS variants. Section 8 concludes and discusses future work. This article extends and revises our
earlier reports on SGS [55, 61].

2 Preliminaries

This section briefly reviews some of the key definitions and results for Bayesian networks and MPE compu-
tation as they relate to our research. Let (X, W ) be a directed acyclic graph (DAG) with nodes X and
edgesW , and let Xi ∈X. We use the notation Π(Xi) = ΠXi to indicate the parents of Xi in the DAG, and
Ψ(Xi) = ΨXi to indicate the children of Xi. A Bayesian network (BN), formally introduced in Definition
1 below, represents a multi-variate probability distribution as a DAG, where the nodes represent random
variables.

Definition 1 (Bayesian network) A Bayesian network is a tuple β = (X, W , P ), where (X, W ) is a
DAG with an associated set of conditional probability distributions P = {Pr(X1 | ΠX1

), . . . ,Pr(Xn | ΠXn)}.
Here, Pr(Xi | ΠXi) is the conditional probability distribution for Xi ∈X. Further, let n = |X| and let πXi
represent the instantiation of the parents ΠXi of Xi. The independence assumptions encoded in (X, W )
imply the joint probability distribution

Pr(x) = Pr(x1, . . . , xn) = Pr(X1 = x1, . . . , Xn = xn) =

n∏
i=1

Pr(xi | πXi). (1)
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A conditional probability distribution Pr(Xi | ΠXi) is also known as a conditional probability table
(CPT). While BN nodes can be continuous, this article is restricted to the discrete case and we will take
“BN node”to mean “discrete BN node”. Suppose that a BN node X has states {x1, . . . , xm}. We then use
the notation ΩX = Ω(X) = {x1, . . . , xm}. For simplicity, but without loss of generality, we often use binary
nodes in the following, in which case a BN node X has |ΩX | = |X| = |{0, 1}| = 2 states.
A BN may be given evidence by clamping some of its nodes to their observed states. An instantiation

of the remaining nodes is an explanation, formally defined as follows.

Definition 2 (Explanation) Consider a BN β = (X, W , P ) with X = {X1, . . ., Xn} and evidence
e = {X1 = x1, . . ., Xm = xm} where m < n. An explanation x is defined as x = {xm+1, . . ., xn} =
{Xm+1 = xm+1, . . ., Xn = xn}.

When discussing an explanation x, the BN β is typically left implicit. One is often interested in computing
Pr(x | e). However, in order to simplify the exposition, we may consider Pr(y) = Pr(x, e), where y = x∪e,
instead of Pr(x | e). This does not fundamentally change the computation since Pr(y) = Pr(x, e) =
Pr(x | e) Pr(e).
Given evidence, one can perform various forms of BN inference. This article focuses on computing the

most probable explanation, which is defined as follows.

Definition 3 (Most probable explanation (MPE)) Computing a most probable explanation (MPE) in
a BN with evidence e = {X1 = x1, . . ., Xm = xm} is the problem of finding an explanation x∗ ∈ Ω(Xm+1)×
· · ·× Ω(Xn) such that Pr (x∗ | e) ≥ Pr (y | e), where y ∈ Ω(Xm+1)× · · ·× Ω(Xn) is any other explanation
in the BN. The set of the k most probable explanations is defined as X∗ = {x∗1, . . .,x∗k} where Pr (x∗ | e) =
Pr (x∗1 | e) = · · · = Pr (x∗k | e).

In other words, given evidence e, no other explanation has higher probability than x∗ ∈ X∗; it is
sometimes convenient to include e into an MPE and consider y∗ = x∗ ∪ e to be an MPE. Note that there
might be many explanations with the same probability, and for this reason we say “an”MPE rather than
“the”MPE.
In this article we emphasize the connection between the SAT and MPE problems and now introduce a

few relevant definitions.

Definition 4 (SAT, SAT problem) A satisfiability (SAT) formula φ = (x, q, c) is defined by V variables
x = {x1, . . ., xV }, a set of L literals q = {q1, . . ., qL}, where qi = x or qi = x̄ for x ∈ x, and C distinct
clauses c = {c1, . . ., cC}, where each clause consists of literals combined using the or (“∨”) connective. The
satisfiability (SAT) problem is to determine whether there is a truth assignment τ : x → {0, 1}V that makes
cj = 1 for all 1 ≤ j ≤ C. Such an assignment is called a satisfying (truth) assignment (or model).

SAT is a celebrated NP-complete decision problem, and the SAT problem and algorithms for solving it
are of central importance both in theoretical computer science and in artificial intelligence [27,65,77,79]. In
a SAT problem, we have ci = 1 if the i-th clause is satisfied; ci = 0 if it is not satisfied. The SAT utility
measure is

∏C
i=1 ci. Consequently,

∏C
i=1 ci = 1 for some truth assignment if the formula is satisfiable, else∏C

i=1 ci = 0 for all variable assignments.
The SAT utility measure is not very useful for hill-climbing purposes, since it does not distinguish between

few and many satisfied clauses. The MAXSAT utility measure is therefore often used, and one considers the
MAXSAT optimization problem.

Definition 5 (MAXSAT, MAXSAT utility) Let φ = (x, q, c) be a SAT formula where C = |c|. The
MAXSAT utility measure US of φ, given a truth assignment τ , is the number of true clauses in φ: US (τ ) =
|{ci ∈ c | ci = 1 and 1 ≤ i ≤ C}|. The maximum satisfiability problem (MAXSAT) is to find a truth assign-
ment τ ∗ such that the number of true clauses US (τ ) in φ is maximized.

MAXSAT defines an optimization problem where one optimizes the number of satisfied clauses,
∑C
i=1 ci.

Note that
∑C
i=1 ci = C for some truth assignment if the formula is satisfiable, else

∑C
i=1 ci < C for all variable

assignments. If
∑C
i=1 ci = C is reached in MAXSAT optimization, one has also solved the underlying SAT

problem. Since SAT is NP-complete, clearly MAXSAT is NP-complete as well, however MAXSAT is much
more useful for hill-climbing. A generalization of MAXSAT exists, called weighted MAXSAT, in which each
clause ci has a weight wi, and the task is to optimize the weight over all clauses. Weighted MAXSAT
optimization and MPE computation are closely related; see Section 7.
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A key contribution in this article, see Section 3, is how the MAXSAT utility measure can be generalized
to an additive BN measure which is then utilized in MPE search. In order to set the stage we introduce
these definitions.

Definition 6 (SAT-equivalent, SAT-like) A BN β is SAT-equivalent to a SAT formula φ (and vice
versa) if there is a one-to-one mapping between β and φ. A BN β is SAT-like if there exists a formula φ
that is SAT-equivalent to β.

The constructions underlying Definition 6 are well-known [8, 73, 81] and we do not discuss details in
this article. Along similar lines, one can define an explanation x in a BN β as SAT-equivalent to a truth
assignment τ in a formula φ, where β is SAT-equivalent to φ and there is a one-to-one mapping between
the individual assignment of states to nodes in x and the assignments of truth values to individual variables
in τ . Here, a special case of great interest occurs when an MPE x = x∗ is SAT-equivalent to a satisfying
assignment τ = τ ∗.

We now introduce a few additional SAT-related concepts. Below, τ maps one variable x to {0, 1} while
τ maps all V variables x in φ to {0, 1}V . The notation τ(x) means that variable x’s truth assignment τ(x)
is inverted; τ(x) = 1 iff τ(x) = 0 and τ(x) = 0 iff τ(x) = 1.

Definition 7 In a SAT problem instance φ = (x, q, c) with truth assignment τ , let x ∈ x. The notation
τ̄ (φ, x, τ ) (often abbreviated τ̄ ) is a new truth assignment with τ̄(x) = τ(x) and where for all y ∈ x − {x},
τ̄(y) = τ(y). We say that τ̄ (φ, x, τ ) is flipped compared to τ .

SAT is relevant to the study of BNs for several reasons. First, BNs often have many deterministic nodes,
of which the or- and and-nodes found in SAT are special cases. For examples of application BNs with many
deterministic nodes, we refer to Figure 3. Second, significant progress on stochastic local search to solve the
satisfiability problem has been made in recent years [27,35,76,78,79]. Of particular relevance to our work is
(i) the use of the GSAT measure of gain, which is based on the MAXSAT utility measure, and (ii) the use
of noise as a mechanism of escape from local optima. In the research reported here, we have extended the
MAXSAT utility measure and the GSAT measure of gain to the probabilistic setting, giving the additive
utility measure and the additive measure of gain respectively.
It can be shown by reduction from SAT that MPE computation is NP-hard [81]. Approximating an

MPE to within a constant ratio-bound has also been proven to be NP-hard [1]. In fact, the problem is much
harder, since the evaluation problem is #P complete [73]. Since inference in BNs is computationally hard
and the MPE problem is important in applications, we believe that it is important to study SLS algorithms
for MPE computation, where estimates of x∗ are computed.

Definition 8 (MPE (lower-bound) estimate) Let x∗ be an MPE given evidence e. A best-effort esti-
mate of x∗ is denoted x̂∗; if Pr(x̂∗ | e) ≤ Pr (x∗ | e) then x̂∗ is a lower-bound estimate.

Generally, lower-bound MPE estimates x̂∗ are computed using SLS algorithms. In the remainder of this
article, our main focus is on SLS algorithms as Las Vegas algorithms [35]. In other words, we typically assume
that Pr (x∗ | e) or Pr(x∗) is a known SLS input parameter, therefore SLS terminates once an x∗ ∈ X∗ has
been found. Las Vegas algorithms are used in theoretical computer science as well as in SLS research [25,35],
and enables our scientific study of SLS algorithms as further discussed in Section 5.1.
SLS algorithms can be analyzed using discrete time Markov chains with discrete state spaces [32, 58].

Only time-homogenous Markov chains with finite state spaces will be considered in this article. A Markov
chain is a stochastic process (At, t ≥ 0) = (A0, A1, . . .) induced by a 3-tuple M = (S, V, P), where S is
k = |S| discrete states, a k-dimensional vector V = (π1, . . ., πk) represents the initial probability distribution,
and a k × k matrix P represents the transition probabilities. As we will elaborate in Section 5,M is given
by the objective function, the SLS algorithm, and the SLS algorithm’s parameter settings.
InM, some states O ⊂ S represent optimal states, and we introduce the following definition.

Definition 9 (SLS model) Let M = (S, V, P) define a Markov chain. Further, assume an objective
function f : S → R and an optimal objective function value f∗ ∈ R that defines optimal states O = {s | s ∈ S
and f(s) = f∗}. The 2-tuple (M, O) defines an SLS model.

The objective function f and the optimal states O are independent of the SLS algorithm and its pa-
rameters; finding an s∗ ∈ O is the purpose of SLS search including MPE computation. We emphasize
maximization in the form of MPE computation in this article, therefore f in Definition 9 is given by Pr (x)
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in Definition 1. We often consider BNs with binary nodes. In this case, explanations can be represented as
bitstrings of length n, b ∈ {0, 1}n, and s∗ = b∗ ∈ {0, 1}n.
Consider an SLS model (M,O). A hitting time analysis ofM, known from Markov chain theory, gives

the expected number of search steps needed to reach s∗ ∈ O. Hitting times are based on first passage times.

Definition 10 (First passage time) Consider an SLS model (M,O) and let si ∈ S where S is M’s
states. The first passage time T , a random variable, into s∗ ∈ O is given by T = min(j ≥ 0 : Aj ∈ O}. The
expected value of T , given initial state A0 = si, is defined as

mi,O := E(T | A0 = si).

Definition 10 covers |O| ≥ 1 and thus includes first passage time into multiple optimal states. For
simplicity we emphasize the one-state case |O| = 1 here, with O = {s∗} = {sk}. First passage time now
simplifies to T = min(j ≥ 0 : Aj = sk}, and mi,O simplifies to mi,k.
Using conditional expectations, one obtains from Definition 10 the following well-known result.

Theorem 11 (Expected hitting time) LetM be a Markov chain with state space S = {s1, . . ., sk} and
first passage time T (into s∗ = sk). The expected hitting time h is then

h :=

k∑
i=1

E(T | A0 = i) Pr(A0 = i) =

k∑
i=1

miπi. (2)

Expected hitting time can be used to analyze the expected time to reach an optimal state s∗ ∈ O in
an SLS model (M, O), and is often closely related to the observed mean run time for an SLS algorithm.
For SLS, the hitting time h is with respect to some state in O and depends on the algorithm’s input
parameters including the problem instance. Previously, we have studied hitting time h(pN ), where pN is the
noise probability [58]. By varying pN , we have constructed expected hitting time curves that are analytical
counterparts to experimental noise response curves [58]. These expected hitting time curves provide an
analytical foundation for finding optimal noise level p∗N . This noise level is optimal in the sense that it
minimizes expected hitting time, or p∗N = arg min0≤p≤1 h(p).

3 Measures of Utility and Gain

Stochastic local search algorithms are based on evaluating the absolute goodness (utility) of an explanation
and relative goodness (gain) of an explanation compared to explanations that are neighbors in the search
space. Gain is, informally speaking, change in utility from one explanation x to another explanation x′. The
explanation x′ may be derived from x, for example by changing (flipping) one node’s state.
Measures of utility and gain play essential roles in any local search algorithm, including SGS, and this

section focuses on these matters. We first present measures of utility in Section 3.1, then measures of gain in
Section 3.2. We highlight two different approaches, the multiplicative approach and the additive approach.
While the multiplicative approach is natural, the additive approach is related to MAXSAT and turns out to
give excellent performance in partly deterministic BNs. The basis for how the measures of gain are utilized
in stochastic local search is described in Section 3.3.
Readers interested in our portfolio approach but not in our approach to handling zeros in BNs may want

to skip this section.

3.1 Measures of Utility

A utility measure (or function) is also known as a cost function, an energy function, a fitness function, or an
objective function. We introduce the notion of a utility measure U(x), where x is an explanation in a BN.

3.1.1 Multiplicative Utility

As one might expect, the definition of a joint probability from Equation 1 is used as a utility measure in
SLS. For purposes of notational convenience and uniform treatment in our SLS algorithms we also consider
it a multiplicative utility UM .
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Figure 1: The probability of a randomly picked BN explanation x being zero, or y = Pr(UM (x) = 0), as a
function of varying BN size n (along the x-axis), CPT entry zero probability ρ, and BN node state space size
w. The curves are for varying ρ, with ρ = 0.1 (curve indicated by blue diamonds), ρ = 0.5 (curve indicated
by black solid line), and ρ = 0.9 (curve indicated by green dashed line). The BN node state space size is
different in these two panels. Left panel: State space size w = 2; Righ panel: State space size w = 8.

Definition 12 (Multiplicative utility) Let x = (y, e) be an explanation in a BN with n nodes and
evidence e. The multiplicative utility is defined as

UM (x) = Pr(x) =

n∏
i=1

Pr(xi | π(Xi)). (3)

While multiplicative utility is a natural utility measure, it does have limitations, in particular in so-
called partly deterministic BNs. These are BNs with many zeros in their CPTs and consequently many
explanations x with UM (x) = Pr(x) = 0.
To obtain further insight into partly deterministic BNs, suppose that zeros are assigned CPT entries in an

existing BN according to the following randomized algorithm. The algorithm is controlled by a probability
parameter ρ, where 0 ≤ ρ ≤ 1 (see [21] for details). With the exception of the last entry in a CPT column, ρ is
the probability that a CPT entry is set to zero. Specifically, ρ controls the setting of zeros in the CPT entries
of a BN node in the following manner. We assume a random number generatorRandom(a, b) that generates a
real number r, where a ≤ r ≤ b, uniformly at random. Let V be an arbitrary non-root node in the BN, and let
y be an arbitrary instantiation of parent nodes Y = Π(V ). The algorithm sequentially assigns probabilities
to V ’s states, given y, and distinguishes these two cases. Case 1 is for a state vi ∈ ΩV that is not the last
state of V : If Random(0, 1) < ρ then put Pr(V = vi | Y = y) = 0, else put Pr(V = vi | Y = y) > 0. Case 2
is for the state v|V | ∈ ΩV that is the last state: Let Pr(V = v|V | | Y = y) = 1−

∑|V |−1
i=1 Pr(V = vi | Y = y).

The situation where V is a root node in the BN is handled in a similar manner.
For the above randomized algorithm, the following theorem holds.

Theorem 13 Consider a BN β with n nodes, with w = Ω(V1) = · · · = Ω(Vn), and where CPTs are set
according to the above randomized algorithm. Let x be an explanation picked uniformly at random in β.
Then

Pr(UM (x) = 0) = 1−
(

1− w − 1

w
× ρ
)n

. (4)

This theorem is a slight variation on a result in [21]. Figure 1 illustrates (4), and clearly shows the rapid
speed at which the probability Pr(UM (x) = 0) grows, for an explanation x, with growing BN size n and
probability parameter ρ. The slowest growth for Pr(UM (x) = 0) in Figure 1 is for w = 2 and ρ = 0.1, where
for n = 10 we have Pr(UM (x) = 0) ≈ 0.4. The fastest growth, on the other hand, takes place for w = 8 and
ρ = 0.9, where already for n = 10 we have Pr(UM (x) = 0) ≈ 1.0. In other words, almost all explanations
picked uniformly at random have zero probability or UM (x) = 0. Since most application BNs of interest
contain substantially more than n = 10 nodes, the effect of zeros in CPTs is often much worse than indicated
by these two examples.
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As presented in Table 3, a large percentage of zeros can often be found in CPTs of application BNs.
Theorem 13 suggests that in such BNs, if an explanation x is picked uniformly at random, UM (x) =
Pr(x) = 0 with high probability. Further, by the SAT reduction it is NP-hard to find an explanation x such
that Pr(x) > 0 [73, 81]. The case UM (x) = Pr(x) = 0 therefore presents a serious complication for the SLS
approach to computing MPEs. With a large part of the search space of explanations equal to zero, there is
often no gradient to hill-climb for an SLS algorithm using UM . This limitation of the multiplicative measure
leads us to the additive approach, which we discuss below.2

3.1.2 Additive Utility

Due to the limitations of multiplicative utility, we now consider a complementary utility measure, namely
additive utility UA [55, 61]. This utility measure is based on the MAXSAT utility measure, which was used
in the seminal GSAT family of algorithms [78,79].

Definition 14 (Additive utility) Let x = (y, e) be an explanation in a BN with n nodes and evidence e.
The additive utility is defined as

UA(x) =

n∑
i=1

Pr(xi | π(Xi)). (5)

Additive utility clearly avoids multiplicative utility’s problem with zeros as discussed above in Section
3.1.1. The detailed investigation and use of the additive utility measure in BN inference is, to our knowledge,
a novel aspect of our research as reported in this article.
We provide formal and experimental arguments in support of additive utility and gain in the following.

First, as shown in Theorem 15 below, additive utility is a generalization of MAXSAT utility in the following
sense. MAXSAT utility adds the number of satisfied CNF clauses [77, 78], given a truth assignment to
the logic variables. In a SAT-like BN, additive utility adds the probabilities of root and leaf nodes, given
an instantiation of root nodes (which correspond to SAT variables) and clamping of the leaf nodes (which
correspond to SAT clauses) to 1. Second, additive utility is an approximation to multiplicative utility.
(Formal results concerning the relationship between additive gain and multiplicative gain are provided later
in Section 3.) Third, it turns out that additive utility and gain give excellent empirical results in certain
BNs as reported in Section 6.2 and Section 6.1.

Theorem 15 (Generalization of MAXSAT) Let φ = (y, q, c) be a SAT problem instance with |y| = V ,
|c| = C, and n = C + V . Let β = (X,W ,P ) be a Bayesian network that is SAT-equivalent to φ and with
leaf nodes clamped, i.e. e = {X1 = 1, . . . , XC = 1}. Let τ be a truth assignment to the logic variables
y = {y1, . . . , yV } in φ and let x = {XC+1 = xc+1, . . . , Xn = xn} be an equivalent explanation over the V
root nodes in β. Then US (τ ) = k if and only if3

UA(x) = k +
V

2
. (6)

Proof. Case (⇐): Consider a SAT-equivalent BN β with an explanation x, and suppose that UA(x) =
k + V

2 . Now suppose that β has n nodes {X1, . . . , Xn}, and form

UA(x) =

n∑
i=1

Pr(Xi = xi | π(Xi)).

Since β is SAT-equivalent to some formula φ, β is bipartite with V root nodes (corresponding to variables
in φ) and C = n − V leaf nodes (corresponding to clauses in φ). We decompose the additive utility UA(x)
accordingly to

UA(x) =

C∑
i=1

Pr(Xi = xi | π(Xi)) +

n∑
i=C+1

Pr(Xi = xi), (7)

2 In addition, this analysis underlines the importance of related work on handling determinism, for example by means of
compilation into arithmetic circuits [4] or by encoding BNs into weighted MAXSAT problem instances and then apply weighted
MAXSAT solvers [67, 75].

3Recall that Us is MAXSAT utility; see Definition 5 for the formal definition.
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where {XC+1, . . . , Xn} are root nodes and have no parents. By construction, the V = n−C root nodes are
binary and each root node state has probability mass 1

2 [8, 73, 81]. Since there are V = n − C of them we
obtain for the second term in (7)

n∑
i=C+1

Pr(Xi = xi) =

V∑
j=1

Pr(Xj+C = xj+C) =
V

2
. (8)

Clearly, (7) can be written as

C∑
i=1

Pr(Xi = xi | π(Xi)) = UA(x)−
n∑

i=C+1

Pr(Xi = xi) = k, (9)

where the last equality follows from UA(x) = k + V
2 and (8). Now, in β, C leaf nodes are being clamped as

follows: e = {X1 = 1, . . ., XC = 1}. Without loss of generality we assume a suitable ordering, and from (9)
we know that for explanation x the leaf nodes in β look like this:

Pr(X1 = 1 | πX1
) = 1, . . . ,Pr(Xk = 1 | πXk) = 1,Pr(Xk+1 = 1 | πXk+1) = 0, . . . ,Pr(XC = 1 | πXC ) = 0;

Due to the equivalence between explanations in β and truth assignments in φ, there is an assignment τ for
φ that is SAT-equivalent to explanation x. And from the above it follows that exactly k ≤ C clauses are
satisfied in φ under τ , or US(τ) = k. Case (⇒) is similar, giving the desired result.
While the MAXSAT measure US applies to the variables in a SAT formula, the additive measure UA

applies to the full explanation in a BN, with BN nodes in a SAT-like BN corresponding to both variables
and clauses in the SAT-equivalent formula. More importantly, additive utility is not restricted to the logical
setting as MAXSAT is. The additive measure UA can therefore be applied in all BNs, not only in SAT-like
BNs.
Even though the UA measure clearly does not compute an explanation’s probability, it is very useful

for the special but important case of deterministic BN nodes. As already noted, surprisingly many BNs
from applications have substantial deterministic fragments. Examples of such partly deterministic BNs are
SAT-like BNs as discussed above (with or-nodes), error correction decoding BNs (with xor-nodes) from
information theory [22,49], and other BNs from applications – see Table 3.

3.2 Measures of Gain

For an explanation x′, a measure of gain, say ∆U , simply measures change in utility U compared to another
explanation x. When a node X is flipped in an explanation x, it has a localized impact in the BN at hand.
The following definition introduces a vocabulary for such localized changes. To simplify the exposition, we
often assume |ΩX | = 2 in the remainder of this section; this can easily be generalized to |ΩX | ≥ 2.

Definition 16 (Flipped node, flipped explanation) Consider an instantiated BN node Xi = xi. If one
puts Xi = x̄i, where x̄i = 0 if xi = 1 and x̄i = 1 if xi = 0, then the node is flipped (from Xi = xi). An
explanation x′ is flipped from another explanation x if at least one node Xi has Xi = xi in x while Xi = x̄i
in x′.

We note that the terminology “flipping” does not imply that CPTs are being changed – we are not
performing machine learning but rather search.
In the following definition, the notation x[Xi = xi] means that the current state of the BN node Xi is xi

in the explanation x; no changes are made. The notation x′ = x[Xi ← x̄i], on the other hand, means that
Xi (which was assigned state xi in x) is now, after the assignment Xi ← x̄i, assigned state x̄i in x′. This is
similar to assignment in programming languages.

Definition 17 (One-flipped) An explanation x′ = {Xm+1 = xm+1, . . . , Xi = x̄i, . . . , Xn = xn} is one-
flipped from an explanation x = {Xm+1 = xm+1, . . . , Xi = xi, . . . , Xn = xn} if exactly one node, here the i-th
node, is flipped. For one-flipped explanations the notation x′ = x[Xi ← x̄i], where x′ is the new explanation,
is also used. A one-flipped parent instantiation, denoted π̄X , means that some node Y ∈ ΠX has its state
flipped from y to ȳ in X’s parent instantiation πX .

At the core of SLS algorithms is an evaluation of whether the state of a node Xi should be flipped from
xi to x̄i, leading to a corresponding one-flipped change in explanation from x[Xi = xi] to x[Xi ← x̄i]. These
evaluations are based on the concept of gain. We now discuss multiplicative gain, which is derived from
multiplicative utility.
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3.2.1 Multiplicative Gain

The multiplicative gain is obtained as follows. Let x be the explanation before flipping, x′ the explanation
after flipping some number of nodes. A measure of the goodness of those flips is introduced in the following
definition.

Definition 18 (Multiplicative gain, one-flip multiplicative gain) Let x and x′ be explanations, as-
sume that UM (x) > 0, and suppose that we flip from x to x′. The multiplicative gain ∆UM (x,x′) is defined
as

∆UM (x,x′) =
UM (x′)

UM (x)
. (10)

Suppose that xi,k ∈ ΩXi , xi,j ∈ ΩXi , and x[Xi = xi,k]. The general case of one-flipping x’s Xi from xi,k to
xi,j, where j 6= k, is defined as

∆UM (x, xi,j) =
UM (x[Xi ← xi,j ])

UM (x[Xi = xi,k])
. (11)

Definition 19 (Binary one-flip multiplicative gain) Assume that Xi is binary, x[Xi = xi], and let
x′ = x[Xi ← x̄i]. Binary one-flip multiplicative gain is then defined as

∆UM (x, x̄i) =
UM (x′)

UM (x)
=
UM (x[Xi ← x̄i])

UM (x[Xi = xi])
. (12)

We now show how multiplicative gain computation can be simplified compared to the above definitions.

Theorem 20 (One-flip multiplicative gain) Let x and x′ be explanations such that x′ = x[Xi ← x̄i].
Further, let C = ΨXi , let Cj ∈ C, and let π(Cj) ⊆ x (respectively π̄(Cj) ⊆ x′) be the instantiation of all
parent nodes for children of Xi before (respectively after) a one-flip of Xi. Suppose that UM (x) > 0. The
one-flip multiplicative gain ∆UM (x, x̄i) is

∆UM (x, x̄i) =
Pr(x̄i | π(Xi))×

∏
Cj∈C Pr(Cj = cj | π̄(Cj))

Pr(xi | π(Xi))×
∏
Cj∈C Pr(Cj = cj | π(Cj))

, (13)

with Pr(xi | π(Xi))×
∏
Cj∈C Pr(Cj = cj | π(Cj) > 0.

Proof. We start with the definitions of multiplicative gain and utility, obtaining

∆UM (x, x̄i) =
UM (x[Xi ← x̄i])

UM (x)
=

Pr(x[Xi ← x̄i])

Pr(x)
. (14)

We now considerXi’s childrenC = ΨXi . Let Y be the BN nodes other thanXi andC: Y = V −({Xi} ∪C),
and rewrite Equation 14 as

∆UM (x, x̄i) =
Pr(Xi = x̄i | π(Xi))×

∏
Cj∈C Pr(Cj = cj | π̄(Cj))×

∏
Y ∈Y Pr(Y = y | π(Y ))

Pr(Xi = xi | π(Xi))×
∏
Cj∈C Pr(Cj = cj | π(Cj))×

∏
Y ∈Y Pr(Y = y | π(Y ))

.

Since only one node Xi is flipped (from xi to x̄i), we can exploit the Markov blanket locality of the BN and
only need to consider the CPT in Xi itself as well as CPTs for children C, and obtain

∆UM (x, x̄i) =
Pr(Xi = x̄i | πXi)×

∏
Cj∈C Pr(Cj = cj | π̄(Cj))

Pr(Xi = xi | πXi)×
∏
Cj∈C Pr(Cj = cj | π(Cj))

.

This is exactly the multiplicative gain∆UM (x, x̄) in Equation 13. Obviously, since by assumption UM (x) > 0
it is clear that Pr(xi | π(Xi))×

∏
Cj∈C Pr(Cj = cj | π(Cj)) > 0 as well.

Note that the computation of Pr(x′) of a flipped explanation can be expressed as taking the probability
of the old explanation, Pr(x), and multiplying it with the gain from Equation 10, giving

Pr(x′) = ∆UM (x,x′) Pr(x). (15)
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We typically restrict ourselves to the one-flipped case in this article, and consequently have x′ = x[Xi ← x̄i]
and thus obtain

Pr(x′) = Pr(x[Xi ← x̄i]) (16)

= ∆UM (x, x̄i) Pr(x)

=
Pr(Xi = x̄i | πXi)×

∏
Cj∈C Pr(Cj = cj | π̄(Cj))

Pr(Xi = xi | πXi)×
∏
Cj∈C Pr(Cj = cj | π(Cj))

Pr(x).

Especially when the number of nodes n is large, using (16) iteratively rather than evaluating all of x′ to
compute Pr(x′) provides substantial computational savings.
In the use of multiplicative gain in SGS and other SLS algorithms there is a slight but crucial complication

in that multiplicative gain is not defined, according to Definition 18, if the denominator UM (x) = 0. In
practice, UM (x) = 0 is very common in partly deterministic BNs. We discuss how this can be handled in an
ad-hoc manner in SGS in Section 4.1. However, this limitation of UM (x) also motivates our investigation
of additive gain which we turn to now.

3.2.2 Additive Gain

The assumption UM (x) = Pr(x) > 0 made for multiplicative gain in Equation 10 is sometimes not realistic
and leads us to introduce additive gain based upon additive utility.

Definition 21 (Additive gain, one-flip additive gain) Let x and x′ be explanations. The additive gain
∆UA(x,x′) is defined as

∆UA(x,x′) = UA(x′)− UA(x). (17)

Suppose that xi,k ∈ ΩXi , xi,j ∈ ΩXi , and x[Xi = xi,k]. The general case of one-flipping x’s Xi from xi,k to
xi,j, where j 6= k, is defined as

∆UA(x, xi,j) = UA(x[Xi ← xi,j ])− UA(x[Xi = xi,k]). (18)

Definition 22 (Binary one-flip additive gain) Assume that Xi is binary, x[Xi = xi], and let x′ =
x[Xi ← x̄i]. Binary one-flip additive gain is then defined as

∆UA(x, x̄i) = UA(x′)− UA(x) = UA(x[Xi ← x̄i])− UA(x[Xi = xi]).

The additive gain is well-defined in cases where the multiplicative gain is not. As a consequence, we can
in the SGS implementation of additive gain computation (see Figure 4) handle the case Pr(x) = 0 without
complicating the stochastic local search algorithm (see Figure 3) or changing the CPT entries (see [67]) as
has been done when using multiplicative gain. As we will see in experiments, additive gain proves useful as
a complement to multiplicative gain.

Theorem 23 (One-flip additive gain) Let x and x′ be explanations such that x′ = x[Xi ← x̄i]. Further,
let C = ΨXi , let Cj ∈ C, and let π(Cj) ⊆ x (respectively π̄(Cj) ⊆ x′) be the instantiation of all parent nodes
for children of Xi before (respectively after) a one-flip of Xi. The one-flip additive gain ∆UA(x, x̄i) is then

∆UA(x, x̄i) = Pr(x̄i | πXi) +
∑
Cj∈C

Pr(Cj = cj | π̄(Cj))− Pr(xi | πXi)−
∑
Cj∈C

Pr(Cj = cj | π(Cj)). (19)

Proof. The one-flip additive gain can be derived in a manner similar to the proof of one-flip multiplicative
gain ∆UM (x, x̄) in Theorem 20.

3.2.3 Additive Gain and Multiplicative Gain

We have several arguments for why the use of additive gain may be productive. One reason, which is stated
formally in Theorem 27 below, relates additive gain and multiplicative gain. In order to improve readability,
we introduce in Definition 24 and Definition 25 alternative ways of expressing additive and multiplicative
gains when flipping a node Xi with children C.
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Definition 24 (Simple additive gain notation) Let α = |C| + 1 and put in Theorem 23: p1 = Pr(x̄k |
πXk),

∑α
i=2 pi =

∑
Cj∈C Pr(Cj = cj | π̄(Cj)), q1 = Pr(xk | πXk), and

∑α
i=2 qi =

∑
Cj∈C Pr(Cj = cj |

π(Cj)). This gives the following simplified notation for additive gain:

∆UA(x, x̄k) =

α∑
i=1

pi −
α∑
i=1

qi.

Definition 25 (Simple multiplicative gain notation) Let |C| = α + 1 and put in Theorem 20: p1 =
Pr(x̄k | πXk),

∏α
i=2 pi =

∏
Cj∈C Pr(Cj = cj | π̄(Cj)), q1 = Pr(xk | πXk), and

∏α
i=2 qi =

∏
Cj∈C Pr(Cj = cj |

π(Cj)). This gives the following simplified notation for multiplicative gain:

∆UM (x, x̄k) =

α∏
i=1

pi
qi
, (20)

again under the assumption
∏α
i=1 qi > 0.

The following fact follows easily from the definitions of ∆UA and ∆UM .

Proposition 26 Let x and x′ be explanations and suppose that ∆UM (x) > 0. ∆UA(x,x′) = 0 if and only
if ∆UM (x,x′) = 1.

We now turn to the more general case where ∆UA(x,x′) 6= 0 and ∆UM (x,x′) 6= 1.

Theorem 27 Consider the definitions of additive gain ∆UA(x, x̄k) =
∑α
i=1 pi −

∑α
i=1 qi and multiplicative

gain ∆UM (x, x̄k) =
∏α
i=1

pi
qi
from Definition 24 and Definition 25 respectively. Suppose that there exists

a permutation σ of {q1, . . . , qα}, denoted {qσ(1), . . . , qσ(α)}, and a permutation ρ of {p1, . . . , pα}, denoted
{pρ(1), . . . , pρ(α)}, such that

pρ(1) > qσ(1), . . . , pρ(κ) > qσ(κ), pρ(κ+1) = qσ(κ+1), . . . , pρ(α) = qσ(α) (21)

for some 1 ≤ κ ≤ α. If (21) is true and ∆UA(x,x̄k) > 0 then ∆UM (x,x̄k) > 1.

Proof. Since, by assumption, ∆UA(x,x′) =
∑α
i=1 pi−

∑α
i=1 qi > 0, we must have κ ≥ 1 in (21). For any

1 ≤ j ≤ κ, it is the case that pρ(j) > qσ(j) or in other words
pρ(j)
qσ(j)

> 1, giving also

κ∏
j=1

pρ(j)

qσ(j)
> 1. (22)

For the remaining elements in (21) we have pρ(κ+1) = qσ(κ+1), . . . , pρ(α) = qσ(α) and thus
α∏

j=κ+1

pρ(j)

qσ(j)
= 1. (23)

Going back to the definition (20) as well as (22) and (23) gives

∆UM (x, x̄k) =

α∏
i=1

pi
qi

=

κ∏
j=1

pρ(j)

qσ(j)

α∏
j=κ+1

pρ(j)

qσ(j)
> 1

as desired.
Theorem 27 justifies the use of ∆UA in MPE local search algorithms as follows: When flipping from

explanation x to explanation x′ – and if ∆UA(x,x′) > 0 as well as condition (21) holds during local search
– one is also making progress according to ∆UM .
Despite the result above, we emphasize that a positive additive gain ∆UA does not always imply an

increase in an explanation’s probability or multiplicative gain ∆UM . This is stated formally in the following
theorem.

Proposition 28 Let x be an explanation, and x′ be one-flipped from x. It is not always the case that if
∆UA(x,x′) > 0 then ∆UM (x,x′) > 1.

Proof. A counter-example in a BN with two nodes X1 and X2 is provided. The nodes both have
state space {0, 1}. Node X1 is X2’s parent. Let the CPTs be {Pr(X1 = 0) = 0.2, Pr(X1 = 1) = 0.8,
Pr(X2 = 0 | X1 = 0) = 0.4, Pr(X2 = 1 | X1 = 0) = 0.6, Pr(X2 = 0 | X1 = 1) = 0.05, Pr(X2 = 1 |
X1 = 1) = 0.95}. Now consider x={X1 = 0, X2 = 0} and x′ = {X1 = 1, X2 = 0}. In this case we have
∆UA(x,x′) = UA(x′)−UA(x) = (0.8+0.05)− (0.2+0.4) = 0.25 > 0 while ∆UM (x,x′) = UM (x′)/UM (x) =
(0.8× 0.05)/(0.2× 0.4) = 0.5 ≯ 1.
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3.2.4 Additive Gain and GSAT Gain

The reasoning behind the GSAT gain [78,79] and the additive gain shown in Equation 19 is similar. Reflecting
this, we introduce the following two definitions based on previous research [78,79].

Definition 29 (GSAT gain) Let τ and τ ′ be truth assignments. Then GSAT gain ∆US (τ , τ ′) is defined
as

∆US (τ , τ ′) = ∆US (τ ′)−∆US (τ ) .

The notation ∆US (τ , τ ′) is used for GSAT gain over truth assignments τ and τ ′ for SAT formulas,
similar to additive gain ∆UA(x,x′) for explanations x and x′ in BNs as introduced in Definition 21.

Definition 30 (One-flip GSAT gain) Let τ be a truth assignment to the variables y in a SAT instance
φ = (y, q, c). Suppose that τ is changed to τ̄ by flipping one variable y ∈ y from τ(y) to τ̄(y). Let
MakeCount(τ , ȳ) be the number of clauses satisfied (or made 1) by the flip of y. Let BreakCount(τ , ȳ)
be the number of clauses unsatisfied (or made 0) by the flip of y. One-flip GSAT gain is defined as

∆US (τ , ȳ) = MakeCount (τ , ȳ)−BreakCount (τ , ȳ) .

In a manner similar to GSAT gain’s success in SAT, our additive gain turns out to be powerful on
deterministic BN nodes, which occur in application BNs, as well as in SAT-like BNs which encode satisfiability
instances [8, 73]. In fact, GSAT gain is a special case of additive gain as expressed in the following result.

Theorem 31 Let BN β = (Y , W , P ) and suppose that SAT instance φ = (y, q, c) is SAT-equivalent to
β. Further, let two explanations x1 and x2 in β be SAT-equivalent to two truth assignments τ 1 and τ 2,
respectively, for φ. Then ∆UA(x1,x2) = ∆US (τ 1, τ 2).
Proof. Applying Theorem 15 to both x1 and x2 gives

UA(x1) = US(τ 1) +
V

2
(24)

UA(x2) = US(τ 2) +
V

2
, (25)

and when (24) is subtracted from (25) we obtain

UA(x2)− UA(x1) = US(τ 2)− US(τ 1). (26)

Simply substituting the definitions of ∆UA(x1,x2) (Definition 21) and ∆US (τ 1, τ 2) (Definition 29) into
(26) gives the desired result.

The following result follows easily from Theorem 31.

Corollary 32 Let ∆UA(x1, x̄i) be the additive gain obtained by flipping a root node Xi ∈ X in a SAT-like
BN β = (Y , W , P ). Assume that the SAT instance φ = (y, q, c) is SAT-equivalent to β and that τ 1 is
equivalent to x1. Further, let ∆US (τ 1, ȳi) be the GSAT gain obtained, under τ 1, by flipping the variable
yi ∈ y corresponding to the root node Xi ∈X. It is then the case that ∆UA(x1, x̄i) = ∆US (τ 1, ȳi).

Proof. Put x2 ← x1[Xi ← x̄i] and let τ 2 ← τ̄ (φ, yi, τ 1) (copying τ 1 into τ 2 but exchanging τ (yi) with
τ̄ (yi)). Observe that node Xi corresponds to the variable yi. Clearly, the constructed truth assignment τ 2
is equivalent to the constructed explanation x2, thus Theorem 31 applies and the result follows.

3.3 Criteria of Choice

In addition to measures of utility and gain, SLS algorithms including SGS need criteria of choice. These
criteria determine how an SLS algorithm decides, based on its gain computations, which BN node(s) to flip
next. Gains in a neighborhood around the current explanation x are computed and placed in a candidate
array (or set), defined as follows.

Definition 33 (Candidate array) Let x be an explanation and let gi,j = ∆U(x, xi,j) be the one-flip gain
obtained by flipping explanation x’s i-th node Xi from its k-th state k ∈ {1, . . . , |ΩXi |} to its j-th state, where
j ∈ {1, . . . , |ΩXi |} − {k}. The set of 3-tuples

A = {(Xi, xi,j , gi,j) | Xi is the i-th BN node, xi,j is Xi’s j-th state, and gi,j is the one-flip gain}

is denoted the candidate array.
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At present, gi,j = ∆U(x, xi,j) is either multiplicative gain∆UM (x, xi,j) (11) or additive gain∆UA(x, xi,j)
(18). The candidate array describes explanation x’s local neighborhood and is used to determine – using a
criterion of choice – which node to actually flip in x. We have investigated two types of criteria of choice,
the greedy criterion CG and the noisy criterion CN . Both criteria rely on the candidate array A and a tuple
of gains in A, formally G = (g1, . . . , gm).4

Definition 34 (Greedy criterion CG) The greedy (or maximizing) criterion CG(A) is defined as picking
a tuple with gain gmax such that gmax ≥ gj for all 1 ≤ j ≤ m. Among k such maximal tuples, CG(A) picks
the i-th tuple with probability pi = 1/k for 1 ≤ i ≤ k; all remaining tuples are picked with probability pi = 0
for k + 1 ≤ i ≤ m.

Definition 35 (Noisy criterion CN) The noisy (or stochastic) criterion CN (A) is defined as picking the
i-th tuple with gain gi, for 1 ≤ i ≤ m, according to the probability distribution

pi = gi

/
m∑
j=1

gj .

It is easy to see that
∑m

i=1
pi = 1 in Definition 34 and in Definition 35, thus these are both valid

probability distributions.
In SGS, the maximizing criterion in Definition 34 chooses greedily from the candidate array A and

yields classical steepest-ascent hill-climbing. The stochastic criterion in Definition 35 yields probabilistic
hill-climbing, since it probabilistically decides which node and state to flip to, using gain information in
the candidate array A. This stochastic criterion is closely related to the approach used in the stochastic
simulation algorithm [72] as well as to noise strategies such as “random walk”used in stochastic local search
for SAT [78].
A measure of gain, then, defines how to measure progress for candidate local search steps. A criterion

of choice, on the other hand, determines how to choose between the different candidate local search steps,
based on the candidate gains, using a maximizing criterion or a stochastic criterion.

4 Stochastic Local Search Algorithms

Stochastic greedy search (SGS) is a local search approach augmented with stochastic initialization and noise
steps. This section presents two variants of SGS, in order of increasing complexity and power. Section 4.1
presents simple SGS (or SimpleSGS), while Section 4.2 presents operator-based SGS (or OperatorSGS).
Among these, SimpleSGS is most similar to other SLS algorithms, and acts as a stepping stone to reach
OperatorSGS, our portfolio-based main contribution.

4.1 Simple Stochastic Greedy Search

SimpleSGS, which is presented in Figure 2, starts from an explanation x as constructed by an initialization
algorithm Initialize and performs one-flip local changes to x in order to improve the utility U(x). The
input parameter U controls which measure of utility and gain is used, and is currently either UM or UA.
The algorithm is related to the GSAT andWalkSAT algorithms [78,79] as well as other SLS algorithms as
discussed in Section 7: There is an outer loop for tries (or restarts), and an inner loop for flips (or stochastic
local search steps). The parameter MAX-FLIPS limits how many flips are done before a restart, while the
number of tries is upper bounded by MAX-TRIES.5 The parameter pN controls the noise level. Applying
noise amounts to taking a random step with probability pN , and taking a greedy step using the chosen
measure of gain with probability 1− pN . This is similar toWalkSAT with random noise [78]. SimpleSGS
terminates when an explanation x̂∗ is found such that U(x̂∗) ≥ Umin. Other termination criteria can easily be
incorporated into SimpleSGS. In particular, we have implemented the option of terminating after executing
SimpleSGS for a certain time period, even though this is not shown in Figure 2.
The SimpleSGS algorithm returns a two-valued tuple (b, x̂∗). The first value b is a Boolean value

signifying whether search was successful or not; the second value x̂∗ is the explanation with the highest

4For the binary case and when there is no evidence, m = n since an explanation in a BN with n nodes has n possible one-flip
gains.

5An alternative to the use of MAX-TRIES, not further pursued in this article, would be to use an upper bound on computation
time in wall-clock time. Further discussion of termination criteria can be found in Section 5.1.
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SimpleSGS(β, e, MAX-TRIES, MAX-FLIPS, pN , U , C, Umin)
Input: β Bayesian network

e evidence
MAX-TRIES maximum number of restarts
MAX-FLIPS maximum number of flips
pN noise probability
U measure of utility (and gain): UM (and ∆UM ) or UA (and ∆UA)
C criterion of choice: CG or CN
Umin utility lower bound for termination

Output: (b, x̂∗) b ∈ {true, false}; x̂∗ is a best effort estimate of MPE x∗
begin

x̂∗ ← Initialize(β, e) {initialization uniformly at random (similar to NU operator; Section 4.2)}
for i← 1 to MAX-TRIES {loop of tries}

x← Initialize(β, e) {initialization uniformly at random (similar to NU operator; Section 4.2)}
if (U(x) >U(x̂∗)) then x̂∗ ← x
if (U(x̂∗) > Umin) then return (true, x̂∗)
for j ← 1 to MAX-FLIPS {loop of flips}

Noise← (Randomize() < pN ) {decide between hill-climbing and noise, set Noise flag)}
if (not Noise) then {Noise = false, perform greedy hill-climbing step}

if (U = UM ) then A← ComputeMultiplicativeGain(β, e, x) {put UM gains in array A}
else A← ComputeAdditiveGain(β, e, x) {put UA gains in array A}
if (A = �) then

if (pN = 0) then break
else Noise← true {no candidates, apply noise}

else
(Xi, xi,j)← ChooseState(A, C) {pick node Xi and state xi,j from array A}

endif
endif
if (Noise) then {Noise = true, perform noise step}

Xi ← pick node Xi from β at random
xi,j ← pick state xi,j ∈ ΩXi − {xi,k} at random {avoid the current state xi,k}

endif
x← x[Xi ← xi,j ] {set Xi = xi,j in explanation x}
if (U(x) > U(x̂∗) then x̂∗ ← x
if (U(x̂∗) ≥ Umin) then return (true, x̂∗)

endfor {loop of flips}
endfor {loop of tries}
if (Umin = 0) then return (true, x̂∗) else return (false, x̂∗)

end

Figure 2: The simple stochastic greedy search algorithm SimpleSGS. The algorithm repeatedly interleaves
noise and greedy hill-climbing steps; hill-climbing is done by calling either ComputeMultiplicativeGain
or ComputeAdditiveGain. These functions return a candidate array A which contains candidates for the
next hill-climbing step. A candidate is a tuple (Xi, xi,j , gi,j), where Xi is the BN node potentially being
flipped, xi,j is a state of that node, and gi,j is the gain obtained by flipping Xi to xi,j . The ChooseState
function applies the criterion of choice C to pick a node Xi and state xi,j , which is then subsequently flipped
to.
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ComputeMultiplicativeGain(β, e, x)
Input: β Bayesian network

e evidence
x explanation

Output: A candidate array of gains computed using multiplicative gain
begin

X ← nodes in Y , where β = (Y ,W ,P ), that are not in e
Init(A, 1) {for multiplicative gain initialize candidate array A with 1s}
for each non-evidence node Xi ∈X

o← xi {remember original state xi}
Old← NodeChildrenProbability(β,Xi,x,UM )
for each state s ∈ ΩXi − {xi} {try all states except state xi}

x← x[Xi ← s] {try state s in i-th node Xi}
New← NodeChildrenProbability(β,Xi,x,UM )
if (Old = 0) then

if (New = 0) then g ← 1
else

Force(A, Xi, s) {“force”state s into candidate array A}
return A

endif
endif
g ← New / Old
Add(A, Xi, s, g) {add tuple (Xi, s, g) to candidate array A}

endfor
x← x[Xi ← o] {reset state of Xi to original value o}

endfor
return A

end

Figure 3: This algorithm, which implements the multiplicative measure of gain ∆UM , is called by SGS and
is used to fill in the candidate array A with gains for neighbors of the current explanation x.

ComputeAdditiveGain(β, e, x)
Input: β Bayesian network

e evidence
x explanation

Output: A candidate array of gains computed using additive gain
begin

X ← nodes in Y , where β = (Y ,W ,P ), that are not in e
Init(A, 0) {for additive gain initialize candidate array with 0s}
for each non-evidence node Xi ∈X

o← xi {remember original state xi of node Xi}
Old← NodeChildrenProbability(β,Xi,x,UA)
for each state s ∈ ΩXi − {xi} {try all states except state xi}

x← x[Xi ← s] {try state s in i-th node Xi}
New← NodeChildrenProbability(β,Xi,x,UA)
g ← New - Old
Add(A, Xi, s, g) {add tuple (Xi, s, g) to candidate array A}

endfor
x← x[Xi ← o] {reset state of node Xi to original value o}

endfor
return A

end

Figure 4: This algorithm, which implements the additive measure of gain ∆UA, is used by SGS to fill in the
candidate array A with gains for neighbors of the current explanation x.
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utility score. The input value pN = 0 means that no noise should be applied; in this case SimpleSGS
returns when reaching a local maximum. With Umin > 0, SimpleSGS is successful if utility Umin or
better is attained. SimpleSGS uses gain computation algorithms ComputeMultiplicativeGain and
ComputeAdditiveGain, see Figure 3 and Figure 4 respectively, to evaluate candidate tuples and construct
the candidate arrayA. Which gain computation is used depends on the value of the input parameter U . Both
gain computation algorithms iterate over all non-evidence nodes and over all states of each nodeXi, excluding
a node’s current state xi,k. Within the inner-most loops there are calls to NodeChildrenProbability,
which are used to compute the gain g associated with flipping node Xi’s state in explanation x.
We now discuss how the ComputeMultiplicativeGain and ComputeAdditiveGain algorithms im-

plement multiplicative gain ∆UM and additive gain ∆UA respectively. In the implementation of the mul-
tiplicative measure as shown in ComputeMultiplicativeGain in Figure 3, the assignment to Old is the
denominator in multiplicative gain, while the assignment to New is multiplicative gain’s numerator. Recall
from Definition 18 and Theorem 20 that multiplicative gain is not defined if the denominator is zero. Conse-
quently, there is a test for zero in ComputeMultiplicativeGain, and the following action is taken: If Old
(denominator in Equation 12) and New (numerator in Equation 12) are both zero, we define multiplicative
gain g to be one: g ← 1. If Old is zero but New is non-zero, we greedily pick the new state s in the statement
Force(A, Xi, s), and then return. So in this case where Old (denominator) is zero but New (numerator)
is non-zero, the algorithm is more greedy than in the remaining cases, since the first state in the first node
where a flip leads from a zero to a non-zero probability is picked as a candidate for flipping, by using Force.
Both ComputeMultiplicativeGain and ComputeAdditiveGain return a filled-in candidate array

A to SimpleSGS. After computation of A, SimpleSGS calls the ChooseState function. ChooseState
applies the criterion of choice and picks which state xi,j to flip to. Then, after a possible noise step, the
utility measure U(x) is applied. Using either multiplicative utility UM or additive utility UA, the better
explanation of x and x̂∗ is kept. The algorithm then terminates or iterates.
SimpleSGS has been very successful in certain BNs, as is demonstrated in Section 6.1. It turned out that

the algorithm also has some limitations, including the following. First, SimpleSGS does not accommodate
an arbitrary number of different initialization and search operators in the same invocation of the algorithm.
Second, the measures of utility and gain are coupled through the input parameter U , and it is not possible
to apply different measures of gain in the same invocation of the algorithm. Addressing these limitations
is crucial to obtaining strong performance. We now discuss how they are addressed in the operator-based
variant of SGS.

4.2 Operator-Based Stochastic Greedy Search

The operator-based variant of SGS, denoted OperatorSGS, is presented in Figure 5. OperatorSGS re-
tains the structure of SimpleSGS, with two nested loops for tries and flips. What is novel in OperatorSGS
is how the algorithm chooses from two sets of operators or heuristics when an initialization or search step is
performed. This operator-based approach gives better flexibility and extensibility, resulting in substantially
better performance on a range of different BNs compared to SimpleSGS. We will return a more detailed
discussion of OperatorSGS after formally introducing its initialization and search operators.

Definition 36 (Initialization operator, initialization operators) An initialization operator is a heuris-
tic that computes, given a BN β and evidence e, an explanation x. A set of initialization operators is denoted
ΦI .

The initialization operators that have so far been explored using OperatorSGS are: uniform initial-
ization (UN), forward simulation (FS), backward dynamic programming (BDP), and forward dynamic
programming (FDP); we thus have ΦI = {UN,FS,BDP,FDP} [63]. Other algorithms, for example the
mini-bucket algorithm [41], can easily be incorporated as initialization operators in OperatorSGS.

Definition 37 (Search operator, search operators) A (local) search operator is a heuristic that com-
putes, for a BN β with evidence e and an explanation x, a new explanation x′. A one-flip (local) search
operator is a search operator where x′ = x[Xi ← x̄i]. A set of search operators is denoted ΦS.

Our search operators are closely related to flip selection strategies such as GSAT [79], WSAT-G [54],
WSAT-B [54], WSAT [54,78], Novelty [54], Novelty+, and DLM [76] in the SAT setting, and similar strategies
in the BN setting [41, 48, 61, 68, 69]. Traditionally, flip selection strategies are hard-coded using an if -
then-else statement containing a greedy part and a noisy part similar to what is done in SimpleSGS.
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In OperatorSGS, on the other hand, these two parts are typically represented by means of two distinct
operators in a search portfolio. More importantly, OperatorSGS is not restricted to two operators. We
will return to the issue of flip selection strategies and search operators after introducing the following type
of search operator.

Definition 38 (Compound operator) A compound operator is a 2-tuple (∆U(x, xi,j), C(A)), where
∆U(x, xi,j) is a gain function and C(A) is a criterion of choice operating on a candidate array A.

Example gain functions referred to in the above definition are additive gain ∆UA(x, xi,j) and multiplica-
tive gain ∆UM (x, xi,j). Compound operators are used by CompoundSearch, see Figure 6.
The operators {MG,AG,MN,AN} are compound operators that we have used in OperatorSGS so far;

these operators are defined as follows.

Definition 39 (Compound operators MG, AG, MN, and AN) Using C(A) = CG(A) (the greedy
criterion) we define these greedy search operators:6

MG := (∆UM (x, xi,j), CG(A)) {multiplicative gain with greedy criterion}

AG := (∆UA(x, xi,j), CG(A)) {additive gain with greedy criterion}.

Using C(A) = CN (A) (the noisy criterion) we define these noisy search operators:

MN := (∆UM (x, xi,j), CN (A)) {multiplicative gain with noisy criterion}

AN := (∆UA(x, xi,j), CN (A)) {additive gain with noisy criterion}.

The AG operator is formally justified by Theorem 27 and Theorem 32. Informally, there is the following
relationship between maximizing GSAT gain and maximizing additive gain: Using GSAT gain, one flips the
logic variable which gives the highest increase in the number of satisfied clauses [79]. Using the additive
operator AG, we flip the BN node which gives the greatest additive increase in values of the affected CPTs.

In addition to the compound operators introduced in Definition 39, there are operators that are not
formed by combining a gain function and a criterion of choice. For example, we have investigated the
uniform noise (NU) and stochastic simulation (SS) operators. Uniform noise means that a non-evidence
node, picked uniformly at random, is flipped with probability pN . Stochastic simulation is Gibbs sam-
pling in BNs, where nodes are sequentially sampled [72]. Altogether, this gives search operators ΦS =
{NU,SS,MG,AG,MN,AN}.
An operator portfolio Λ, formally introduced in Definition 40 below, is generally speaking a set of oper-

ators along with an approach to operator selection. We focus here on selection according to a probability
distribution defined by associating a probability with each operator as follows.7

Definition 40 (Stochastic portfolio) Let q ≥ 1 and let Φ = {φ1, . . . , φq} be a set of operators. A stochas-
tic portfolio over Φ is a set of q operator tuples Λ = {ν1, . . . , νq} = {(φ1, p1), . . . , (φq, pq)} where 0 ≤ pi ≤ 1,∑q
i=1 pi = 1, and (φi, pi) means that the i-th operator φi, where 1 ≤ i ≤ q, is selected (and then executed)

with probability pi whenever some operator is selected from Λ.

Initialization algorithms have turned out to be important components in SGS as well as in other sim-
ilar algorithms [41, 48, 63, 69]. In OperatorSGS, the input parameters therefore include a portfolio of
initialization operators ΛI , defined as follows.

Definition 41 (Initialization portfolio) Let ΦI be a set of initialization operators. The OperatorSGS
initialization portfolio ΛI is a stochastic portfolio over ΦI according to Definition 40.

The initialization algorithms construct explanations which make up starting points that the local search
steps incrementally improve, leading to increasingly better MPE estimates. We have investigated the follow-
ing initialization operators for stochastic generation of initial explanations: uniform initialization (UN),
forward simulation (FS), forward dynamic programming (FDP), and backward dynamic programming
(BDP) [63]. These stochastic initialization operators all have a time complexity of O(n) in the number
of nodes. A wide range of initialization heuristics can easily be incorporated as initialization operators in
OperatorSGS.
The portfolio ΛS for the local search heuristics is formally introduced as follows.
6 In previous work [61, 63] MG was called BM, AG was called GM, MN was called BS, AN was called GS.
7An alternative to the stochastic portfolio is a round-robin portfolio or schedule. A round-robin portfolio is a sequence of q

operators Φ = (φ0, . . . , φq−1) such that the j-th time an operator is selected for execution from Φ, operator φi where i = jmod r
is selected. We do not further investigate round-robin portfolios in this article.
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Greedy: pG = pAG + pMG Noisy: pN = pAN + pMN
Additive:

pA = pAG + pAN
Additive & greedy: (AG, pAG) Additive & noisy: (AN, pAN)

Multiplicative:
pM = pMG + pMN

Multiplicative & greedy: (MG, pMG) Multiplicative & noisy: (MN, pMN)

Table 1: Joint probability table decomposed according to the two orthogonal dimensions of (i) greedy versus
noisy search and (ii)additive versus multiplicative gain computation. Taken together, these two dimensions
define four operators or two-tuples of search operators (or heuristics) and probabilities as illustrated.

Definition 42 (Search portfolio) Let ΦS be a set of search operators. The OperatorSGS search port-
folio ΛS is a stochastic portfolio over ΦS according to Definition 40.

The input parameters of OperatorSGS, see Figure 5, largely overlap those of SimpleSGS but include
a portfolio of search operators ΛS and a portfolio of initialization operators ΛI . OperatorSGS chooses only
among the operators included in the portfolios ΛI and ΛS . More specifically, Initialize(β, e, ΛI) returns
a new explanation x for β, created using the initialization operators in the initialization portfolio ΛI (see
Definition 41). Search(β, e, x, ΛS) performs a search step on the explanation x, using the measure of gain
associated with the search operator chosen from the search portfolio ΛS . A search operator is picked from
the search portfolio ΛS as described in Definition 42. Compound operators are invoked by Search using
CompoundSearch, see Figure 6.

This operator-based approach allows us to use a mixture of different operators, thus allowing us to
emulate a wide range of SLS algorithms investigated previously. Here are a few examples from the literature.

Example 43 For computing SAT, Selman et al. investigated, in the mixed random walk strategy, greedy
search (GSAT) combined with a random walk (RW) [78]: ΛS = {(GSAT, pGSAT), (RW, pRW)}.

Example 44 For computing MPE, Kask and Dechter investigated greedy search (GR) with stochastic sim-
ulation (SS) using mini-bucket (MB) initialization [41]: ΛS = {(GR, pGR), (SS, pSS)} and ΛI = {(MB,
1)}.

Example 45 For computing MAP, Park and Darwiche investigated (among a total of 11 SLS algorithms)
hill-climbing (Hill) with random noise (NU), using MPE-based initialization (MPE) [69]: ΛS = {(Hill,
pHill), (NU, pNU)} and ΛI = {(MPE, 1)}.

For further examples, Schuurmans and Southey investigated eight flip selection strategies [76]; these could
also be formulated as OperatorSGS search portfolios.8

Turning to our additive approach, we now introduce a particular search portfolio which contains additive
operators; see also Table 1.

Definition 46 Consider the compound operators from Definition 39 and suppose that pAN + pAG + pMN +
pMG = 1. We define ΛS(pAN, pAG, pMN) = {(AN, pAN), (AG, pAG), (MN, pMN), (MG, pMG)}, where pMG
= 1 − pAN − pAG − pMN, as a search portfolio.

In Section 6.2 we will see that this search portfolio is very effective on application BNs. Also, the search
portfolio in Definition 46 enables us to discuss an analogue between the probabilistic use of our additive
measure and the use of noise in SLS. Varying the noise probability pN , or the probability of applying a
non-greedy heuristic, has been found to have a dramatic impact on SLS run time [20, 31, 34, 54, 58, 77, 78].
Utilizing our additive utility measure, we introduce the concept of additive probability pA, or the probability
of applying an additive heuristic, which is similar but orthogonal to noise probability pN . In Definition 46,
only the operators AN and AG are additive, hence pA = pAN + pAG. Varying the additive probability pA
turns out to have a major impact on SLS computation time when searching for MPEs in partly deterministic
BNs, as presented in Section 6.

8Schuurmans and Southey introduced a novel flip selection strategy called DLM; in addition they considered the existing
strategies GSAT, HSAT, WSAT-G, WSAT-B, WSAT, Novelty, and Novelty+.
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OperatorSGS(β, e, U , MAX-FLIPS, MAX-TRIES, Umin, ΛI , ΛS)
Input: β Bayesian network

e evidence
U measure of utility: UA or UM
MAX-FLIPS upper bound on the number of flips
MAX-TRIES upper bound on the number of tries
Umin lower bound for termination
ΛI initialization portfolio – initialization operators
ΛS search portfolio – greedy and noisy search operators

Output: (b, x̂∗) b ∈ {true,false}; x̂∗ is estimate of MPE
begin

x̂∗ ← Initialize(β, e, ΛI) {use initialization operator to create explanation x̂
∗}

for i← 1 to MAX-TRIES {outer loop of tries}
x← Initialize(β, e, ΛI) {use initialization operator to create explanation x}
for j ← 1 to MAX-FLIPS {inner loop of flips}

x← Search(β, e, x, ΛS) {apply search operator to update x}
if (U(x) >U(x̂∗)) then x̂∗ ← x
if (U(x̂∗) ≥Umin) then return (true, x̂∗)

endfor {inner loop of flips}
endfor {outer loop of tries}
return (false, x̂∗)

end

Figure 5: The operator-based stochastic greedy search algorithm (OperatorSGS). OperatorSGS com-
putes an MPE estimate x̂∗ given the input parameters, and operates in two main phases: an initialization
phase and a local search phase. The initialization algorithm Initialize applies initialization operators from
ΛI , while the search algorithm Search applies search operators from ΛS . OperatorSGS terminates if an
explanation x̂∗ of utility Umin or greater is found or if the computation exceeds MAX-TRIES tries.

CompoundSearch(β, e, ∆U , C, x)
Input: β Bayesian network

e evidence
∆U measure of gain: ∆UA or ∆UM
C criterion of choice: CG or CN
x explanation

Output: x explanation
begin

if (∆U = ∆UM ) then
A← ComputeMultiplicativeGain(β, e, x)

else {the case ∆U = ∆UA}
A← ComputeAdditiveGain(β, e, x)

endif
(Xi, xi)← ChooseState(A, C) {pick node V and state v from candidate array A}
x← x[Xi ← xi]
return x

end

Figure 6: An algorithm used by the Search algorithm in OperatorSGS. It performs stochastic local search
on the input explanation x, using a compound operator defined by the input parameters ∆U and C. The
result is an updated explanation x, which is output.
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5 Analysis of Portfolios in Stochastic Local Search

The goal of this section is to analyze SLS portfolio effects and the initialization and search portfolios of
OperatorSGS in particular. Given our observation that this operator-based approach can simulate many
other SLS algorithms, including SimpleSGS, the analysis is hopefully of broad interest and complements
previous SLS analysis efforts [32,58,63].
Section 5.1 discusses the incompleteness of SGS, and argues for the Las Vegas analysis and experimenta-

tion approach we have used in this article. We discuss our Markov chain-based analysis approach in Section
5.2, present results for the initialization portfolio in Section 5.3, and for the search portfolio in Section 5.4.

5.1 Incompleteness, Termination, and Las Vegas Algorithms

Stochastic local search algorithms are in general incomplete algorithms. Specifically, if there is no input
parameter like SGS’s Umin = Pr(x∗), one cannot say whether a current estimate x̂∗ ∈X∗ or x̂∗ /∈X∗, and
this raises the question of when to terminate search. Incomplete algorithms are appropriate when complete
methods are impractical due to excessive demands on time, space, or both. For example, with limited space
a complete algorithm like clique tree clustering might not even be able to compile a given BN [55, 62, 82].
Alternatively, there might only be a fixed amount of time available that is too short for complete computation,
and one might at the same time be willing to sometimes make a mistake. For example, there are situations
where the cost of making an occasional mistake by finding x̂∗ /∈ X∗, is small compared to the cost – in
terms of space or time – needed to use a complete BN inference algorithm such as clique tree clustering.
Since SLS algorithms are randomized, their operation may be described using bivariate distributions with

random variables for (i) the running time (in number of operations, say) and (ii) the current estimate of the
utility of an optimal solution. Unfortunately, keeping track of both execution time and the quality of the
MPE estimate complicates scientific analysis and experimentation. For simplicity, we generally take a Las
Vegas approach [25] and use Umin = Pr(x∗), making SGS terminate only after an MPE is found. Clearly, in
applications one will in general not know Pr(x∗), and therefore cannot use Umin = Pr(x∗) as a termination
criterion in SGS. Using Umin = Pr(x∗) might therefore by some readers be regarded as “cheating”. However,
in a scientific study such as the present we argue that using Umin = Pr(x∗) is entirely appropriate and indeed
often to be preferred. First, it is the hardest test of SLS algorithms in terms of computing an explanation,
since they are not allowed to terminate with x̂∗ /∈ X∗. Second, since the SLS algorithm can terminate as
soon as some x̂∗ ∈ X∗ is reached, one avoids additional complication induced by the termination criterion.
In this manner, the effect of the initialization and search algorithms (our main interest here) is cleanly
isolated from the effect of the termination criterion, which in applications might be quite involved.
The question of when to terminate SLS has, we believe, ultimately an application-dependent answer.

Certain applications, including real-time applications, have hard upper bounds on execution time and they
might need to terminate MPE computation if that hard upper bound is exceeded. Other applications do
not have hard real-time requirements and softer termination criteria would be appropriate. Giving specific
recommendations beyond these general observations is unfortunately beyond the scope of this article.

5.2 Markov Chains and Hitting Times

We now introduce definitions of a few random variables that will be used to characterize SLS performance.

Definition 47 Let the flip length (number of SLS flips until termination) be a discrete random variable F .
Let the run length (number of SLS operations, both initializations and flips, until termination) be a discrete
random variable R.

There are in fact families of random variables involved here. These families are characterized by the η
input parameters of an SLS algorithm, a tuple (Θ1 = θ1, . . ., Θη = θη). In OperatorSGS, η = 7 and of
particular interest are the initialization portfolio parameter Θη−1 = Θ6 = ΛI as well as the search portfolio
parameter Θη = Θ7 = ΛS . In SimpleSGS we have η = 6. Since F depends on the parameter values θ =
(θ1, . . ., θη) used, we say F (θ) when we want to make this explicit. For example, if we consider MAX-FLIPS
and vary m in MAX-FLIPS = m while keeping the remaining η−1 input parameters constant, we may write
F (m); R(m) is similar. In addition, we may condition on portfolio parameters ΛI and ΛS of OperatorSGS;
more about this below.
The search processes of SimpleSGS and similar SLS algorithms can be analyzed using exact or approx-

imate Markov chain models as follows (see also [32,58]). Let us for simplicity assume n binary non-evidence
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BN nodes such that an exact Markov chain model has 2n states. This Markov chain is structured as a
hypercube where each hypercube node b represents a bitstring. A state b ∈ {0, 1}n in such a Markov chain
has n neighbors, namely states that are one flip away.

Definition 48 (Neighborhood) Let b be a bitstring of length n. b’s neighbors n(b), strict neighbors n′(b),
and non-neighbors n̄(b) are defined as follows

n(b) =

{
c ∈ {0, 1}n

∣∣∣∣∣
n∑
i=1

|bi − ci| ≤ 1

}
n′(b) = n(b)− {b}
n̄(b) = {0, 1}n − n(b).

We now introduce the notion of exact Markov chains over bitstrings; they will be useful when analyzing
how SLS algorithms process problem instances.

Definition 49 (Exact Markov chain model) An exact Markov chain model M has states S = {s0, s1,
...} = {b | b ∈ {0, 1}n} and an initial probability vector V with Pr(A0 = sk) = πk for 1 ≤ k ≤ 2n. The
transition probability matrix P is a stochastic matrix given by

Pr(At+1 = c | At = b) = 0 if c ∈ n̄(b) (27)

Pr(At+1 = c | At = b) ≥ 0 if c ∈ n(b). (28)

For the uniform noise operator tuple (NU, pNU), (28) is clearly Pr(At+1 = c | At = b) = 1/n in the
transition matrix P of an exact Markov chain model. Probabilities as introduced in Definition 34 and
Definition 35 also define rows in transition matrixes P.
To enable introduction of operators, we slightly extend the exact Markov chain notation in Definition

49 as follows. If there are ξ different initialization operators, we have multiple initial probability vectors Vi
with Pr(Ai,0 = sk) for 1 ≤ i ≤ ξ and 1 ≤ k ≤ 2n. If there are χ search operators, we have multiple transition
probability matrixes Pj for 1 ≤ j ≤ χ.
SimpleSGS and OperatorSGS can be analyzed using exact Markov chain models up to MAX-FLIPS

flips, similar to the SimpleSLS algorithm [58]. In fact, using the exact Markov chain model, we can provide
a suffi cient condition for MPE computation using SimpleSGS.

Theorem 50 Let MAX-TRIES = ∞, MAX-FLIPS = ∞, pN > 0, U = UM , and Umin = Pr(x∗) in
SimpleSGS. Then SimpleSGS is a Las Vegas algorithm and returns (true, x∗) such that x∗ ∈ X∗.

Proof. Since MAX-TRIES = ∞, there are two if-then statements from which SimpleSGS can return,
and they both read “if (U(x̂∗) > Umin) then return (true, x̂∗).”By substituting in assumptions, we obtain

U(x̂∗) = UM (x̂∗) = Pr(x̂∗) > Umin = Pr(x∗),

which clearly only holds when Pr(x̂∗) = Pr(x∗). If SimpleSGS returns from its first if-then statement
we are done. Suppose that SimpleSGS does not return from the first if-then statement. We argue that
SimpleSGS will eventually return from the second if-then statement as follows. Consider the exact Markov
chain modelM = (S, V, P) corresponding to the particular input parameters for SimpleSGS. Pick any two
distinct states si ∈ S and sj ∈ S. Since by assumption pN > 0, it is easy to see that si and sj communicate.
Thus, all states S, including optimal states O, are recurrent. Some optimal state x∗ ∈ O, where Umin
= Pr(x∗), will thus eventually be visited regardless of the initial state. When this happens, SimpleSGS will
return (true, x∗).

The proof of the following theorem, which provides a suffi cient condition for MPE computation using
OperatorSGS, is similar to that of Theorem 50.

Theorem 51 Let MAX-TRIES = ∞, MAX-FLIPS = ∞, (NU, pNU) ∈ ΛS with pNU > 0 , U = UM , and
Umin = Pr(x∗) in OperatorSGS. Then OperatorSGS is a Las Vegas algorithm and returns (true, x∗)
such that x∗ ∈ X∗.

Due to the exponential growth of V and P as a function of n in Definition 49, it is also of interest to
formalize SLS behavior by means of approximate Markov chains. Let the current state of SGS search be
b, and consider how search brings us closer to or farther away from an MPE b∗. In the following definition
we assume for simplicity, but without loss of generality [58], that b∗ = 1 . . . 1; u(b) is a function that counts
the number of 1s, or in other words the correct states relative to b∗, in b. Clearly, when u(b) = n we have
b = b∗.
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Figure 7: An example of a basic random walk (top) and a corresponding augmented random walk model
(bottom) for OperatorSGS and other stochastic local search algorithms that use initialization and search
portfolios. To reduce clutter, the states for the underlying search space are shown twice, namely in the
context of the search portolio with χ = 2 operators (bottom left) and in the context of the initialization
portfolio with ξ = 3 operators (bottom right). See also Example 53.

Definition 52 (Positive and negative neighbors) Let the bitstring b, of length n, represent the current
state of search and let b∗ = 1 . . . 1 be the optimal bitstring. We then define positive neighbors n+(b) = {c ∈
n(b) | u(c) > u(b)} and negative neighbors n−(b) = {c ∈ n(b) | u(c) < u(b)}.

In an approximate Markov chain model, denoted a basic random walk in Figure 7, we introduce states
that correspond to all counts of the number of correct bits u(b). Clearly, 0 ≤ u(b) ≤ n. With the exception
of the two boundary states 0 and n, each state i has two neighbors i − 1 and i + 1. Therefore we have a
Markov chain model with n+ 1 states in which each state has two neighbors; a so-called random walk.
Can Markov chains such as random walks be applied also in the portfolio setting, and specifically to

analyze OperatorSGS? As we will see in the following, the answer to this question is “yes”; we first
illustrate our analysis by means of an example.

Example 53 Suppose that we have a BN β with n = 5 binary nodes. For OperatorSGS, let ΛI = {(φ1,
p1), (φ2, p2), (φ3, p3)} and ΛS = {(ω1, q1), (ω2, q2)}. Figure 7 shows an augmented Markov chain model
M (see also Definition 54) for OperatorSGS processing β, given these portfolios ΛI and ΛS.

In addition to states representing the underlying search space, corresponding to the states in a basic
random walk model, our novel augmented Markov chain model includes states that represent the search and
initialization operators – see Figure 7. The advantage of this model is that it allows us to analyze search
and initialization operators within the same framework as the underlying search space.
The details for Example 53 are as follows. We first consider states S. The number of states in S is

k = (n + 1)(χ + 1) + ξ = 6× 3 + 3 = 21. Among these, states {0, . . . , 5} represent OperatorSGS search
right before search operator selection. States {6, . . . , 11} represent search right after selection of search
operator ω1; states {12, . . . , 17} represent search right after selection of search operator ω2. States 18, 19,
and 20 represent selection of initialization operators φ1, φ2, and φ3 respectively. In V, Pr(B0 = i) = 0 for
0 ≤ i ≤ (n + 1)(χ + 1) − 1 = 17 and Pr(B0 = 17 + j) = pj for 1 ≤ j ≤ 3, where pj are the initialization
operator selection probabilities in Example 53. In P, we have Pr(Bt+1 = i | Bt = j) ≥ 0 as indicated by
edges in Figure 7. For all other entries in P, Pr(Bt+1 = i | Bt = j) = 0.
We now formally introduce our novel Markov chain construction that clearly reflects the initialization and

search portfolios of OperatorSGS. This construction is illustrated in Example 53. We will in Theorem
55 formally show that a Markov chain is created.
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Figure 8: General constructions for a basic random walk model (top) and a corresponding augmented random
walk model (bottom) for stochastic local search algorithms using initialization and search portfolios.

Definition 54 (Augmented random walk) Consider a BN with n binary nodes. Suppose that we have
an initialization portfolio ΛI = {(φi, pi) | 1 ≤ i ≤ ξ} with initial probability vectors Vi for 1 ≤ i ≤ ξ and a
search portfolio ΛS = {(ωj, qj) | 1 ≤ j ≤ χ } with transition probability matrixes Pj for 1 ≤ j ≤ χ. The
augmented random walk model (S, V, P) is defined as follows. Put m = (n+ 1) and ` = m(χ+ 1). M has
k = `+ ξ = |S| discrete states named {0, . . . , k − 1}. The k-dimensional vector V of initial probabilities is
defined as Pr(B0 = i) = 0 for 0 ≤ i ≤ `− 1 and Pr(B0 = i) = pi−`+1 ≥ 0 for ` ≤ i ≤ k − 1. The potentially
non-zero entries in the k × k matrix P of conditional probabilities are defined as:

Pr(Bt+1 = i | Bt = j + `− 1) =
∑

{b|u(b)=i}

Pr(Aj,0 = b), 0 ≤ i ≤ n and 1 ≤ j ≤ ξ (29)

Pr(Bt+1 = jm+ i | Bt = i) = qj, 0 ≤ i ≤ n and 1 ≤ j ≤ χ (30)

Pr(Bt+1 = i+ 1 | Bt = jm+ i) =
∑

{b+|b+∈n+(b)}

Pr(Aj,t+1 = b+ | Aj,t = b) (31)

Pr(Bt+1 = i− 1 | Bt = jm+ i) =
∑

{b−|b−∈n−(b)}

Pr(Aj,t+1 = b− | Aj,t = b), (32)

where in (31) and (32) we have 0 < i ≤ n and 1 ≤ j ≤ χ.The remaining entries in P are zero.

We now discuss Definition 54 in more detail; see also Figure 8. There is a one-to-one mapping between the
ξ last states in the augmented random walk model and the tuples in the initialization portfolio ΛI = {(φ1, p1),
. . . , (φξ, pξ)}. These ξ initialization (operator) states are shown at the bottom in Figure 8; the probabilities of
the edges from these states are given by (29). There is also a relationship between states 0 ≤ i ≤ (n+1)(χ+1)
and the tuples in the search portfolio ΛS = {(ω1, q1), . . . , (ωχ, qχ)}: States 0 ≤ i ≤ n, which we will call
(search operator) selection states, correspond to the moment, inOperatorSGS, right before search operator
selection from ΛS according to (30). States (n+1) ≤ i ≤ (n+1)(χ+1) are called (search operator) application
states. Each of these latter states correspond to a time when a search operator has been picked from ΛS , and
is about to be applied by OperatorSGS. Once an operator has been selected and applied using (31) and
(32), the Markov chain is again in a selection state 0 ≤ i ≤ n, and the selection-application cycle continues
until restart or termination.
There are two options for Markov chain analysis of our portfolio approach. First, we can perform analysis

directly on the augmented random walk. Second, we can use the augmented random walk merely as an
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aid in constructing the basic random walk, and perform analysis on the basic random walk. In either case,
since we have a Markov chain, Markov chain analysis techniques can be applied. In the rest of this work our
main emphasis is on analysis directly on the augmented random walk, as reflected in the following result.

Theorem 55 An augmented random walk model (S, V, P) induces a Markov chain M = (S, V, P) over
the random variables (Bt, t ≥ 0).

Proof. We consider S, V, and P in turn. S has k = (n + 1)(χ + 1) + ξ = ` + ξ states and obviously
defines a finite state space. V is given by (π0, . . . , π`+ξ−1), where

`+ξ−1∑
i=0

πi =

`−1∑
i=0

πi +

`+ξ−1∑
i=`

πi =

ξ∑
j=1

pi = 1

by the definition of ΛI = {(φ1, p1), . . . , (φξ, pξ)}. For P’s ξ initialization states we have for any 1 ≤ j ≤ ξ:

`+ξ−1∑
i=0

Pr(Bt+1 = i | Bt = j + `− 1) =

n∑
i=0

Pr(Bt+1 = i | Bt = j + `− 1) =
∑

{b|u(b)=i}

Pr(Aj,0 = b) = 1,

which follows from (29) and the fact that Aj,0 is an initial probability vector in an exact Markov chain model.
For P’s n+ 1 (search operator) selection states we have for any 0 ≤ i ≤ n:

`+ξ−1∑
j=0

Pr(Bt+1 = j | Bt = i) =

χ∑
j=1

Pr(Bt+1 = jm+ i | Bt = i) =

χ∑
j=1

qj = 1,

which follows from (30) and the definition ΛS = {(ω1, q1), . . . , (ωχ, qχ)}. Finally, for P’s χ(n+ 1) (search
operator) application states we have for 1 ≤ j ≤ χ and 0 ≤ i ≤ n:

`+ξ−1∑
k=0

Pr(Bt+1 = k | Bt = jm+ i) =

n∑
k=0

Pr(Bt+1 = k | Bt = jm+ i)

= Pr(Bt+1 = i+ 1 | Bt = jm+ i) + Pr(Bt+1 = i− 1 | Bt = jm+ i),

and by substituting (31) and (32) into the above we obtain:

`+ξ−1∑
k=0

Pr(Bt+1 = k | Bt = jm+ i) =∑
{b+|b+∈n+(b)}

Pr(Aj,t+1 = b+ | Aj,t = b) +
∑

{b−|b−∈n−(b)}

Pr(Aj,t+1 = b− | Aj,t = b) = 1,

where the last equality follows because
∑

c∈n′(b)
Pr(Aj,t+1 = c | Aj,t = b) = 1 in an exact Markov chain model

and n′(b) can be partitioned into n+(b) and n−(b). Since we have now shown that (i) V is a valid initial
probability vector of size k = |S| and (ii) all of P’s ξ + n+ 1 + χ(n+ 1) = k rows sum to one and hence P
is a valid k × k conditional probability matrix, the desired result follows.
For SLS algorithms, one is typically interested in expected run time and its minimization. In this article,

we study the expected hitting time h(θ). For our augmented random walk, the concept of expected hitting
time is well-defined since the walk is a Markov chain. Given our results on additive utility and gain in Section
3 we are in particular interested in h(pA), were pA is the probability of applying an additive operator in the
search portfolio. We now turn to hitting time minimization and define θ∗= arg minh(θ) and in particular p∗A
= arg minh(pA). The general problems of effi ciently computing θ∗ and p∗A are topics for ongoing research.
In the rest of this section we provide a few analytical results; in addition there are substantial empirical
results as reflected in the experiments of this article.

5.3 Analysis of Initialization

We now turn to an analysis of the OperatorSGS initialization portfolio. We consider different types of
initialization portfolios, and introduce the following terminology.
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Definition 56 Let Λ be a stochastic portfolio. If |Λ| = 1 then we call Λ a homogeneous portfolio. If |Λ| ≥ 2
then we call Λ a heterogeneous portfolio.

Instead of varying the size of a portfolio, as implied by Definition 56, one can set selection probabilities
to zero. For example, a portfolio with exactly one operator is obviously equivalent to a portfolio in which
exactly one operator has selection probability one while all other operators have selection probability zero.
For simplicity we exclude portfolios in which operators have zero probability of selection in our analysis in
this section.
We introduce a random variable Φ to represent OperatorSGS’s random selection of an initialization

operator from ΛI . Suppose there are ξ operators in the initialization portfolio. Given Φ and the random
variable F representing the number of flips, we introduce conditional probabilities Pr(F | Φ = φi) and
conditional expectations E(F | Φ = φi) for 0 ≤ i ≤ ξ. For the special case of MAX-FLIPS = ∞, we have

E(F | Φ = φi) = E(F | B0 = j) = E(T | B0 = j),

where j = i+ (n+ 1)(χ+ 1)− 1.
We may consider different initialization portfolios of the form ΛI = {(φ1, p1), (φ2, p2), . . . , (φξ, pi)}. Of

particular interest is the optimal initialization portfolio Λ∗I , formally defined as follows.

Definition 57 (Optimal initialization) The optimal initialization portfolio Λ∗I = {(φ1, p∗1), (φ2, p
∗
2), . . .

, (φξ, p
∗
ξ)} is defined by its optimal probabilities

p∗ = (p∗1, . . . , p
∗
ξ) = arg min

p1,...,pξ

(
ξ∑
i=1

E(F | Φ = φi)pi

)
.

Clearly, the challenge here is to find p∗. It turns out that homogeneous initialization portfolios, defined
as ΛI,1 = {(φ1, 1)}, ΛI,2 = {(φ2, 1)}, . . . , ΛI,ξ = {(φξ, 1)}, play a central role as reflected in the following
result.

Theorem 58 Let ξ be the number of operators in the initialization portfolio. Consider, for 1 ≤ i ≤ ξ,
E(F | Φ = φi).

9 Suppose that E(F | Φ = φi) 6= E(F | Φ = φj) for all 1 ≤ i, j ≤ ξ where i 6= j. Then there
is a unique optimal initialization portfolio Λ∗I , namely some homogeneous portfolio ΛI,i for 1 ≤ i ≤ ξ.

Proof. Since E(F | Φ = φi) 6= E(F | Φ = φj) for 1 ≤ i, j ≤ ξ where i 6= j, we assume without loss of
generality the strict ordering of homogenous portfolios E(F | Φ = φ1) < E(F | Φ = φ2) < · · · < E(F | Φ =
φξ). Consider now the expectation E(F ) for an arbitrary heterogeneous initialization portfolio {(φ1, p1),
(φ2, p2), . . . , (φξ, pξ)}. Using the law of conditional expectation gives

E(F ) =
ξ∑
i=1

E(F | Φ = φi) Pr(Φ = φi) =
ξ∑
i=1

E(F | Φ = φi)pi. (33)

By our strict ordering assumption of the homogenous portfolios, we can for 2 ≤ i ≤ ξ write E(F | Φ = φi) =
E(F | Φ = φ1) + ci for increasing constants ci > 0. For convenience, we define c1 = 0. Now, (33) can be
written as

E(F ) =
ξ∑
i=1

(E(F | Φ = φ1) + ci) pi

=
ξ∑
i=1

E(F | Φ = φ1)pi +
ξ∑
i=1

cipi

= E(F | Φ = φ1) +
ξ∑
i=1

cipi. (34)

There are now two cases to consider. Case (i): p1 = 1. From (34) it is easy to see that E(F ) = E(F | Φ = φ1)
since pi = 0 for i 6= 1. Case (ii): p1 < 1. From (34) it follows that E(F ) > E(F | Φ = φ1), since clearly

9Note that E(T | Φ = φi) is a number while E(T | Φ) is a random variable. In the former case the initialization portfolio
Φ is given as a specific portfolio φi, while in the latter case Φ is not specified.
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ξ∑
i=1

cipi > 0. Consequently, E(F | Φ = φ1) is the minimal expectation, and the homogeneous initialization

portfolio containing exactly one operator is optimal, and specifically Λ∗I = ΛI,1 = {(φ1, 1)}.
The implication of Theorem 58 is that once parameters θ have been fixed, then best performance is

ensured by using a homogeneous initialization portfolio. Some readers might regard Theorem 58 as a negative
result for initialization portfolios and might ask why we consider them in the first place. Here is why. First,
Theorem 58 could not have been derived unless an initialization portfolio was assumed. Second, one
is typically interested in performing inference over distributions of BNs, not one particular BN. And for
different BNs, different initialization algorithms often turn out to be optimal, and the use of an initialization
portfolio supports the desired flexibility in the use of initialization algorithms. Third, even though one
initialization algorithm among many is optimal, it is often not a priori obvious which one it is. So there
is a pre-processing phase, during which different initialization operators are used, and the existence of an
initialization portfolio enables this pre-processing phase.

5.4 Analysis of Search

We now turn our attention to SLS operations and assume that MAX-TRIES =∞ and that the initialization
portfolio has been fixed. In OperatorSGS an operation is executed when an operator is picked from either
ΛS or ΛI and then run. In SimpleSGS an operation is executed when Initialize is called in the loop of
tries and when Search is called in the loop of flips.

The expected number of operations executed, including both initializations and local search steps, is
characterized by the following result (see [63] for the derivation).

Theorem 59 (Expected number of operations) Suppose that Pr(R(m) ≤ m) > 0 and let MAX-FLIPS
= m. The expected number of SLS operations executed, E(R(m)), is given by

E(R(m)) =
m(1− Pr(F (∞) ≤ m)) +

∑m
i=0 iPr(F (∞) = i) + 1

Pr(F (∞) ≤ m)
. (35)

Theorem 59 is a generalization of previous results [70, 76] in that it accounts for all operators including
initialization operators in ΛS .
Our analysis in the rest of this section assumes an SLS model (M,O), whereM = (S, V, P) is a Markov

chain. Further, T is (as before) a random variable representingM’s hitting time. The benefit of a Markov
chain analysis is illustrated as follows. Suppose that we vary only the ΛS part in θ, and further suppose that
ΛS contains only two operators, namely a noisy operator (applied with probability pN ) and greedy operator
(applied with probability pG = 1− pN ). In related work we have shown that the expected hitting time h as
a function of pN , h(pN ), are rational functions, or in other words ratios of polynomials P (pN ) and Q(pN ):
h(pN ) = P (pN )/Q(pN ) [58]. The curves for h(pN ) are analytical counterparts to and explain theoretically
the so-called noise response curves that have been extensively studied empirically [58]. The impact of noise
varies with BN hardness, with optimal noise level increasing with increasing problem hardness.
Analogously, we consider here hitting time as a function of additivity pA, with corresponding (empirical)

additive response curves investigated in Section 6. Consider an SLS model (M,O), where the Markov chain
M = (S,V,P) is defined over a bitstring of length n and with parameter pA. Let κ = n+1, assume optimum
states {sλ, . . . , sκ} = O where λ ≤ κ, and form a system of equations forM’s expected first passage times
mi for 1 ≤ i ≤ κ. There exists an equivalent upper triangular system Um = b, wherem = (m1, . . . ,mλ−1)

T ,
in which all coeffi cients in U and b are rational functions of pA. Performing back substitution on Um = b,
we obtain the following expected hitting time result.

Theorem 60 (Rationality of hitting time) Consider an SLS model (M,O), whereM = (S,V,P) is an
augmented Markov chain defined over a bitstring of length n and with parameter pA. The expected hitting
time forM is a rational function of pA, h(pA) = P (pA)/Q(pA), where P (pA) and Q(pA) are polynomials.

The proof of Theorem 60 is similar to that of a previous result [58], except that (i) it concerns pA rather
than pN , and (ii) is based on our approximate (see Definition 54) rather than an exact Markov (see Definition
49) chain model. In the proof of the theorem, the key idea is to perform Gaussian elimination symbolically,
such that the parameter pA is preserved throughout the derivation.
Theorem 60, which is concerned with a single BN, can be extended in a natural way to multiple BNs

by means of finite mixture distributions. Again, we consider additive probability to be the independent
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parameter. Because of closure properties [58], it follows from Theorem 60 that the SLS hitting time for a
mixture of BNs is also a rational function h(pA) = P (pA)/Q(pA). To approximate the rational functions
induced by single BNs as well as multiple BNs we have used low-order polynomials [58]; this approach is
motivated by Weierstrass’theorem and supported by empirical results.

6 Experiments

We now turn to experiments performed with the SGS system, which implements the SimpleSGS and
OperatorSGS algorithms [55, 58, 61, 63]. In these experiments, we attempt to carefully balance scientific
and competitive experimentation [30]. In other words, we aim to complement our analytical results, and in
particular improve the understanding of our portfolio approach as well as that of additive utility and gain
(scientific experimentation [30]). For two reasons, we study SGS in depth rather than investigate a large
number of SLS systems at a more superficial level. First, apart from SGS we know of no SLS system for
MPE computation that implements the additive approach. Second, there is clear evidence that a problem
instance that is hard for one SLS algorithms is also hard for other SLS algorithms [34].
On the competitive experimentation side, we investigate the question of how our SLS algorithms, as

implemented by SGS, compare to exact algorithms, in particular clique tree clustering as implemented in
the state-of-the-art tree clustering system Hugin [14, 45]. Hugin uses two phases to compute an MPE, a
compilation phase and an execution phase. Hugin was chosen since (i) we wanted to employ an exact
algorithms to compute MPEs (as opposed to approximations) and (ii) Hugin uses one of the best exact
methods, the tree clustering algorithm. In our experiments, we used a Las Vegas methodology, motivated in
Section 5.1, which has also been used extensively in experimental research on satisfiability [65]: Hugin was
always used before SGS, in order to find an MPE x∗ if one existed. The reason for focusing on instances
which Hugin could process is as follows. For these cases we know for sure that some non-zero MPE x∗

exists and can therefore input Umin = Pr(x∗) to SGS to force convergence to an MPE. In addition, and
following what is typically done in experiments, we assume that Hugin’s compilation time as well as SGS’s
parameter optimization time can be amortized over a large number of MPE queries to a BN.
In the rest of this section we provide experimental results for SGS and compare SGS to Hugin. We use

synthetic BNs in Section 6.1 and BNs from applications in Section 6.2. For the experiments discussed here,
a Dell Dimension 4500 CPU, 2GHz Intel Pentium IV using 1GB of RAM and up to 2GB of swap space has
been used. The computer was running Windows XP.

6.1 Experiments with Synthetic Bayesian Networks

We now compare SGS to Hugin, using synthetically generated BNs. The experiments reported in this
section focused on varying the C/V -ratio in BNs, using synthetic networks where the hardness of MPE
computation can be controlled. These results provide insights into the general patterns of performance of a
stochastic local search algorithm such as SGS compared to a well-established baseline.
Section 6.1.1 outlines the methodology used. In Section 6.1.2 we focus on the effect, on Hugin as well

as on SimpleSGS and OperatorSGS, of varying the C/V -ratio in BNs. In Section 6.1.3 we investigate
additive gain using OperatorSGS.

6.1.1 Synthetic Networks: Methodology

In this section, we briefly discuss a paradigm for the generation of increasingly hard BNs for inference, namely
the BPART algorithm [55, 62]. The BPART algorithm extends research on generating hard instances for
the satisfiability problem [65], and we are exploiting the close relationship between computing an MPE
and finding a satisfying truth assignment of a corresponding CNF formula [8, 73, 81]. Generating problem
instances at random can result in very easy problems [65]. By carefully manipulating one or more BPART
input parameters, one can construct BNs that existing tree clustering inference algorithms cannot handle
due to an approximately exponential increase in clique tree size [57,62]. The main quantity we vary here is
the ratio C/V , where C and V are BPART input parameters representing the number of leaf and and root
nodes in a BN respectively. The C/V -ratio is perhaps easiest to motivate using bipartite BNs for medical
diagnosis, where V is the number of diseases and C is the number of symptoms. Clearly, it is interesting
to understand how the speed of MPE computation varies when the ratio of symptoms to diseases is varied,
or in other words as the C/V -ratio is varied. For the experiments reported here we set BPART’s input
parameters as follows, generating SAT-like BNs [62]: The CPT type of the root nodes was Q = uniform; the
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BNs Total clique tree size (in 1000) Size of maximal clique (in 1000)
C/V Mean StDev Median Max Min Mean StDev Median Max Min

2.0 201.7 95.17 172.1 513.3 53.34 70.94 44.49 65.54 262.1 16.38
2.2 388.2 211.1 337.9 1,212 53.60 150.6 109.0 131.1 524.3 16.38
2.4 573.8 288.3 504.5 1,628 131.8 238.6 157.1 262.1 1,049 65.54
2.6 852.7 449.1 718.8 2,302 190.9 329.6 226.1 262.1 1,049 65.54
2.8 1,285 789.0 1,158 5,463 278.5 503.3 356.3 524.3 2,097 131.1
3.0 1,881 991.7 1,651 6,506 580.9 720.9 331.4 524.3 2,097 131.1
3.2 2,559 1,241 2,337 6,468 607.6 1,077 669.5 1,049 4,194 262.1
3.4 3,779 1,807 3,504 11,204 689.1 1,565 944.4 1,049 4,194 262.1

Time, all propagations (seconds) Time, one propagation (seconds)
Mean StDev Median Max Min Mean StDev Median Max Min

2.0 1.119 0.5590 1.039 3.234 0.328 0.07038 0.03405 0.06491 0.1902 0.01726
2.2 2.123 1.220 1.860 7.047 0.375 0.1404 0.08568 0.1236 0.5560 0.02344
2.4 3.102 1.758 2.696 9.953 0.891 0.2291 0.1345 0.1952 0.7864 0.04689
2.6 4.809 3.234 3.898 24.55 0.718 0.3655 0.2374 0.3015 1.444 0.1000
2.8 6.349 4.249 5.258 25.64 1.234 0.5706 0.4164 0.5137 3.205 0.1198
3.0 8.267 5.039 7.008 36.31 1.782 0.8618 0.4744 0.7428 3.026 0.2206
3.2 12.76 8.332 10.79 41.91 2.875 1.293 0.6811 1.120 3.224 0.2756
3.4 14.67 9.867 9.781 66.5 2.797 1.864 1.059 1.738 6.045 0.3108

Table 2: Clique tree statistics (top half) and propagation times (bottom half) for Hugin on synthetic,
bipartite Bayesian networks. Parameters characterizing these BNs are the number of root nodes V and the
number of leaf nodes C.

CPT type of the non-root nodes was F = or; the number of root nodes was V = 30; the number of states per
node was S = 2; the number of parents per leaf node was P = 3; and irregular BNs were created by setting
R = false. Here, “irregular” refers to the fact that each root node has an irregular or randomly varying
number of children. We varied the number of leaf nodes while keeping V = 30 constant, giving C/V -ratios
ranging from C/V = 2.0 to C/V = 3.4.

Our main focus in the following is the comparison of the execution phase of Hugin with that of SGS
(using approximately optimal parameter settings) when computing an MPE. Our methodology is to generate
a number of BN instances according to the BPART construction, run SGS and Hugin on these instances,
and record statistics for the time it takes to compute an MPE. We do not report results for BNs that Hugin
was not able to process, even in cases where SGS might have been able to find an MPE. For example,
we did not experiment with as large SAT-like BNs as the SAT formulas used in earlier research [65], since
Hugin was not able to process these large networks for interesting C/V -ratios. Consequently, our results do
not include the region where C/V ≈ 4.25, which is SAT’s phase-transition region [65].
Even though these SAT-like BNs have a clear mapping to SAT instances, a few crucial differences make

our BN experiments different from previous experiments in the SAT setting. Our BN data structures are
different, since they are able to represent arbitrary CPTs, not just the logical true or false values that arise
in pure logical inference. Along similar lines, our gain and utility computations are generalizations of their
logical counterparts as discussed in Section 3 and Section 4. They need to handle the general, real-valued
case as encountered in CPTs, not just the special, integer-valued case of logical inference.

6.1.2 Synthetic Networks: Hardness and the C/V ratio

The purpose of the experiments reported here was to compare the performance of SGS, both SimpleSGS
and OperatorSGS, with that of Hugin as the C/V -ratio was varied. For each C/V level, using V = 30
and for C/V = 2.0 to C/V = 3.4, 100 BNs were generated using the BPART algorithm and processed using
Hugin and SGS.
Clique tree results for Hugin are summarized in Table 2; each row shows statistics for BPART instances.

There are dramatic increases in total clique tree size as well as in the size of the largest clique as C/V increases.
The rapid growth of the total clique tree size with C/V causes MPE computation times to grow rapidly as
well. In Table 2, sample means and standard deviations of MPE computation times for Hugin are presented.
We also experimented with both variants of SGS, namely SimpleSGS and OperatorSGS, with para-
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meters set as follows: MAX-TRIES = ∞, U = UA, C = CG, and Umin = 75 (for C = 60) to Umin = 117
(for C = 102). MAX-FLIPS and pN were set to approximately optimal levels, varying with C/V . For both
variants, an MPE was found for all problem instances.
In Figure 9 the results from these experiments are shown along with exponential regression lines of the

form y = aebx where a, b ∈ R and x = C/V . For SimpleSGS and OperatorSGS, each data point in the
figure represent a total of 10,000 experiments. This is because there are 100 BNs per C/V level, and each
SGS variant was executed 100 times for each BN. The exponential regression results in Figure 9 show that
the computation times of Hugin and SGS increase with x = C/V in a fashion that is well-approximated
by exponential curves. For Hugin, this confirms earlier results [57, 62]. For Hugin, we note also that the
execution phase consists of several propagations when there is more than one MPE [50]. The existence of
multiple MPEs for this C/V range is reflected in the obvious difference between y = 0.03847e1.797x (for all
propagations) and y = 0.000870e2.289x (for one propagation) in Figure 9.
Figure 9 shows that both SimpleSGS and OperatorSGS clearly outperform Hugin. Specifically, for

MPE computation we note that SimpleSGS and OperatorSGS on average are more than two orders of
magnitude faster than Hugin (the “all props” regression line in Figure 9) on these BPART BNs where
2.0 ≤ C/V ≤ 3.4. Even if Hugin had always only needed one propagation (a best-case scenario reflected by
the “one prop”regression line in Figure 9) in order to compute an MPE, which clearly is the lower bound,
both SGS variants are on average well over one order of magnitude faster than Hugin for 2.0 ≤ C/V ≤ 3.4.
The run time curves of SimpleSGS and OperatorSGS in Figure 9 are quite similar and in fact it is diffi cult
to tell them apart. A potential disadvantage of OperatorSGS compared to SimpleSGS, namely slower
speed due to computational overhead associated with operator selection and application, is in other words
minimized in our current implementation.

6.1.3 Synthetic Networks: Investigation of Additive Gain for Varying C/V

The goal of this set of experiments was to investigate different OperatorSGS variants. In particular,
we wanted to investigate both multiplicative gain and additive gain in SAT-like BNs, generated using the
BPART algorithm as discussed in Section 6.1.2. Since the additive measure is tailored to SAT-like BNs, one
might expect SGS with ΛS = {(AG, pAG), (NU, pNU)} to outperform SGS with ΛS = {(MG, pMG), (NU,
pNU)} in this experiment. However, SGS with ΛS = {(MG, pMG), (NU, pNU)} is augmented with a “force
state” heuristic which handles deterministic nodes, as shown in Figure 3, and the question is how helpful
this heuristic is compared to the additive measure. In this set of experiments, we again used V = 30 root
nodes, and considered C = 60 and C = 102.

Results of the experiments are shown in Figure 10. In the two panels to the left in the figure, we show
results for OperatorSGS with ΛS = {(AG, pAG), (NU, pNU)}, a portfolio with an additive operator AG.
In the two panels to the right, we show results for OperatorSGS with ΛS = {(MG, pMG), (NU, pNU)},
a portfolio with a multiplicative operator MG. Results for C/V = 2.0 are displayed in the top two panels
in Figure 10, while the bottom two panels show results for C/V = 3.4. In addition, we used three different
values for p = pNU, and consequently for pAG = 1− pNU and pMG = 1− pNU respectively, and varied
MAX-FLIPS as shown on the x-axis in Figure 10.
Our main observations with respect to these experimental results are as follows. For both C/V = 2.0 and

C/V = 3.4, the additive approach (to the left in Figure 10) is the winner over the multiplicative approach
in the sense of having the parameter settings that minimizes the number of flips. In addition, the additive
approach is more robust in the sense that there is good performance for a wider range of parameter values.
This experiment provide an experimental rationale for the “artificial” additive approach, which is used in
OperatorSGS with ΛS = {(AG, pAG), (NU, pNU)}, compared to the multiplicative approach used in
OperatorSGS with ΛS = {(MG, pMG), (NU, pNU)}.

6.2 Experiments with Application Bayesian Networks

This section reports on SGS experiments using BNs from applications, and highlights the system’s per-
formance when using different initialization portfolios, different search portfolios, and different measures of
gain. The OperatorSGS algorithm was to a large extent motivated by our early work with these BNs,
which unlike the synthetic instances investigated in Section 6.1 have no restriction on topology, number of
states, number of parents, or CPTs.
In Section 6.2.1 we outline the methodology and briefly discuss the BNs used in experiments. Section 6.2.2

empirically compares SGS and Hugin. Section 6.2.3 covers the effect of using different search operators in
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Bayesian Nodes States Conditional probability table (CPT) values
network n avg. 0 (0, 10−3] (10−3, 10−2] (10−2, 10−1] (10−1, 1) 1
Munin1 189 5.26 56.0% 3.64% 3.87% 7.99% 18% 10.4%
Munin2 1003 5.36 55.53% 4.74% 5.08% 9.46% 17.42% 7.74%
Mildew 35 17.6 93.06% 0.01% 0.75% 2.07% 3.93% 0.15%
Water 32 3.63 51.7% 0.04% 1.4% 12.7% 31.8% 2.35%

Table 3: Information on Bayesian networks from applications. Parameters characterizing the BNs are the
number of nodes n and the average number of states per node. Conditional probability table values are also
shown. These BNs have a large number of zeros in CPTs, thus for a large number of explanations x have
Pr (x) = UB(x) = 0. In these highly deterministic Bayesian networks, the additive approach turns out to
reduce run time when used in stochastic local search.

Hugin clique tree statistics Hugin execution times (sec)
BN Sum Max Median Compile Execute Total Prop.

Munin1 384,620,599 288,000,000 300 6,058.2 4,057.8 10,114.8 4,057.8
Munin2 4,861,824 504,000 320 2.089 2.445 4.535 0.815
Mildew 9,566,232 4,372,480 8,600 1.0671 3.284 4.352 0.821
Water 3,657,180 1,769,472 2,187 0.616 0.715 1.330 0.715

Table 4: Performance of Hugin on application Bayesian networks. There are clique tree statistics, and
the results in the Total column are for computing an MPE and are in seconds. The Compile and Execute
columns give the time taken in each of these two phases.

OperatorSGS, while Section 6.2.4 covers the effect of varying MAX-FLIPS in OperatorSGS.

6.2.1 Application Networks: Methodology

The BNs investigated here, most of which are taken from Friedman’s Bayesian Network Repository, are
denoted Munin1, Munin2, Mildew, and Water. (At the time of this writing, the location of the Bayesian
Network Repository is http://www.cs.huji.ac.il/labs/compbio/Repository/.) Given our emphasis on
additive utility and gain derived from MAXSAT, we focus on BNs with a substantial number of zeros; see
Table 3.
The Munin BNs, Munin1 and Munin2, are medical BNs from the field of electromyography. The Munin1

BN has, among the BNs we consider here, the largest total clique tree size and the slowest compile and per-
propagation execution time. The Water BN models the biological processes of water purification, while
Mildew is for making dosage recommendations regarding the amount of fungicide needed to fight mildew in
wheat. For each of these BNs, statistics for the CPT values along with the number of nodes and the average
number of states per node are presented in Table 3.
For these application BNs, we first ran Hugin. Following the methodology presented in Section 6.1.1,

for each BN the resulting MPE probability Pr(x∗) was then used as utility limit Umin = Pr(x∗) for SGS.
This approach makes our comparison between algorithms more informative as discussed in Section 5.1.

6.2.2 Application Networks: SGS and Hugin

The goal of the experiments we report on now is to compare the performance of OperatorSGS and Hugin
using BNs from applications. Results forHugin are shown in Table 4; the fill in weight triangulation heuristic
was used. In Table 4, all Hugin timing results are averages of 30 experiments, except for Munin1 which is
the average of 5 experiments.
Results for OperatorSGS are shown in Table 5. We use approximately optimal parameter settings for

OperatorSGS. Reflecting our analytical result in Theorem 58, OperatorSGS uses homogenous initial-
ization portfolios with the forward simulation (FS) and forward dynamic programming (FDP) initialization
operators here. Further experiments investigating the impact of varying the search portfolio and MAX-FLIPS
on the performance of OperatorSGS can be found in Section 6.2.3 and Section 6.2.4.
Comparing the results for Hugin and OperatorSGS in Table 4 and Table 5 respectively, we make the

following observations. First, OperatorSGS is highly competitive with Hugin for these BNs. Particularly
impressive is the performance of OperatorSGS for Munin1 and Water, where the computation time of
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OperatorSGS input parameters Computation times
BN Initialization Search MAX-FLIPS pA Time (sec) Flips

Munin1 pFS = 1.0 pMN = 0.05, pMG = 0.05, pAG = 0.45, pAN = 0.45 30 0.9 0.02537 25.37
Munin2 pFS = 1.0 pAN = 0.5, pAG = 0.5 70 1.0 1.385 245.5
Mildew pFDP = 1.0 pMN = 0.336, pMG = 0.504, pAN = 0.064, pAG = 0.096 200 0.16 0.2404 193.3
Water pFS = 1.0 pAN = 0.1, pAG = 0.9 10 1.0 0.00625 61.71

Table 5: Performance of OperatorSGS on application Bayesian networks. The values of approximately
optimal input parameters, including initialization and search operators, as well as results for computing an
MPE are shown. Note how pA, or additive probability, is non-zero in all cases.

OperatorSGS (measured in seconds) is substantially better than Hugin’s. For Munin1, one Hugin prop-
agation takes 3,912.4 seconds while OperatorSGS computation time is 0.02537 seconds. For Water, one
Hugin propagation takes 0.715 seconds while OperatorSGS computation time is 0.0625 seconds. Second,
for three of the BNs in Table 5, approximately optimal OperatorSGS performance is obtained for additive
probability pA ≥ 0.9, thus highlighting the power of our additive approach.

6.2.3 Application Networks: Different Search Operators

In this set of experiments with OperatorSGS, we investigated different search operators by varying the
search portfolio ΛS . The purpose of these experiments was to investigate the effect of varying additive
probability pA and noise probability pN . Appropriate use of noise has been found to be a powerful way to
improve SLS performance [20, 31, 34, 54, 58, 77, 78]; however we know of no previous experiments where the
effect of varying additive probability pA is systematically investigated. To do so, we considered the following
search portfolio.

Definition 61 (Search portfolio) The search portfolio ΛS(pN , pA) is parametrized by noise probability
pN and additive probability pA and is defined as

ΛS(pN , pA) := {(AN, pApN ) , (AG, pA(1− pN )) , (MN, (1− pA)pN ) , (MG, (1− pN )(1− pA))} .

By introducing ΛS(pN , pA), we reduce the three-dimensional problem of varying probabilities in the
portfolio ΛS(pAN, pAG, pMN) from Definition 46 into a two-dimensional problem of varying probabilities pN
and pA. Reflecting Theorem 58, a BN-specific optimal initialization algorithm – either forward simulation
[28] or a randomized variant of the Viterbi algorithm [63, 83] – was used in ΛI for each application BN.
Forward simulation was used for Munin1, Munin2, and Water. Mildew was initialized using the forward
variant of the randomized Viterbi algorithm. BN-specific values for MAX-FLIPS were also used: MAX-
FLIPS = 30 for Munin1, MAX-FLIPS = 100 for Munin2, MAX-FLIPS = 10 for Water, and MAX-FLIPS
= 200 for Mildew.
For each application BN, the probability of using an additive operator, pA, was varied from pA = 0

to pA = 1 in increments of ∆pA = 0.1. Noise probability pN was varied from pN = 0.1 to pN = 0.9 in
increments of ∆pN = 0.2. We call these and similar run time curves generated by varying the probability
pA “additive response curves”, since they are similar to noise response curves generated by varying the
probability pN [31,54]. Results, in the form of sample means and piecewise linear approximations for r̂(pA),
are reported in Figure 11. Each data point represents the mean of 1,000 experiments.
In Figure 11, the case pN = pG = 0.5 represents the situation where greedy and noise search operators

are applied with equal probability. Further, at pA = 0 only the operators MN and MG are applied, while at
pA = 1 only AN and AG are used. Previous experimental results are at pA = 0 if they only use multiplicative
gain and not additive gain in their search heuristics; we will shortly see the disadvantage of this traditional
approach.
Some of the main points found in Figure 11 are as follows. One main novel result is that varying pA

has, in many cases, a striking impact on SLS run time. Specifically, by using pA = 0 as is employed in most
traditional SLS approaches to BN inference, one may obtain far from optimal performance. The impact
depends on the particular BN and also varies dramatically with noise level pN .
In Figure 11, the shapes of the additive response curves for Water, Munin1, and Munin2 are quite similar:

Optimal levels of pA, p∗A, appear to be found at high values of pA, and for such values the impact of noise
is relatively minor. Combining high noise probability pN and low additive probability pA has, on the other
hand, a very negative impact on run time. Examples of this can be found for pN = 0.7 and pA = 0.1 in
Figure 11 for Water, Munin1, and Munin2. Robust OperatorSGS performance, with respect to variations
in pN , is ensured by using a high value for pA.
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The shapes of the OperatorSGS run time curves for Mildew are somewhat different than those for
Water, Munin1, and Munin2. Here we find, in all cases, monotonic decreases in run times for small values
of pA and monotonic increases in run times for large values of pA. These convex empirical curves suggest
an optimal value for p∗A that is increasing with pN . A relatively high level of noise improves the run time on
Mildew; pN = 0.5 gives best results in these experiments, with an average run time of 209.8 flips at p̂∗A = 0.2.

6.2.4 Application Networks: Impact of Restart

In this section we investigate the impact, on OperatorSGS performance, of varying the restart parameter
MAX-FLIPS along with pA and pN . We experiment with Mildew since it has the most challenging (and
interesting) additive response curve in Figure 11. Similar to in Section 6.2.3, we employ the search portfolio
ΛS(pN , pA). In order to further investigate the region where minimal average run time occurred in Figure 11,
we varied additive probability pA from pA = 0.1 to pA = 0.3 in increments of ∆pA = 0.02. Noise probability
pN was varied from pN = 0.3 to pN = 0.6 in increments of ∆pN = 0.1.
Results, in the form of sample means and piecewise linear approximations for r̂(pA), are reported in Figure

12. Each data point represents the mean of 1000 runs. In each panel of Figure 12, varying MAX-FLIPS has
a substantial impact. Generally, MAX-FLIPS = 50 gives the fastest run time. Further, careful optimization
of pA, pN , and MAX-FLIPS gives significant benefit, and the approximate performance optimum is at pA =
0.17, pN = 0.4, and MAX-FLIPS = 50. We also note that most of these curves are convex or almost convex,
lending support to a hypothesis that the underlying analytical curves are convex rational functions.

7 Related Work and Discussion

The problem of computing a most probable explanation (MPE) in Bayesian networks has been addressed
using exact algorithms [2, 37, 45, 47, 71, 80, 86] as well as inexact algorithms [39, 41, 48, 55, 61]. In addition,
there is related work on SAT and MAXSAT [27, 35, 54, 76, 78, 79] as well as on weighted MAXSAT [10, 19,
29, 42, 44, 46, 67, 75, 84]. Since a comprehensive literature review is well beyond the scope of this article, we
only discuss the previous research most closely related to our work in the rest of this section.

7.1 Portfolio Algorithms

Our work is related to research on hybrid or portfolio algorithms [25, 26, 38, 85]. Huberman, Lukose, and
Hogg investigate hard computational problems and how heuristic algorithms, often randomized, have been
developed to solve such problems [38]. Their main emphasis is on portfolios of independent Las Vegas
algorithms, where run times can be described using probability distributions, and consequently one can
form expectation and variance (or standard deviation). By considering the 2-dimensional space spanned by
expectation and standard deviation, an effi cient frontier an be formed, similar to what is done in economics,
based on varying the fractions of CPU-time allocated to different Las Vegas algorithms in a portfolio.
Empirically, the NP-hard problem of graph coloring was studied using the Brelaz heuristic. By taking a
portfolio approach, it was found that expected performance could be increased by 30% while also reducing
risk (or standard deviation) [38]. While the main emphasis of Huberman, Lukose, and Hogg is on completely
independent algorithms, they also discuss cooperating algorithms which is our main focus in SGS.
Gomes and Selman note that performance profiles vary dramatically among different algorithms over

different problem instances [25]. In response, they investigate portfolios of algorithms, and find that it can
be beneficial to combine algorithms with high run time variance in portfolios. Gomes and Selman consider
one or more Las Vegas algorithms running independently and in parallel on multiple processors. They
investigate constraint satisfaction and mixed integer programming problems empirically, and conclude that
optimal portfolio design strongly depends on details of the run time distribution.
Lagoudakis and Littman formalize algorithm selection as a Markov decision process, and investigate

a reinforcement learning approach to learning the value function [43]. Algorithms are selected from the
portfolio in a cooperative, not independent, manner. Experimentally, they obtain promising results on
algorithms for sorting and order statistics selection. Xu et al. integrate a learning approach with SAT
algorithm portfolios [85]. All algorithms in the portfolio execute all problem instances in the training set in
order to learn empirical hardness models. Learning is performed using features that characterize the problem
instances, and learned ridge regression models are used to predict run times for individual problem instances.
During test, a problem instance is solved by the SAT algorithm predicted to be fastest, hence there is no
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cooperation between algorithms. Using this approach, strong results in the 2007 SAT competition have been
reported [85].

7.2 Stochastic Local Search for SAT Computation

We distinguish between local search algorithms that rely on the use of a history or memory (of search)-
and those that do not. For example, tabu-search [24, 68] and guided local search [39, 64, 67] are both
meta-heuristics that introduce histories into local search. Roughly speaking, guided local search modifies
the objective function during search as a tactic to escape states that are local minima, while tabu search
dynamically maintains a list of search space states that it does not immediately re-visit. While the use
of history has been found to be powerful, it also significantly complicates analysis, and we here emphasize
algorithms that do not rely on histories.
We first consider related research on stochastic local search for solving the satisfiability problem (SAT)

[27, 35, 54, 76, 78, 79]. An early contribution was the GSAT algorithm, which searches for a satisfying
truth assignment in a CNF formula [79]. GSAT is controlled by the number of local search steps before a
restart, MAX-FLIPS, and the number of restarts, MAX-TRIES [79]. A major contribution of GSAT was its
“sideways moves”; the algorithm continues to flip variables even when the number of satisfied clauses stays
the same. Experiments showed that GSAT outperformed the Davis-Putnam (DP) algorithm on synthetic
instances [65], and strong performance on other problems including graph coloring, the N-queens problem,
and Boolean induction were also reported [79].
The GSAT algorithm has been extended in a number of directions (see [35] for a summary). For instance,

the three heuristic techniques of clause weighing, averaging in of previous near solution, and (mixed) random
walk have all been found to improve the performance of basic GSAT [77]. Mixed random walk, which is
also known as WalkSAT [54, 78], combines random walk and greedy local search and is more focused
than random noise in that it applies noise only in variables that occur in unsatisfied clauses. The main
conclusion of an empirical evaluation was that mixed random walk is superior to simulated annealing and
random noise in a wide range of cases [78]. Further flip selection strategy improvements – such as WSAT-
G [54], WSAT-B [54], Novelty [54], Novelty+, and DLM [76] – have followed, along with progress in noise
adaptation [20,31,54].

7.3 Stochastic Local Search for MPE and MAP Computation

We now discuss related research using stochastic search techniques to compute MPE or MAP in Bayesian
networks [41, 48, 55, 61, 68, 69, 72]. Pearl argued early on that stochastic simulation, also known as Gibbs
sampling, can be used for computing the MPE although the algorithm was primarily intended for belief
updating [72, p. 216, p. 262]. In stochastic simulation, evidence nodes are clamped, and then random
samples are created by randomly picking among a node’s states based on their probabilities as given the
node’s Markov blanket.
An early investigation of MPE computation by means of stochastic search techniques considers iterative

local search (ILS), simulated annealing (SA), and genetic search (GS) [48]. ILS is a probabilistic hill-climbing
that combines next-ascent and random-mutation hill climbing. ILS stops on (local) maxima, however since
it iterates, it typically finds many maxima, one of which might be an MPE. For the empirical study of these
algorithms a bipartite BN version of the QMR medical knowledge base, QMR-DT, was used. Experiments
with ILS, SA, and GS showed that they converged, in many cases, to an MPE. In terms of computational
speed, ILS was found to be significantly faster than SA which was significantly faster than GS. However,
SA was more accurate than ILS and GS. It is speculated that the weaker performance of ILS was due to
the local search getting trapped in the plethora of local maxima [48].
Kask and Dechter empirically investigated MPE computation using stochastic simulation [41], and con-

cluded that it does not perform as well as a greedy approach or as an approach where stochastic simulation
and greedy search is combined. In addition, they found that augmenting the approach with the mini-bucket
algorithm for initialization was important, which is in line with our results. We note that both stochastic
simulation and greedy search are operators in OperatorSGS, such that combining greedy search and sto-
chastic simulation, as well as additional algorithms, within the SGS framework is easy. For the purpose of
computing MAP, which generalizes MPE, Park and Darwiche investigated a total of 11 SLS algorithms and
found that they performed very well, in particular when MPE-based initialization was used [69].
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7.4 Weighted MAXSAT and Bayesian Networks

Recently, much progress has been made in developing solvers for the weighted MAXSAT problem [19,
29, 42, 44, 46, 84]. An early algorithm was WeightedWalkSAT [42], a generalization of WalkSAT.
It was emphasized how the weighted MAXSAT problems could encode hard and soft constraints in discrete
optimization problems, including NP-complete problems such as network Steiner tree problems. Network
Steiner tree problems are concerned with finding paths in graphs. Using an approximate encoding of
Steiner tree problems, for which much of the numeric information can be represented using clause weights,
WeightedWalkSAT was shown to produce strong empirical results [42]. The GRASP algorithm also
solves weighted MAXSAT using local search. Specifically, GRASP uses greedy randomized adaptive search,
computing locally optimal solutions and using path relinking techniques to improve search [19].
The weighted MAXSAT problem can also be solved using exact (complete) algorithms, often based

on the DP [13] and DPLL [12] algorithms. The MaxSolver uses heuristic strategies for DPLL, giving
strong performance in experiments with random problems instances as well as problems instances from
applications [84]. Other weighted MAXSAT solvers, for which details are beyond the scope of this article,
include the MaxSatz [46], MiniMaxSAT [29], and MaxDPLL [44] solvers.
There is a close connection between weighted model counting and MPE computation [10, 67, 75], and

the use of weighted MAXSAT solvers to solve the MPE problem and the use of MPE solvers to solve the
weighted MAXSAT problem has been investigated [67, 75]. Park encodes the MPE problem as a weighted
MAXSAT problem, uses weighted model counting algorithms to compute answers to probabilistic queries,
and finds that the incomplete guided local search (GLS) algorithm performs very well [67].

7.5 Other Related Work

Other related work includes exact BN algorithms such as clique (or join) tree propagation [2, 40, 45, 80],
conditioning [9, 71], variable elimination [15, 47, 86], arithmetic circuit evaluation [6, 11], and AND/OR
search [17]. The compilation paradigm, which underlies clique tree propagation and arithmetic circuit
evaluation, is well-suited to resource-bounded and real-time settings [56, 66], and has found application
in sensor validation and diagnosis of electrical power systems in aerospace vehicles [59, 60]. Recently, a
connection between BNs and multi-linear functions has been made [10, 11], supporting the compilation of
BNs into arithmetic circuits [6,10,11]. The compilation of BNs into arithmetic circuits may rely on encoding
of a BN into a CNF formula [10], which has been shown to take advantage of determinism [4] as well as
other local structure in BNs [5]. Chavira and Darwiche encode a BN in the form of a weighted CNF
theory, and investigate the effect of search versus compilation; different encodings; and local structure and
evidence [5, 7].

7.6 Discussion and Comparison

We now discuss how our SGS approach is similar to and different from related research, and also how
OperatorSGS and SimpleSGS compare. SimpleSGS was primarily inspired by previous seminal research
on stochastic local search for SAT, in particular the GSAT andWalkSAT algorithms [78,79]. SGS is also
related to ILS and SLS, and extends ILS by applying to a wider range of BN topologies, using the additive
measure, and using more advanced initialization operators before local search commences. We also note that
the random-mutation hill climbing of ILS gives an effect similar to that of SGS noise operators. SLS [41],
which was developed independently of SGS, shares several characteristics with SGS, such as stochastic
steps and initialization that goes beyond initialization uniformly at random. However, there are several
important differences between SGS and SLS, including the initialization algorithms, the fact that SGS can
use different measures of gain (including additive gain), as well as the fact that SGS has an operator-based
variant OperatorSGS.
OperatorSGS makes a stronger distinction between utility and gain than SimpleSGS and other SLS

algorithms. A key point is that each compound search operator has an associated gain, which is unrelated
to how an explanation’s overall utility is computed using U . So, for example, some search operators in ΛS
can use additive gain ∆UA, while the overall utility of an explanation can be computed using multiplicative
utility UM . This provides greater flexibility than what is present in SimpleSGS and other SLS algorithms.
Operators that use the additive measure are optimized for the special but often occurring case of deterministic
nodes, while operators using the multiplicative measure are optimized for the general case of probabilistic
nodes. SimpleSGS as well as other SLS algorithms can not use both measures in the same invocation of
the algorithm, while OperatorSGS can. Since many application BNs contain both probabilistic nodes
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and deterministic nodes, it turns out that using ∆UA and ∆UM in combination gives, in many cases, faster
computation of MPEs using SGS. See Section 6.2 for supporting experiments with application BNs.
OperatorSGS can simulate SimpleSGS in the following manner: One can regard the noise and hill-

climbing steps of SimpleSGS as two operators chosen from a stochastic search portfolio ΛS of size two,
where one search operator is a greedy operator such as AG, the other is a stochastic operator such as NU:
ΛS = {(NU, pN ), (AG, 1− pN )}. And we can regard SimpleSGS initialization as an initialization operator
chosen from an OperatorSGS stochastic initialization portfolio ΛI of size one: ΛI = {(UN, 1)}. The
advantage of OperatorSGS compared to standard SGS is generality and flexibility, which typically leads,
as shown in experiments in Section 6.1 and Section 6.2, to better performance. Further, as detailed in Section
6.1, the speed of OperatorSGS and SimpleSGS is essentially the same on SAT-like BNs.
Previous portfolio-based approaches have emphasized running multiple heuristics independently, either

on the same computer or independently on multiple computers [25, 38]. Alternatively, they have picked,
for a particular problem instance, the best algorithm among a portfolio of algorithms [85]. In comparison,
there is in OperatorSGS a cooperation between heuristics (similar to [43]), in the sense that initialization
and search operators work on the same explanation x to compute an MPE estimate x̂∗. There is currently
no learning in OperatorSGS, unlike in some related work [36, 43, 74, 85]. Finally, we note that our Las
Vegas analysis and experimental approach is different from most previous efforts in several ways. First,
we emphasize finding an MPE, and not just getting close to it, and therefore we compare with an exact
method, the Hugin clique tree clustering algorithm. Second, our synthetic networks are constructed in a
systematic way, generating instances of varying hardness. This allows us to experimentally show that SGS
can outperform Hugin on synthetic BN of increasing hardness.
Comparing SLS algorithms with a broader range of algorithms including those for weighted MAXSAT

[10, 19, 29, 42, 44, 46, 67, 75, 84], we find that two broad approaches are emerging: In the encoding approach,
instances of one problem (say, MPE) can be encoded as another (say, weighted MAXSAT). A current
view is that MPE and weighted MAXSAT are complementary, where an instance of one problem can be
encoded as an instance of the other problem, with some loss of effectiveness [75]. In the generalization
approach, on the other hand, one or more existing algorithms or techniques are generalized to handle a wider
range of problems. For instance, one may generalize from MAXSAT to weighted MAXSAT (see [42,44]) or
from MAXSAT to MPE (as in [58] and in this article). The two approaches, encoding and generalization,
both have their pros and cons. In the encoding approach, there is a separate encoding or compilation
step that can be performed off-line. This step can thus be amortized over a potentially large number of
queries to the same problem instance. A disadvantage is that encoding may lead to a blow-up in problem
instance size. Understandability and simplicity are, on the other hand, facilitated by the generalization
approach; disadvantages include the lack of an off-line step and ability to take advantage of special problem
structure. It appears that both approaches merit investigation, and in this paper we generally are taking a
generalization approach.

8 Conclusion and Future Work

Stochastic local search has proven to be powerful algorithms for finding satisfying assignments in satisfiability
(SAT) instances [27,35,54,76,78,79]. In this article, we discuss the generalization of stochastic local search
from the logical case of SAT to the probabilistic case of Bayesian networks (BNs). While SLS techniques for
MPE and MAP computation are well established [41,48,61,68,69], we present here several novel techniques
and results centering around search and initialization portfolios as well as an additive measure of utility
and gain. These techniques have been incorporated into the SGS stochastic local search approach, which
heuristically computes a most probable explanation (MPE) in a Bayesian network. SGS combines greedy
search, stochastic search, and stochastic initialization algorithms. We have presented two SGS algorithms,
namely simple SGS (SimpleSGS) and operator-based SGS (OperatorSGS); the latter is more flexible and
general than the former due to its initialization and search portfolios. The initialization and search portfolios
of OperatorSGS contain operators, which are algorithms for initialization or search respectively, along
with probabilities that control their selection and execution. The OperatorSGS algorithm, for which we
provide both theoretical and experimental results, is closely related to previous research on SLS algorithms
for MPE and MAP computation [41, 68, 69] as well as to work on portfolio (or hybrid) algorithms for other
computational problems [25,26,38,39,61,85].
We carefully formalized the concepts of SLS utility and gain in the context of MPE computation, and

emphasized our additive approach. The additive measure, for which we provided several new results, is a
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generalization of GSAT’s andWalkSAT’s utility and gain measures to the probabilistic setting. Application
BNs often have many deterministic nodes, and the additive measure turned out to be very powerful in
such BNs. This measure has, to our knowledge, not been extensively studied in previous research on MPE
computation using stochastic local search, and we also investigated how it relates to traditional multiplicative
gain as used in other SLS algorithms for MPE. In addition, we introduced a novel Markov chain model,
augmented random walk, where the behavior of OperatorSGS’s initialization and search operators is
explicitly represented as Markov chain states. We also showed that the optimalOperatorSGS initialization
portfolio is homogenous.
Two sets of experiments have been conducted. We have shown that SGS outperformsHugin on hard BNs

constructed from satisfiability instances, and also outperforms Hugin on application BNs with a high degree
of determinism. In one set of experiments, we have utilized an approach to constructing synthetic Bayesian
networks of varying hardness [62]. This approach helps in developing an understanding of the suitability of
different algorithms for different classes of BNs. In these experiments, we found that SGS can outperform
Hugin by well over one order of magnitude, and in particular that SGS consistently performed one or more
orders of magnitude better than the state-of-the-art exact algorithm Hugin as the C/V -ratio was varied. In
addition, we found that the additive measure UA gave better performance than the multiplicative measure
UM in partly deterministic, SAT-like networks.
Experiments with OperatorSGS on application BNs have also been done. We have found that the

algorithm is quite effective on these networks too, and performs comparably to Hugin. Key factors in
the success of OperatorSGS are the initialization operators, the additive measure, and the approach of
using a portfolio of operators for computation. OperatorSGS’s varying approximately optimal parameter
values, including values for the selection probabilities of the initialization and search operators, highlights
the importance of the portfolio approach to stochastic local search.
Areas for current and future work include the following. First, the important role of portfolios and

different measures of gain, especially in application networks, highlights the opportunity of adaptively tuning
the probabilities (similar to noise adaptation [20,31,54]) of portfolio operators when computing MPE or MAP
for a given BN. While our focus here has not been on adaptation or learning during search, we believe that our
framework and results can also enable innovations in these areas, thereby further enhancing portfolio-based
stochastic local search algorithms. Both analytical and experimental work on portfolio adaptation would be
of great interest. Second, in local search, an essential question is how to escape from local minima. In this
article, our answer has been the use of noise, which is a local escape mechanism. Another approach is to use
crossover from genetic algorithms. In the MPE or MAP context, crossover would take place between two
explanations, thus providing a more global escape mechanism than noise. More generally, there is potential
for additional hybridization, for example combining stochastic local search with clique tree clustering. Third,
additional investigation of when to terminate, other than by using a Las Vegas approach or time limits, is
needed in order to increase the easy-of-use of the SGS approach in applications.
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Figure 10: Empirical results for synthetic BNs under different experimental conditions for OperatorSGS.
The additive search operator AG is used in the column to the left, the multiplicative search operator MG
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Figure 11: Empirical results for OperatorSGS for the BNs Munin1, Munin2, Water, and Mildew under
different experimental conditions. The additive probability pA, or the probability of applying an additive
search operator, varies from pA = 0 to pA = 1 as shown on the x-axis. The noise probability p = pN is
varied from pN = 0.1 to pN = 0.9 according to the labels. Each data point represents the sample mean of
1000 runs. Clearly, varying pA and pN has a significant impact on run time.
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Mildew, noise probability p = 0.3
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Mildew, noise probability p = 0.5
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Mildew, noise probability p = 0.6
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Figure 12: Empirical results for the Mildew BN under different experimental conditions for OperatorSGS.
The probability pA of applying an additive search operator, varying from pA = 0.1 to pA = 0.3, is shown
on the x-axis. The noise probability p = pN is systematically varied from pN = 0.3 (top left) to pN = 0.6
(bottom right), and the restart parameter MAX-FLIPS is varied according to the labels. Each data point
represents the sample mean of 1,000 runs. Clearly, varying pA, pN , and MAX-FLIPS has a significant impact
on run time.
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