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This paper presents a framework aimed at monitoring the behavior of

aircraft in a given airspace. Trajectories that constitutes typical operations

are determined and learned using data driven methods. Standard proce-

dures are used by air traffic controllers (ATC) to guide aircraft, ensure

the safety of the airspace, and to maximize the runway occupancy. Even

though standard procedures are used by ATC, the control of the aircraft

remains with the pilots, leading to a large variability in the flight patterns

observed. Two methods to identify typical operations and their variabil-

ity from recorded radar tracks are presented. This knowledge base is then

used to monitor the conformance of current operations against operations

previously identified as typical. A tool called AirTrajectoryMiner is pre-

sented, aiming at monitoring the instantaneous health of the airspace, in

real time. The airspace is “healthy” when all aircraft are flying according

to the typical operations. A measure of complexity is introduced, measur-

ing the conformance of current flight to typical flight patterns. When an

aircraft does not conform, the complexity increases as more attention from

ATC is required to ensure a safe separation between aircraft.
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I. Introduction

To address the challenges of increase in air traffic volume, new technologies and proce-

dures are being developed in the context of NextGen1 in the US and SESAR2 in Europe.

Automation is a key element, necessary to achieve the goals set by those programs. New

procedures involving more accurate navigation are predicted to increase the capacity of the

airspace. Analyzing trajectory records is a key element to assess the performances and the

accuracy of new concepts of operations. Automated tools are needed to process the large

amount of daily flights and corresponding records. This work presents two methods to clus-

ter trajectories and identify flights that followed identical air routes. The first method is

based on the identification of way-points in the trajectories, and the second method is based

on a principal components analysis of re-sampled trajectories. Operations in the terminal

area are managed by Air Traffic Controllers (ATC) and are not part of the flight plans.

It was therefore decided not to use any flight plan knowledge or aircraft intent other than

the destination airport. Then using the knowledge gathered from the clustering methods,

we propose a real time airspace monitoring tool that evaluates the conformance of current

flight to pre-identified typical trajectories. A measure of airspace complexity based on this

conformance is also proposed with the tool. The overall method developed in this paper is

neither location nor data specific and can easily be adapted to other data sets since unsu-

pervised methods are used, and the data is not labeled. This paper considers radar tracks in

a terminal radar approach control (TRACON). However, the underlying principles may also

be used for other applications, such as a fleet of GPS-equipped trucks. Since this paper deals

with different problems such as trajectory clustering, airspace monitoring and airspace com-

plexity, the literature review is spread along the paper at the beginning of the corresponding

section. The remainder of this paper is organized as follows: The first section presents the

data set used for the study. The second section presents the trajectory clustering methods,

and finally, before the concluding remarks, the third section introduces AirTrajectoryMiner,

the airspace monitoring tool that detects in real time the aircraft that do not comply to

typical operations. In the paper, trajectories constituting typical operations will also be

refereed as nominal trajectories.
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II. Available Data

The available data a consists of records of flight tracks over the San Francisco bay area, for

the first 3 months of 2006. The records cover the Northern California TRACON (NCT), that

is, a cylinder of radius 80km and height 6,000m centered at Oakland International Airport

(OAK). The NCT contains 3 main airports � Oakland, San Francisco (SFO) and San Jose

International airports � as well as many smaller airports. The NCT is the fourth busiest

terminal area in the US3 with an average of 133,000 flight instrument operations per month

in 2006. The data, made of the position and speed of aircraft, is organized by flight and also

contains meta-data for each flight that include: type of operation (departure/arrival), origin

and destination airports, aircraft type (business, jet, helicopter, other, etc), date and time

of beginning of record, duration of the record, etc.

Using the available meta data, visual flight rules (VFR) traffic is discarded, since it

is more unpredictable and does not follow the same rules as instrument flight rules (IFR)

traffic. The meta data is used to sort trajectories by airport and operation type, i.e. take

off or landing. After a visual analysis of the flight patterns for the different airports, it was

decided to focus the study on the landings at SFO. It is the busiest airport in the NCT

and the arrival tracks present the most interesting patterns by their numbers and variety.

The most frequent configuration is the “West” configuration, where aircraft land on runways

28L/R and take off from runways 19L/R. A diagram of SFO is presented in Figure 1, and

Figure 2 depicts the NCT traffic patterns typically used in the west configuration.

In this paper, the axes are set by the radar, located at (0, 0, 0). The x and y axes

define the horizontal plane and z the vertical direction, positive going upward. To each

recorded flight, corresponds an aircraft i and a trajectory Ti, i = 1 . . . r, where r is the total

number of trajectories of interest in the dataset. Each trajectory Ti is a ni × 4 matrix,

and the line T li of Ti is the lth radar echo, given by T li = (xli, y
l
i, z

l
i, t

l
i), where (xli, y

l
i, z

l
i)

is the 3 dimensional coordinates of aircraft i at time tli. The trajectories have different

numbers of points ni, varying from 10 to about 550 points, depending on the duration of the

trajectory. Trajectories with a few data-points usually correspond to short flights from San

Jose International Airport or Oakland International Airport to SFO. The interval between

points is between 4 and 5 seconds and is given by the rotational speed of the radar (most

likely 4.8 sec). The time stamp tli is rounded to the nearest second.

aThe complete dataset is available for download https://dashlink.arc.nasa.gov/data/
flight-tracks-northern-california-tracon/
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Figure 1. San Francisco airport diagram with take off and landing direction in the west
configuration

Figure 2. NCT standard traffic patterns, west configuration, image courtesy of Federal Avia-
tion Administration
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III. Trajectory Clustering

In this section, two trajectory clustering methods are presented. After a review of existing

trajectory clustering methods, a technique based on trajectories’ “way-points” is presented.

Then, a technique based on a principal component analysis of re-sampled and augmented

trajectories is introduced.

A. Literature Review

The use of positioning devices such as GPS and the collection of data has increased over

the past 15 years leading to an increasing number of tracking applications. An objective of

tracking is to discover common patterns on the one hand, and detect outliers on the other

hand.

Piciareli et al.4 presented an on-line trajectory clustering method for real time video

surveillance. Moving objects, such as pedestrians, are identified in video frames and their

trajectories are compared against existing cluster representatives, that is, an average of all

the trajectories in the cluster. The match between a trajectory and a cluster is determined

using the mean of the normalized distances of every trajectory point to the nearest point of

the cluster representative. If a match is found, the cluster representative is updated. If not,

a new cluster is created. In this approach, the cluster representatives evolve with time. This

clustering method was used by Dahlbom and Niklasson for coastal surveillance but failed to

provide satisfactory results when dealing with real data sets5 such as ship trajectories.

Lee et al.6 presented a partition-and-group framework for trajectory clustering. Trajec-

tories are partitioned in sub-trajectories. Sub-trajectories are represented by line segments

and grouped using a distance function. The distance function incorporates three components

that measure the perpendicular distance, the parallel distance and the angular distance be-

tween the line segments. The clustering algorithm is density based, i.e clusters are created

where the density of points is the highest. The formulation is powerful but the results are

presented on very noisy data where it is difficult to visually cluster the trajectories.There

exists no well-defined measure to assess the results of the clustering method. Based on the

same distance measure, Lee et al.7 present a trajectory outliers detection procedure. The

results are presented on the same noisy datasets and therefore difficult to evaluate visually.

Vlachos et al. used similarity functions based on the longest common subsequence (LCS)

to discover similar multidimensional trajectories.8 Their LCS based clustering method ap-

pears to be more efficient than Euclidean distance based measures and dynamic time warping
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distance functions, especially in the presence of noise.

Eckstein proposed an automated flight track taxonomy9 . The trajectories are first re-

sampled, then clustered using k-means on a reduced order model. The model reduction is the

truncation of a proper orthogonal decomposition (POD), also called principal components

analysis. The trajectories are clustered using only the first two modes of the decomposition,

as they capture 95% of the fluctuations of the dataset used.

B. Overview of k-means and DBSCAN Clustering Algorithms

Overview of k-means10 This paragraph presents a brief overview of the k-means algo-

rithm. For more details, the reader is refereed to.11 Given a set S = (tp1, . . . tp|S|) of |S|
observations (turning points in our case), where each observation is a d-dimensional real vec-

tor, then k-means clustering aims at partitioning the |S| observations into k sets, or clusters,

(k < |S|), C = {C1, C2, . . . , Ck} so as to minimize the within-cluster sum of squares:

arg min
C

k∑
i=1

∑
tpj∈Ci

∥∥tpj −mi

∥∥2
(1)

where mi is the mean of Ci. The mean mi of a cluster is called centroid and is the center of

mass of all the elements in the cluster. The number k of clusters is the only input required

from the user.

Starting with an initial set of k centers m
(1)
1 , . . . ,m

(1)
k , which may be specified randomly or

by some heuristic, the algorithm proceeds by alternating between two steps, also known as

Lloyd Algorithm:12

Assignment step: Assign each observation to the cluster with the closest mean, that

is partition the observations according to the Voronoi diagram generated by the centroids

of the clusters. Figure 3 presents the results of k-means clustering and the corresponding

Voronoi diagram.

C
(t)
i = {tpj :

∥∥tpj −m
(t)
i

∥∥ ≤ ∥∥tpj −m
(t)
i∗

∥∥,
for all i∗ = 1, . . . , k}

(2)

Update step: Calculate the new means to be the centroid of the observations in the
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cluster.

m
(t+1)
i =

1

|C(t)
i |

∑
tpj∈C

(t)
i

tpj (3)

The algorithm is deemed to have converged when the assignments no longer change.

Since it is a heuristic algorithm, there is no guarantee that it will converge to the global

optimum, and the result may depend on the initial clusters. Since the algorithm is usually

very fast, it is common to run it multiple times with different starting conditions and keep

the run that resulted in the minimum value for equation 1.

Figure 3. Clusters of turnings points and corresponding Voronoi diagram

Overview of DBSCAN This paragraph presents a brief overview of the DBSCAN algo-

rithm. For more details, the reader is refereed to.13 DBSCAN 14 stands for Density-Based

Spatial Clustering of Applications with Noise. DBSCAN clusters points that are close to-

gether (in an ε neighborhood), and surrounded by sufficiently many points. DBSCAN re-

quires two parameters: a real,ε, and the minimum number of points, MinPts, required to

form a cluster. The ε-neighborhood of a point p consists of all the points q s.t dist(p, q) ≤ ε.

If the ε-neighborhood of a point p contains more than MinPts, a new cluster is started,

with p as a core object. DBSCAN then iteratively collects directly density-reachable objects

from these core objects. An object q is said to be directly density-reachable from an object

p if q is in the ε-neighborhood of p and p is a core object.

If a core object q of a cluster Ci is added a cluster Cj, Ci and Cj are merged. When no
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point can be added to any cluster, the process terminates.

C. Way-point based Trajectory Clustering

This section presents a novel algorithm for aircraft trajectory clustering. This algorithm

takes advantage of aircraft trajectory properties: aircraft usually fly straight, with a limited

number of turns. This method arises from the current instrument flight rules procedures.

When approaching an airport, aircraft usually follow published procedures made of a se-

quence of way-points. A way-point is characterized by its GPS coordinates and, sometimes,

an altitude indication. The planar localization of a way-point is very accurate but its vertical

component often looks like “at or above —ft”. Vertical clearances are delivered by ATC and

trajectories’ vertical profiles are then at the discretion of the pilots. Therefore, this method

focuses on the 2D coordinates of the way-points in the (x, y) plane. This method is an

efficient way to determine the compliance of flown trajectories with published procedures.

Nevertheless, published procedures cannot be used because of the limited number of way-

points or reporting points located in the TRACON. In Section IV, we further show this by

comparing the results of the trajectory clustering with the published way-points.

The objective is to identify and group the turning points into “way-points”. A turning

point is a point in the trajectory where the aircraft changes heading. Then trajectories

are represented by a sequence of way-points. Finally, trajectories are clustered using the

Longest Common Subsequence (LCS). The algorithm proceeds using the following steps and

it is summarized in Figure 4:

1. Identify the location of the turning points of each trajectory.

2. Cluster the set of all the turning points of all the trajectories. This clustering task is

done using k-means11,15 or DBSCAN14 (Density-Based Spatial Clustering of Applica-

tions with Noise). Section B gives an overview of those algorithms. This clustering

provides a finite number of way-points where it has been determined that aircraft

usually turn.

3. Represent each trajectory by its sequence of way-points.

4. Cluster the sequences of way-points using the SequenceMiner algorithm.16,17 Se-

quenceMiner provides us with a representative trajectory for each cluster.
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Figure 4. Way-point clustering method

1. Turning Points Identification

The first step is to extract the location of the turning points of each trajectory. To simplify

the notations, the aircraft index i is omitted in the following equations. The heading Ψl of an

aircraft at time tl can be estimated by ψl = arctan yl+1−yl−1

xl+1−xl−1 , at each point of the trajectory,

l, l = 2 . . . n− 1, where n is the total number of points. Since the trajectory is a bit noisy, a

low pass filter is applied:

ψ̃1 = ψ1 (4)

ψ̃l = αψl + (1− α)ψ̃l−1, l = 2 . . . n− 1, (5)

where α is a constant for the filter. On this data, setting α = 0.4 provided good noise filtering

results and not too much delay. A turning point tp is identified when the heading difference

between two consecutive values of the heading exceed a threshold: |Ψ̃l − Ψ̃l−1| > Ψc. The

threshold was chosen relatively small in order to capture small heading changes but not small

enough not to capture meaningless heading changes variations: Ψc = 0.025rad = 1.43◦. This

value was set experimentally. The results are not very sensitive to a small change in Ψc. The
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number of turning points is trimmed to avoid long sequences when aircraft are executing

large turns: if two consecutive data-points are determined to be turning points, then only

the first one is kept; if three, only the middle one, etc.

The trajectory of aircraft i is now represented as a sequence of turning points Si :

Si = {tp1
i . . . tp

s
i},

where tpsi is the 3D coordinate of the sth turning point of trajectory i. The first point of the

trajectory is labeled as a turning point. Figure 5 presents a sample of 11 trajectories and

the points identified as turning points.
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Figure 5. Trajectories and identified turning points

Denote by S the set of all the turning points for all the trajectories: S = {S1 . . . Sn}.
The second step is to cluster the set S of turning points. The following section introduces

the two clustering algorithms used in this paper: k-means10 and DBSCAN.14

2. Turning Points Clustering; Creation of Way-points

To determine the way-points, the turning points are clustered: a way-point is defined as the

planar (x, y) coordinates of a cluster of turning points. The idea is to create a way-point

where it has been determined that many aircraft turned. Depending on the number and on

the density of available turning points, two different algorithms are used. When the spatial
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distribution of turning points is sparse, k-means is used, and when the distribution of turning

points is dense, DBSCAN is used.

Case when the Data is Sparse When the number of turning points is small, a den-

sity based clustering algorithm would provide poor results, identifying most of the points as

outliers. Therefore, a distance-based algorithm is used so all the turning points available are

used. A way-point is created for each cluster produced by k-means. Using cylindrical coordi-

nates, the coordinates of the center of a way-point are given by (rm θm). The center is the cen-

ter of mass of all the points in the cluster. The coordinates of the corners of the way-points are

given by {(rm + 2stdr, θm + 2stdθ), (rm − 2stdr, θm + 2stdθ), (rm − 2stdr, θm − 2stdθ), (rm + 2stdr, θm − 2stdθ)},
where stdr and stdθ are the standard deviation of the radial coordinates and angular coor-

dinates of the points in the cluster, respectively. Figure 6 presents the outcome of clustering

the way-points for one day of trajectories. Each cluster is represented using a different

color/shape combination. The way-points are represented by pairs of nested polygons on

the figure. The inside polygon corresponds to (rm ± stdr, θm ± stdθ) and the outside one to

(rm ± 2stdr, θm ± 2stdθ). The number is the label of the cluster.

Figure 6. Result of the clustering of the turning points for one day using k-means

Case when the Data is Dense When the the number of turning points is large, a

large share of the airspace is covered with turning points. A distance based algorithm such

as k-means provides meaningless clusters for our application. Figure 3 shows the clusters

provided by k-means and the corresponding Voronoi diagram for the turnings point of almost

3 months of data (30,000 trajectories).

To overcome this issue, the turning points were clustered using DBSCAN. DBSCAN
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is particularly efficient at cluster data in the presence of noise. Way-points are created

using the convex hull of the clusters resulting from DBSCAN. Figure 7 shows the result of

the clustering of the turning points using DBSCAN. The blue polygons represent the way-

points. All the points identified as outliers, i.e not associated with any way-point, are not

depicted. The parameters used were ε = 350m and minPts = 10. The main issue with

DBSCAN is its execution time since its complexity is in O(n log n). Here, the number of

turning points to cluster is n = 118, 179 for 30,000 trajectories.

Figure 7. Result of the clustering of the turning points for the entire dataset using DBSCAN.
Outliers are not displayed

3. Converting a Trajectory into a Sequence of Way-points

The way-points have been discovered using the turning points of the trajectories. Never-

theless, some trajectories might go over way-points without actually turning. To identify

the sequence of way-points followed by a trajectory, the following procedure is used for each

trajectory: start with an empty sequence of way-points, and given the set of all way-points,

run the trajectory along its original direction. If one of the points is located over a way-point,

the way-point is added to the sequence. Each trajectory is now represented as an ordered

sequence of way-points, where the number of way-points is finite. The next step is to cluster

the trajectories determining the longest common subsequence (LCS) of way-points.
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4. Longest Common Subsequence Determination

The sequences of way-points are clustered using the longest common subsequence. The LCS

problem is to find the longest subsequence common to all sequences in a set of sequences. Se-

quenceMiner16,17 is an algorithm that identifies the LCS and generates clusters of sequences.

With this method it is possible to cluster sequences that do not contain the same number

of elements. When sequences have only a small number of points, say fewer than 3, this

clustering method does not work well. Therefore, only the sequences containing more than

4 way-points are kept. The total number of way-points being small, it is preferable to focus

on the way-points at the beginning of the trajectory: since most aircraft do a final turn to

get aligned with the runway, this turning point does not bring much information about the

trajectory. Therefore, if the last turning point is in the large brown cluster (Figure 7), it is

removed from the sequence.

Figure 8 presents the results of the clustering process using k-means and LCS on a

low number of trajectories. The dataset used is the tracks of all the aircraft landing at

San Francisco (SFO) airport on February 10, 2006. Only the trajectories of that day were

used to determine the way-points. Each cluster is represented by a color. The algorithm

identifies the main flows but a few trajectories seem not to belong to the expected cluster.

The quality of the results is subjective and can only be visually assessed. Figure 9 presents

the results for an initial set of 30,000 trajectories, using DBSCAN and LCS. Here, the

denomination “Nominal” qualifies the trajectories containing more than 4 way-points. The

colors correspond to the clusters. The colors differ on Figures 8 and 9 because the indexing

of clusters is random and depends on the order of the data in the dataset.

Overall, this method presents good clustering results. One of the main drawbacks of this

method is that it only keeps the trajectories going over the way-points. For instance, consider

two parallel trajectories: one going over the way-points and the other one slightly off. The

latter will be considered as an outlier even though it is very similar to the first trajectory,

resulting in excluding many trajectories. In addition, trajectories containing large rerouting

periods will belong to the clusters as long as they pass over way-points.

D. Trajectory-based Clustering via Principal Components Analysis

This method proceeds with the following steps, which are summarized in a diagram in figure

10:

1. Re-sample the trajectories, to obtain time series of equal length for each aircraft.
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Figure 8. Results of trajectory clustering for the landings of one day at SFO

Figure 9. Results of trajectory clustering for 30,000 trajectories
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2. Augment the dimensionality of the data. Normalize and concatenate all the data into

a single vector for each flight.

3. Run a principal components analysis (PCA) and keep the first 5 principal components

(PCs).

4. Cluster using a density-based clustering algorithm.

Figure 10. Trajectory clustering method based on Principal Components Analysis

This paper proposes improvements to the approach used by Eckstein9 to realize a tra-

jectory taxonomy. In,9 trajectories are first re-sampled, then the principal components are

extracted and finally, the clustering is realized using k-means on the projections onto the

first two principal components. Figure 11(a) presents the resulting clusters on the principal

components and on the trajectories, using the methods introduced in.9 The clustering tech-

nique proposed in9 does not provide results precise enough for our data set and there is no

identification of outliers. Figure 11(b) presents a 3D view of the projection onto the first

three PCs (section 3) so it can be compared with our method. Eckstein used only the first

two PCs for clustering. The first improvement is to augment the dimensionality of the data.

Then, the PCs are computed and the projections of the augmented trajectories onto the first

five PCs are clustered using a density based clustering algorithm. This algorithm presents

the advantage of identifying outliers. Another advantage is that the number of clusters is

not set a priori.
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(a) Clusters of trajectories
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(b) Clusters of the first principal components

Figure 11. Clustering results using the method presented by Eckstein

1. Trajectory Resampling

The dataset is well organized and fairly clean. Trajectories with fewer than 50 points are

removed from the dataset: to be able to use a clustering algorithm such as DBSCAN, each

trajectory must be represented as a vector. All vectors must have the same number of el-

ements n, so their distance can be computed. Since all trajectories do not have the same

number of points, re-sampling is necessary. Trajectories are resampled so that the total

number of points for each trajectory is 50. For the sole purpose of clustering, fewer than

50 points would have been enough. Nevertheless, to improve the accuracy of the airspace

monitoring function presented in section IV, 50 points were used. The re-sampled trajectory

T ′i is given by T sampi =
{
T li , l = {round(k ni

50
), k = 1 . . . 50}

}
. During this operation, the no-

tion of speed that was given by the distance between the radar echoes is lost. For example,

consider the trajectories of two aircraft with the exact same flight path, but one going twice

as fast as the other. After re-sampling, the trajectories will have the exact same points and

it will be impossible to determine that there was a speed difference.
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2. Dimensionality Augmentation

To improve the results of the clustering, the dimensionality of the data was increased. Some

of the added dimensions present symmetry with respect to a point or a line and some do

not.

� Cartesian position of the aircraft in the re-sampled trajectory: P = [x1
i . . . x

50
i y

1
i . . . y

50
i z

1
i . . . z

50
i ].

P is a row vector with 150 components. This vector is unique to each trajectory.

� Distance from the center of the TRACONR = {rli =
√

(xli)
2 + (yli)

2 + (zli)
2, l = 1 . . . 50}.

Provides information about the rate of convergence of the aircraft toward the center of

the TRACON, which is located close to the airport. This distance presents a symme-

try with respect to the center of the TRACON, i.e two trajectories that are symmetric

with respect to the center of the TRACON will be represented with the same vector

R.

� Distance from the top left corner: D = {dli =
√

(xli − xref )2 + (yli − yref )2 + (zli)
2, l =

1 . . . 50}, where (xref , yref ) are the coordinates of the top left corner of a square con-

taining the TRACON. The top left corner has coordinates (xref , yref ) = (−80, 80)km.

This distance presents a symmetry with respect of the diagonal joining the top left

corner (−80, 80) and the bottom right corner (80,−80), i.e two trajectories that are

symmetric with respect to this diagonal will be represented with the same vector D.

� Angular position in cylindrical coordinates: Θ = {θli = arctan(
yl

i

xl
i
), l = 1 . . . 50}. With

only one dimension, the angular position provides information about the overall loca-

tion of the trajectory in the TRACON, i.e in which quadrant of the circle the trajectory

lies. This information does not present any symmetry.

� Heading of the aircraft Ψ = {ψli, l = 1 . . . 50}. The computation of the heading was

done using the filter of equation 4 and then re-sampled to 50 points. A constant value

or a slow rate of change indicate a straight trajectory, while a high variability indicates

a curved trajectory. This vector is unique to each trajectory.

The sine and cosine values of the angular position and heading are used instead of their actual

value to avoid the discontinuity at 2π. Each augmented trajectory is now represented by a

vector of dimension 450 given by: T augmi = [P R D cos(Θ) sin(Θ) cos(Ψ) sin(Ψ)].

The initial vector had dimension 150. The values of each parameter are normalized between

0 and 1 in order to balance their importance during the clustering process. It was decided
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to add meaningful data such as heading or rate of convergence toward the center of the

TRACON. For instance, two aircraft on parallel trajectories will fly the same heading, even

if the trajectories are slightly apart from each other. Distance to the center was chosen to

identify trajectories that have particular patterns such as vectoring and holding pattern: the

distance to the center will present some irregularities as the aircraft flies back and forth.

Such irregularities will be highlighted by dimensions such as the heading that will change

180◦ while the position will only change slightly.

3. Principal Components Analysis

A principal components analysis18 is run on matrix that contains all the re-sampled trajec-

tories. Each trajectory is then projected onto the first p principal components and is now

represented by a vector of p values. The choice in the value of p is a trade-off between com-

putational speed when p is small and accuracy when p gets larger. There is no need to get

a value of p too large since the first principal components contain most of the information.

Different values of p were tried and p = 5 gave a satisfactory level of accuracy for this type

of data. The added dimensions increase the range of the projection of the trajectories onto

the principal components. This makes the clustering task easier as the clusters are “further

apart” in the principal components space.

4. Clustering

The projections of the trajectories onto the first 5 PCs are clustered using DBSCAN. A

density based clustering algorithm like DBSCAN is preferred to a distance based algorithm

because of the shape of the clusters can be arbitrary. The other advantage of DBSCAN is the

identification of outliers. Figure 12(b) presents the resulting clusters. The axes correspond

to the values of the first 3 principal components. Clusters are clearly differentiated, even

if they are not easy to distinguish on the plot due to the perspective effect. The resulting

clusters of trajectories are visually very clean (Figure 12(a)). Figure 13 presents the cen-

troids, that is the center of mass of the trajectories of each cluster. Those centroids can be

seen as “typical operations”. Some clusters are minor variations from each other, such as

the flights coming from the bottom left corner. This comes from the settings used for DB-

SCAN. On Figure 12(b), one can clearly identify clusters of points. The algorithm was run

with a high sensitivity (ε small and minPts large). The parameter ε reflects the similarity

between trajectories (the smaller the more similar), and minPts is the number of “similar”
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Figure 12. Clustering results using re-sampling, data augmentation, PCA decomposition, and
DBSCAN on the first 5 principal components.

trajectories needed to create a new cluster (Section 2). A small ε generates “narrow” cluster

while a larger ε will generate clusters with more variability in trajectories. In the application

presented in section IV, the algorithm is run with a lower sensitivity and provides fewer

clusters, with larger variability. The resulting centroids of this run can be seen on Figure

20.

5. Analysis of Outliers

Figure 14 shows the outliers detected by the clustering algorithm. Outliers represent 19.5%

of all trajectories. A visual inspection shows that the main reasons for being detected as an

outlier is the presence of holding patterns, large vectoring maneuvers or direct routes.

Figure 15 presents the number and frequency of outlier trajectories as a function of the

type of aircraft. Commercial jets represent the largest share in numbers, but the frequency

is much smaller. Among the trajectories of regional and business aircraft, 4% and 5% are

identified as outliers, respectively. A possible explanation is the size, the speed and the

maneuverability of the aircraft. To ensure a safe separation at the runway threshold, air

traffic controllers “vector” aircraft, that is give a sequence of headings to follow. The vectors

given to business and regional aircraft might be different and sharper than the vectors given
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Figure 13. Clusters centroids (average trajectory)

to larger size jets.

Figure 16 presents the frequency of outliers for each day of study. Each bar represents

one day. The minimum percentage of outliers is less than 2% and goes up to 16%. The most

likely explanation for the outliers is the weather. San Francisco airport usually operates

with two close parallel runways. The runways are not independent, that is, they cannot

be operated simultaneously when the weather does not permit visual approaches. When a

runway is closed, the landing capacity is reduced from 60 to 30 aircraft per hour. Schedules

and operations usually take the weather into account , but unexpected late fog dissipation

or other type of convective weather might disrupt the operations and force controllers to

vector aircraft and put them on holding patterns.

Figure 17 presents the frequency of outliers as a function of the time of the day. The

local time is reported on the abscissa axis, starting at midnight. This diagram is an average

over the entire period of interest. The frequency of outliers is higher during the period 12

a.m. - 4 a.m., then decreases in the early morning, to an increase again with a peak at 11

a.m.. Another peak is visible at 5 p.m.. The outliers identified at night are mostly due to

direct routing that is allowed by the very low traffic density at night. During the morning,

traffic density increases and requires more rerouting for efficient sequencing and merging.

Another possible explanation is the late dissipation of the fog.
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Figure 14. Trajectories identified as outliers
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Figure 15. Distribution of outliers by aircraft category

IV. Airspace Monitoring

This section proposes an airspace monitoring technique that automatically detects when

an aircraft is not conforming to typical operations. Typical operations are determined using

the centroids of the clusters found using the previous clustering methods. Centroids corre-

spond to flight path often flown and the value of the parameters used for clustering allows

the trajectories to vary more around the centroids. The objective of the monitoring task is

to detect when an aircraft deviates from typical path in real time.

A. Literature Review and Motivation

Krozel19 proposed an intent based monitoring where the aircraft is tracked relative to a

filed flight plan, using NavAids and way-points. The monitoring tasks requires knowledge

of the airspace structure, of the trajectory way-points and of the intent of the aircraft. It
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Figure 16. Histogram of outliers, day by day
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Figure 17. Histogram of outliers, hour by hour, local time

is a powerful tool when the flights behave according to their flight plan, but when dealing

with arrivals, the sequence of way-points might change, some might be skipped or added to

ensure an optimal separation of aircraft at the runway threshold and vectoring is often used.

This monitoring method cannot be used. Reynolds et al.20 introduced a framework for the

development of an automated conformance monitoring system. The system described in20

has two main inputs: the conformance basis, containing target states and trajectory infor-

mation, and the observation of a surveillance system. Those inputs feed models for pilots’

intents, aircraft intents, and aircraft control systems and dynamics. Those models provide

an expected state vector that is compared with the observed state vector for conformance

analysis. This structure is further used in21 to monitor the conformance of a trajectory to a

flight plan. For instance, it detects if an aircraft does not turn, turns too early or too late

at a way-point. The monitoring is based on intent, and knowledge of the the exact expected

trajectory is required. An off-line trajectory analysis and taxonomy for arrival trajectories

was proposed by Eckstein.9 The objective of Eckstein is to analyze the performance of area

navigation (RNAV) operations for NextGen concepts of operations off-line. The method in
9 uses GPS coordinates of actual way-points to identify and classify segments of trajectories.

This approach can be used only if aircraft follow RNAV operations, which is not the case

with the data used.

Figure 18 displays an aerial view of the San Francisco Bay Area. The blue circle represents
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the outer boundary of the TRACON, given by the area covered by the radar. The white

lines are the centroids identified in section 4. The yellow dots are way-points or reporting

points. The locations of those points come from Standard Terminal Arrival Routes (STAR)

and track logs.22 The centroids of the clusters pass over only a limited number of way-points.

This shows that using published way-points and reporting points cannot be efficiently used

to monitor traffic in the TRACON. The intent based methods cannot be used in the terminal

area. Figure 18 also displays the arrival from the north for turboprops. This arrival procedure

has not been identified by the clustering algorithm because of the relatively small number

of aircraft using this route, and of the variability of the flight path following this procedure.

A real time trajectory analysis tool built upon the knowledge gathered from the clustering
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Figure 18. Centroids of the clusters and reporting points/way-points for SFO arrivals. Those
centroids differ from the ones in Figure 13 because the algorithm was run with differen pa-
rameters with a smaller sensitivity.

analysis is now proposed. The tool is called AirTrajectoryMiner (ATM) since it enables

the monitoring of operations in the TRACON. Current aircraft trajectories are compared

against nominal trajectories, that is the trajectories in the clusters. If they differ too much,

the current trajectory is tagged as abnormal, or outlier. The only intent used is the aircraft

final destination airport. The tool automatically detects if the aircraft is flying one of the

possible approaches, including most commonly used vectoring maneuvers.
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B. Data Formatting

It is not possible to directly compare the current trajectories with nominal trajectories, since

current trajectories are incomplete. During real-time system operations, only past data are

known. Therefore, the nominal dataset is fragmented. Re-sampled trajectories that had 50

points are split in 10 fragments of 5 points. The average travel time in the TRACON for

aircraft landing at SFO is about 14 minutes. Therefore, 5 data points correspond to about

14*60/10 = 84 seconds. A memory of 80 seconds is used for current tracks. The radar hits

of the last 80 seconds of flight are re-sampled to 5 points that can now be compared against

the database of nominal tracks. This comparison is done using the Inductive Monitoring

System.

C. Anomaly Detection: Inductive Monitoring System

To detect anomalous trajectories, the Inductive Monitoring System (IMS)23 is used. IMS

is a good alternative to model based health monitoring systems. It provides a high fidelity

detection tool, and there is no need to manually build a model. IMS runs in two steps:

learning phase and anomaly detection. IMS learns the nominal behaviors using a training

dataset provided by the user. IMS builds clusters using k-means clustering and density-based

clustering. During the anomaly detection phase, the input data is compared with knowledge

base built from the training data. The anomaly score can be interpreted as the distance

to the nearest cluster. The input data belongs to a cluster if all the parameters values are

within the range specified by the cluster limits.

The training dataset includes all the trajectories identified as nominal and fragmented

into 10 segments of 5 points. The total number of segments was 276,040.

D. AirTrajectoryMiner: Monitoring tool

AirTrajectoryMiner (ATM) is a real time TRACON monitoring tool. Figure 19 shows how

ATM could be incorporated into the air traffic management environment. The inputs to the

tool are the set of all the trajectories identified as nominal, work resulting from section 4,

and the radar tracks of the flights of interest. ATM delivers two types of outputs. On the

one hand, it delivers an indication of conformance of current flight to nominal procedures,

and on the other hand, it delivers a measure of the complexity in the TRACON that can be

incorporated in Traffic Management Advisor (TMA) software.24
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Figure 19. Schematic view of the air traffic control system in and around the TRACON -
Integration of AirTrajectoryMiner
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Figure 20. AirTrajectoryMiner display. Top frame: conformance to typical operations. Bot-
tom frame: time history of complexity in the TRACON.

Figure 20 displays the monitoring environment. The top frame is a 2D view of the

airspace. The airspace correspongs to a cylinder of radius 80km, going from the ground up

to 6000 m and centered at OAK. The following provides some information about the display

nad associated aircraft count.

� Green circle: aircraft intended to land at SFO (associated count: nSFO).

� Grey square: aircraft not intended to land at SFO (associated count: nSFO).

� Green segment: trajectory of an aircraft intended to land at SFO and following the

procedures (associated count: nOK,SFO).

� Red segment: trajectory of an aircraft intended to land at SFO and whose trajectory

is identified as an outlier: it does not to follow the procedures (associated count:

nOK,SFO).

� Grey segment: trajectory of an aircraft not intended to land at SFO and whose

trajectory does not interfere with traffic landing at SFO nOK,SFO).

� Orange segment: trajectory of an aircraft not intended to land at SFO and whose

trajectory may interfere with traffic intended to land at SFO. The trajectory was
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identified as nominal for landing at SFO, but it is not intended to SFO (associated

count: nOK,SFO).

� Colored lines: Centroids of the clusters of trajectories identified as nominal. The

centroids presented differ from the ones on Figure 13, because the clustering algorithm

was re-run with different parameters allowing more variability and therefore creating

fewer clusters.

Aircraft intent information comes from the data. The length of the line following the

aircraft corresponds to the part of the trajectory being analyzed, that is the last 80 seconds of

the trajectory. The length of the line is therefore proportional to the velocity of the aircraft.

This display is intended for an air traffic controller managing the arrivals at SFO. A similar

display would be used for managing other arrivals or departures. The only change would

be the training data for IMS and the centroids displayed. Aircraft with a gray segment can

be ignored, since they are not landing at SFO and are not interfering with landing traffic

at SFO. Aircraft with a green segment are following the typical operations to land at SFO.

Aircraft in orange require special attention since they are not intended to land at SFO but

present characteristics that identify them as “in the pattern to land at SFO”. They conform

with some of the SFO landing trajectories. Aircraft in red also need special attention since

they are supposed to land at SFO but currently not on typical tracks. The controller needs

to make sure they are not generating conflicts or interfering with other traffic.

E. AirTrajectoryMiner: Measure of complexity

Based on the compliance of current flights to procedures, we define a measure of complexity

for the TRACON, which could provide an automatic feedback of the health of the TRACON

to the traffic flow manager who regulates the flow of aircraft arriving in the TRACON.

Complexity in air traffic management is a widely studied topic.25 A measure of airspace

complexity is called dynamic density26 and was intended to understand the effect of changing

airspace configuration and traffic controller workload. It is a function of the traffic density

and the number of aircraft changing heading, speed or altitude, and, the separation between

aircraft. This measure is a weighted sum of several parameters and the weights have been

determined using human in the loop experiments. The model was fitted to the observations

of controllers. Delahaye and Puechmorel27 propose a measure of complexity based on the

Lyapunov exponents of a time varying vector field that interpolates aircraft position and

velocities. This intrinsic complexity measure reflects the stability of the traffic configuration.
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Lee28 proposes complexity measure based on the response of the airspace to a disturbance.

Disturbance can be an intruder aircraft in the airspace and the corresponding measure of

complexity is the deviation required by the other aircraft to solve all the conflicts. Gariel and

Feron29 proposed complexity maps based on the degradation of communication, navigation

and surveillance capacities. The degradation results in a required increase in separation

distances creating new potential conflicts. The complexity measures the difficulty to steer

the traffic from the nominal mode of operation with initial separation distances to degraded

mode of operation with increased separation distances.

This paper introduces a new complexity metric, based on the compliance of aircraft to

procedures identified as nominal. According to ,30,31 controllers build a mental model of

nominal operations. The complexity of a traffic configuration perceived by the controllers

increases when an aircraft flight paths do not follow this mental model. When operations are

running as expected, the controller is more efficient and can deal with more aircraft. Thus,

increasing the number of aircraft not following nominal procedure will reduce the maximum

number of aircraft a controller can deal with simultaneously, reducing the capacity of the

airspace. The proposed complexity measure is based on Shannon’s theory of communica-

tion.32 Using the aircraft counts introduced earlier, the instantaneous probability of an

aircraft inbound for SFO to be identified as nominal is

p(OK|SFO) =
nOK,SFO
nSFO

. (6)

For the aircraft inbound for SFO and identified as outliers, it is assumed that each outlier

aircraft is unique and independent from other aircraft. At each instant, each outlier is

considered different from the other outliers, that is there are nOK,SFO types of outliers.

Therefore, the probability of an aircraft to be a specific outlier is

p(OKi|SFO) =
1

nSFO
, i = 1 . . . nOK,SFO. (7)

The entropy ISFO of the aircraft inbound to SFO is therefore

ISFO = −p(OK|SFO) log p(OK|SFO)−
∑nOKi,SFO

i=1 p(OKi|SFO) log p(OKi|SFO) (8)

= −nOK,SFO

nSFO
log

nOK,SFO

nSFO
− nOK,SFO

nSFO
log 1

nSFO
. (9)
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The same reasoning is used for aircraft not inbound to SFO:

ISFO = −nOK,SFO

nSFO
log

nOK,SFO

nSFO
− nOK,SFO

nSFO
log 1

nSFO
. (10)

The proposed measure of complexity C is the sum of the entropy of aircraft inbound to

SFO and the entropy of aircraft not inbound to SFO.

C = ISFO + ISFO. (11)

This complexity measure is an indication of the disorder with regard to nominal opera-

tions. If no aircraft is identified as an outlier, the complexity is 0. The complexity increases

with the number of outliers detected, but also with the number of aircraft. The bottom

left plot of Figure 20 shows this measure of the complexity over the last 10 minutes. The

plot is refreshed every 15 seconds. When the traffic flow manager sees that the complexity

increases, ATM provides information about the operations in the TRACON. If the complex-

ity gets high, the controller in charge of the TRACON is likely to have a high workload.

Providing the traffic flow manager with this complexity measure can help him to manage

the flow of arriving aircraft. A low complexity suggests that more aircraft can be allowed in

the TRACON. Increasing complexity suggests that the TRACON controllers are subject to

an heavy workload and that the aircraft arrival rate should be reduced.

This tool can also be used as an automatic independent monitoring tool. Intent based

tools21 cannot be used in terminal areas since controllers give vectors that do not appear in

the flight plan. Moreover, there are many turns and altitude changes that are left to the

pilot to execute.

V. Conclusion

This paper presented two trajectory clustering methods and an application to airspace

monitoring. The monitoring tool compares the conformance of current flights to identified

nominal procedures in real-time. The version of the tool presented in this paper monitors the

landings at SFO, but it can easily be modified to monitor any traffic pattern, by modifying

the input dataset.
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