
Dynamic Controllability and Dispatchability Relationships

Paul Morris
NASA Ames Research Center

Moffett Field, CA 94035, U.S.A.

Abstract

An important issue for temporal planners is the ability to han-
dle temporal uncertainty. Recent papers have addressed the
question of how to tell whether a temporal network is Dynam-
ically Controllable, i.e., whether the temporal requirements
are feasible in the light of uncertain durations of some pro-
cesses. We present a fast algorithm for Dynamic Controlla-
bility. We also note a correspondence between the reduction
steps in the algorithm and the operations involved in convert-
ing the projections to dispatchable form. This has implica-
tions for the complexity for sparse networks.

Introduction
Many Constraint-Based Planning systems (e.g. (Muscettola
et al. 1998)) use Simple Temporal Networks (STNs) to
test the consistency of partial plans encountered during the
search process. These systems produce flexible plans where
every solution to the final Simple Temporal Network pro-
vides an acceptable schedule. The flexibility is useful be-
cause it provides scope to respond to unanticipated contin-
gencies during execution, for example where some activity
takes longer than expected. However, since the uncertainty
is not modeled, there is no guarantee that the flexibility will
be sufficient to manage a particular contingency.

Many applications, however, involve a specific type of
temporal uncertainty where the duration of certain processes
or the timing of exogenous events is not under the control of
the agent using the plan. In these cases, the values for the
variables that are under the agent’s control may need to be
chosen so that they do not constrain uncontrollable events
whose outcomes are still in the future. This is the control-
lability problem. By formalizing this notion of temporal un-
certainty, it is possible to provide guarantees about the suffi-
ciency of the flexibility.

In (Vidal & Fargier 1999), several notions of controlla-
bility are defined, including Dynamic Controllability (DC).
Roughly speaking, a network is dynamically controllable if
there is an execution strategy that satisfies the constraints
and depends only on knowing the outcomes of uncontrol-
lable events up to the present time.

The fastest known algorithm for computing Dynamic
Controllability (DC) is the O(N4) algorithm of (Morris
2006) (N is number of nodes). That paper introduces a
structural characterization of DC in terms of the absence

of a particular type of cycle, called a semi-reducible neg-
ative cycle. This is analogous to the result characterizing
consistency of ordinary STNs in terms of the absence of
negative cycles in the distance graph. Other properties of
semi-reducible negative cycles have been studied by Huns-
berger (Hunsberger 2013a), who corrected a flaw in the for-
mal definition of DC. An excellent tutorial on Dynamic Con-
trollability is available online (Hunsberger 2013b).

In this paper, we exploit recursive structure within the
semi-reducible paths and present a new algorithm that runs
in O(N3) time. We also consider the relationship to the dis-
patchability of the projections.

Other authors (e.g. (Shah et al. 2007; Nilsson, Kvarn-
ström, & Doherty 2013)) have pursued incremental al-
gorithms where the Dynamic Controllability property is
rechecked after the addition of a new edge to a network
that has already been shown to be Dynamically Controllable.
This corresponds to a common situation in temporal plan-
ning where edges are added incrementally to resolve flaws
in the plan. These algorithms have been shown empirically
to have O(N3) complexity for each increment on a suite of
randomly generated problems. We do not address incremen-
tality in this paper. Additional work has studied related con-
cepts in wider contexts, e.g. (Rossi, Venable, & Yorke-Smith
2006; Tsamardinos & Pollack 2003).

Background
This background section defines the basic formalism of Dy-
namic Controllability, following (Morris 2006; Hunsberger
2013a).

A Simple Temporal Network (STN) (Dechter, Meiri, &
Pearl 1991) is a graph in which the edges are annotated with
upper and lower numerical bounds. The nodes in the graph
represent temporal events or timepoints, while the edges cor-
respond to constraints on the durations between the events.
Each STN is associated with a distance graph derived from
the upper and lower bound constraints. An STN is con-
sistent if and only if the distance graph does not contain a
negative cycle. This can be determined by a single-source
shortest path propagation such as in the Bellman-Ford al-
gorithm (Cormen, Leiserson, & Rivest 1990) (faster than
Floyd-Warshall for sparse graphs, which are common in
practical problems). To avoid confusion with edges in the
distance graph, we will refer to edges in the STN as links.



A Simple Temporal Network With Uncertainty (STNU)
is similar to an STN except the links are divided into two
classes, requirement links and contingent links. Require-
ment links are temporal constraints that the agent must sat-
isfy, like the links in an ordinary STN. Contingent links
may be thought of as representing causal processes of uncer-
tain duration, or periods from a reference time to exogenous
events; their finish timepoints, called contingent timepoints,
are controlled by Nature, subject to the limits imposed by
the bounds on the contingent links. All other timepoints,
called executable timepoints, are controlled by the agent,
whose goal is to satisfy the bounds on the requirement links.
We assume the durations of contingent links vary indepen-
dently, so a control procedure must consider every combina-
tion of such durations. Each contingent link is required to
have non-negative (finite) upper and lower bounds, with the
lower bound strictly less than the upper. We assume con-
tingent links do not share finish points. (Networks with co-
incident contingent finishing points cannot be Dynamically
Controllable.)

Choosing one of the allowed durations for each contin-
gent link may be thought of as reducing the STNU to an
ordinary STN. Thus, an STNU determines a family of STNs
corresponding to the different allowed durations; these are
called projections of the STNU.

Given an STNU with N as the set of nodes, a schedule T
is a mapping

T : N → <
where T (x) is called the time of timepoint x. A schedule is
said to be consistent if it satisfies all the link constraints.

The history of a specific time t with respect to a schedule
T , denoted by T{≺ t}, specifies the durations of all contin-
gent links that have finished up to and including time t.

Hunsberger (Hunsberger 2013a) corrected a flaw in the
original definition of Dynamic Controllability by defining
history in terms of a specific time rather than a timepoint;
we follow that approach here and in the definition of dy-
namic strategy below. However, we also follow the varia-
tion of including the present that was introduced in (Mor-
ris 2006). The latter issue is whether the agent can react
instaneously to an observation to execute a new timepoint,
or requires an infinitesimal amount of time to react. Both
of these are mathematical idealizations: a realistic reaction
might take a finite amount of time, which could be modeled
by a separate link or folded into the contingent process be-
ing observed. The instantaneous idealization choice leads to
a cleaner mathematical formulation and simpler algorithms.

An execution strategy S is a mapping

S : P → T

where P is the set of projections and T is the set of sched-
ules. An execution strategy S is viable if S(p), henceforth
written Sp, is consistent with p for each projection p.

An STNU is Dynamically Controllable if there is a dy-
namic execution strategy, that is, a viable execution strategy
S such that

Sp1{≺ t} = Sp2{≺ t} ⇒ Sp1(x) = Sp2(x)

for each executable timepoint x and projections p1 and p2,
where t = Sp1(x) (Hunsberger 2013a). Thus, a Dynamic
execution strategy assigns a time to each executable time-
point that may depend on the outcomes of contingent links in
the past (or present), but not on those in the future. This cor-
responds to requiring that only information available from
observation may be used in determining the schedule. We
will use dynamic strategy in the following for a (viable) Dy-
namic execution strategy.

Previous Algorithms
In (Morris, Muscettola, & Vidal 2001), an algorithm for
Dynamic Controllability was presented that runs in pseudo-
polynomial time. The algorithm analyzes triangles of links
and possibly tightens some constraints in a way that makes
explicit the limitations to the execution strategies due to the
presence of contingent links.

Some of the tightenings involve a novel temporal con-
straint called a wait. Given a contingent link AB and another
link AC, the <B, t> annotation on AC indicates that execu-
tion of the timepoint C is not allowed to proceed until after
either B has occurred or t units of time have elapsed since
A occurred. More precisely, it corresponds to the constraint
C−A ≥ min(B−A, t). Thus, a wait is a ternary constraint
involving A, B, and C. Note that a wait reduces to a binary
constraint in any projection, since there the value B − A is
fixed.

The tightenings in the original algorithm, called reduc-
tions, were expressed in terms of rules that were applied to
the STNU graph. We now review developments in (Mor-
ris & Muscettola 2005; Morris 2006; Hunsberger 2013a),
which re-express the reductions in a more mathematically
concise form, using a derived graph.

An ordinary STN has an alternative representation as a
distance graph (Dechter, Meiri, & Pearl 1991). Similarly,
there is an analogous representation for an STNU called the
labeled distance graph (Morris & Muscettola 2005). This is
actually a multigraph (which allows multiple edges between
two nodes), but we refer to it as a graph for simplicity. In

the labeled distance graph, each requirement link A
[x,y]−→ B

is replaced by two edges A
y−→ B and A −x←− B, just as

in an STN. For a contingent link A
[x,y]
=⇒ B, we have the

same two edges A
y−→ B and A −x←− B, but we also have

two additional edges of the form A b:x−→ B and A
B:−y←− B.

These are called labeled edges because of the additional “b:”
and “B:” annotations indicating the contingent timepoint B
with which they are associated. Note especially the reversal
in the roles of x and y in the labeled edges. We refer to

A
B:−y←− B and A b:x−→ B as upper-case and lower-case edges,

respectively. Observe that the upper-case labeled weight B:-
y gives the value the edge would have in a projection where
the contingent link takes on its maximum value, whereas the
lower-case labeled weight corresponds to the contingent link
minimum value.

There is also a representation for a A
<B, t>−→ C wait con-

straint in the labeled distance graph. This corresponds to a



single edge A B:−t←− C. Note the analogy to a lower bound.
This weight is consistent with the lower bound that would
occur in a projection where the contingent link has its max-
imum value.

We can now represent the tightenings in terms of the la-
beled distance graph. As in (Morris 2006), we present a
version of the rules that assumes the agent can react instan-
taneously to observed events.

The reductions from the classic algorithm are replaced by
what is essentially a single reduction with different flavors,
together with a label removal rule:

(UPPER-CASE REDUCTION)

A B:x←− C
y←− D adds A

B:(x+y)←− D

(LOWER-CASE REDUCTION) If x < 0,

A x←− C
c:y←− D adds A

x+y←− D

(CROSS-CASE REDUCTION) If x < 0, B 6= C,

A B:x←− C
c:y←− D adds A

B:(x+y)←− D

(NO-CASE REDUCTION)
A x←− C

y←− D adds A
x+y←− D

(LABEL REMOVAL REDUCTION) If z ≥ −x,

B b:x←− A B:z←− C adds A z←− C

With this reformulation, the “Case” (first four) reductions
can all be seen as forms of composition of edges, with the
labels being used to modulate when those compositions are
allowed to occur. In light of this, the unlabeled distance1 of
a path in the labeled distance graph is defined to be the sum
of edge weights in the path, ignoring any labels. Thus, the
reductions preserve the unlabeled distance.

Morris (Morris 2006) observes that a duration-uncertain

contingent link A
[x,y]
=⇒ B can be decomposed A

[x,x]−→
C

[0,y−x]
=⇒ B into a duration-certain part A

[x,x]−→ C and a

“pure” duration-uncertain part C
[0,y−x]
=⇒ B. If this is done

for all contingent links, the STNU is said to be in Normal
Form. In that case, the contingent link lower bounds all be-
come zero, so the LABEL REMOVAL reduction assumes a
simpler form as follows.

(LABEL REMOVAL) If x ≥ 0,

A B:x←− C adds A x←− C

We will assume in the remainder of the paper that STNU
networks are in Normal Form since this simplifies the anal-
ysis and algorithms without loss of generality.

Path Transformations
The key to speeding up the determination of Dynamic Con-
trollability is to perform the reductions in an organized way.
This in turn is facilitated by considering the relationship of

1Terminology from (Hunsberger 2013a). Called reduced dis-
tance in (Morris 2006), which is somewhat misleading.

paths to Dynamic Controllability. To this end, Morris (Mor-
ris 2006) defines a concept of semi-reducible path, which we
review here.

An ordinary STN is consistent if and only if its distance
graph does not contain a negative cycle. There is a related
characterization of DC in terms of negative cycles in the la-
beled distance graph. This involves a notion of path trans-
formation.

Consider a path P that contains a subpath Q between
two points A and B and suppose Q matches the left side
of a reduction. Then applying the reduction to Q yields a
new edge e between A to B. Consider the path P ′ obtained
from P by replacing Q by e. We may regard P as being
transformed into P ′ by the reduction. Note that P ′ has the
same unlabeled distance as P since the reductions preserve
unlabeled distance.
Definition 1 A path is reducible if it can be transformed
into a single edge by a sequence of reductions. A path is
semi-reducible if it can be transformed into a path without
lower-case edges by a sequence of reductions.

The property of semi-reducible can be directly character-
ized in structural terms. The following notation is useful.
We write e < e′ in P if e is an earlier edge than e′ in P,
where P is a path in the labeled distance graph. If A and B
are nodes in the path, we write DP(A, B) for the unlabeled
distance from A to B in P. We denote the start and end
nodes of an edge e by start(e) and end(e), respectively.
Definition 2 Suppose e is a lower-case edge in P and e′ is
some other edge such that e < e′ in P . The edge e′ is a
drop edge for e in P if DP(end(e), end(e′)) < 0. The edge
e′ is a moat edge for e in P if it is a drop edge and there
is no other drop edge e′′ such that e′′ < e′ in P . In this
case, we call the subpath of P from end(e) to end(e′) the
extension of e in P. We say the moat edge is unusable if e
and e′ have labels that come from the same contingent link;
otherwise it is usable.

Thus, a drop edge is where the path following e becomes
negative, and a moat edge is a closest drop edge. An un-
usable moat edge will have a label that is the upper-case
version of the label on the lower-case edge.2

The extension subpath P turns out to have a very useful
property called the prefix/postfix property, which says that
every nonempty proper prefix of P has non-negative unla-
beled distance and every nonempty proper postfix of P has
negative unlabeled distance. The Nesting Lemma (Morris
2006) says if two prefix/postfix paths have a non-empty in-
tersection, then one of the paths is contained in the other.
This means that if a path has two subpaths with the property,
then the subpaths are either nested or disjoint.

The main results of (Morris 2006) provided a characteri-
zation of Dynamic Controllability in terms of the structure
of the labeled distance graph, as follows.
Theorem 1 A path P is semi-reducible if and only if every
lower-case edge in P has a usable moat edge in P.

2We will see later the reductions may be viewed as perform-
ing composition of edges in projections, and these edges belong to
incompatible projections.



Theorem 2 An STNU is Dynamically Controllable if and
only if it does not have a semi-reducible negative cycle.

The labeled distance graph can be used to calculate dis-
tances between nodes in a similar manner to an ordinary
STN distance graph, provided the restrictions imposed by
the labels are respected. The approach in (Morris 2006)
calculates distances forward from each contingent timepoint
looking for a usable moat edge to reduce away the associ-
ated lower-case edge. For the innermost nested extensions,
this can be done in a single pass. This produces new edges
that bypass these extensions, which decrements the level of
nesting. Each pass has a complexity bound of O(N3) for
the distance calculation. It was shown that the depth of nest-
ing can be linearly bounded leading to a linear cutoff and an
overall O(N4) complexity.

Cubic Algorithm
We now present a cubic algorithm for Dynamic Controllabil-
ity using the same formal framework as (Morris 2006), but
with a different organization of the computation. Note that
a moat edge must have negative unlabeled distance; thus, it
must be either a negative ordinary edge, or a negative upper
case labeled edge. Before leaving NASA, Nicola Muscet-
tola (Muscettola 2006, Personal Communication) proposed
the following key ideas, which he anticipated would lead to
a cubic algorithm. However, to the best of our knowledge,
such an algorithm has not been published. We have formu-
lated one based on these ideas and include it here. The key
ideas are:

• Calculate distance backwards from potential moat edges.
(That is, calculate distance to rather than distance from.)

• Calculate the distance over non-negative edges using Di-
jkstra’s algorithm (Cormen, Leiserson, & Rivest 1990).

• If a new negative edge is encountered, invoke a recursive
call before continuing the distance calculation.

• A recursive cycle indicates the network is not Dynami-
cally Controllable.

The backward distance calculation implicitly uses the reduc-
tion rules and may add new non-negative edges. The follow-
ing example illustrates the approach (parentheses added for
readability):

[(E
4−→ B

B:−2−→ A)
b:0−→ B

1−→ D
D:−3−→ C]

d:0−→ (D
3−→ B

B:−2−→ A)
b:0−→ B

−2−→ E

Consider a backward distance calculation starting at E. This
will invoke a recursive call when it gets to A, which will
add a D 1−→ A edge. (It also adds a E 2−→ A edge, which
we ignore for now.) The top-level call will then continue
using the D 1−→ A edge until it gets to C, where it causes
another recursive call. When the call at C gets to A, it will
use the already added E 2−→ A edge and leave behind a new
E 0−→ C edge, at which point the top-level call resumes and
encounters a recursive cycle.

An issue of special note is that Dijkstra’s algorithm is nor-
mally restricted to graphs with non-negative edges whereas
in our case the initial edges connected to the Dijkstra source

may be negative. However, it is easy to see (e.g., discus-
sion in (Web 2010)) that the algorithm is still valid provided
that (1) the only negative edges are the initial edges and (2)
the propagation does not compute a negative distance to the
source.3 If the propagation computes a negative distance to
the source, this will be detected as a recursive cycle.

The goal of the computation is to discover semi-reducible
negative cycles. It turns out that a restricted form of the re-
duction rules is sufficient to make this discovery because of
the negativity. In particular, the Case reductions can all be
restricted to x < 0 and y ≥ 0. Application of the rules will
stop when all the edges have the same sign, which must be
negative since the whole cycle has negative unlabeled dis-
tance. (A rule cannot fail because of the label restrictions;
if it did, the original cycle would contain an unusable moat
edge and would not be semi-reducible.) A semi-reducible
negative cycle is thus transformed by the rules to a cycle
of all-negative edges, similar to a result of (Nilsson, Kvarn-
ström, & Doherty 2013).

The restricted reduction rules are equivalent to the
BackPropagate-Tighten rules used in the Incremental Dy-
namic Controllability work (e.g. (Shah et al. 2007; Nilsson,
Kvarnström, & Doherty 2013)).4 We will refer to the re-
stricted reduction rules as Plus-Minus reductions since they
involve a non-negative edge followed by a negative edge.
We will also regard LABEL REMOVAL as being implicitly
applied wherever it is applicable.

Before presenting the detailed algorithm (Fig. 1), we
make a modification to the STNU to simplify the exposition.
(An implementation could behave as if this modification is
made without actually changing the data structures.) The
modification separates the start nodes of contingent links
from other contingent links and from the targets of ordinary
negative edges. Thus,

B⇐= A =⇒ C becomes B⇐= A
[0,0]−→ A′ =⇒ C

B =⇒ A =⇒ C becomes B =⇒ A
[0,0]−→ A′ =⇒ C

B −x−→ A =⇒ C becomes B −x−→ A
[0,0]−→ A′ =⇒ C

It is easy to see that the resulting STNU is equivalent to the
original one. (Recall that we allow instantaneous reactions.)
The modification keeps distance calculations involving dif-
ferent (and no) labels separate and adds at most O(K) nodes
and edges, where K is the number of contingent links.

The algorithm is summarized in Fig. 1. We have used
indentation instead of begin-end to set off blocks of code.
The continue statement, as in Java, skips to the next turn
of the immediately enclosing loop. A negative node is a

3Consider the proof of correctness (Cormen, Leiserson, &
Rivest 1990) of the usual algorithm. This relies on the fact that
the distance to head nodes of the priority queue cannot be super-
seded by paths from later nodes, which start at a greater distance
and are over non-negative edges. In our case, after processing the
initial node, this will still be true for subsequent head nodes be-
cause paths from later nodes will use non-initial edges.

4They have more rules because of multiple choices of focus
edge, and because they make a distinction between direct and de-
rived upper-case edges.



Boolean procedure determineDC()
for each negative node n do

if DCbackprop(n) = false
return false;

return true;
end procedure

Boolean procedure DCbackprop(source)
00 if ancestor call with same source
01 return false;
02 if prior terminated call with source
03 return true;
04 distance(source) = 0;
05 for each node x other than source do
06 distance(x) = infinity;
07 PriorityQueue queue = empty;
08 for each e1 in InEdges(source) do
09 Node n1 = start(e1);
10 distance(n1) = weight(e1);
11 insert n1 in queue;
12 while queue not empty do
13 pop Node u from queue;
14 if distance(u) >= 0
15 Edge e’ = new Edge(u, source);
16 weight(e’) = distance(u);
17 add e’ to graph;
18 continue;
19 if u is negative node
20 if DCbackprop(u) = false
21 return false;
22 for each e in InEdges(u) do
23 if weight(e) < 0
24 continue;
25 if e is unsuitable
26 continue;
27 Node v = start(e);
28 new = distance(u) + weight(e);
29 if new < distance(v)
20 distance(v) = new;
35 insert v into queue;
36 return true;
end procedure

Figure 1: Cubic Algorithm

node that is the target of some negative edge. There is a
separate distance function for the distance to each source,
but we have abbreviated distance(x,source) as distance(x) to
avoid clutter.

This is essentially a distance-limited version of Dijkstra’s
algorithm except for lines 00-01 and 19-21, which deal with
the recursive aspect, lines 02-03, which short-circuit later
calls with the same source, lines 08-11, which unroll the ini-
tial propagation, lines 14-18, which add non-negative edges
to the graph, and the unsuitability condition in lines 25-26,
which occurs if the source edge is unusable for e (from the
same contingent link).5 The distance limitation occurs at the
first non-negative value reached along a path (where a non-
negative edge is added).

Notice that if the e in line 22 is a non-negative suitable
edge, then since distance(u) is negative, the Plus-Minus re-
ductions will apply. The derived distance in line 28 will be
that of either an ordinary or an upper-case edge. The added
e′ edge in line 17 is ordinary (by virtue of LABEL REMOVAL
if necessary).

The whole algorithm terminates if the same source node
is repeated in the recursion; thus, an infinite recursion is pre-
vented. We will show that this condition occurs if and only
if the STNU has a semi-reducible negative cycle. Thus, the
algorithm does not require a subsidiary consistency check.

The early termination conditions in lines 00-03, which
prevent infinite recursion and multiple calls with the same
source, can be detected by marking schemes. Thus, the al-
gorithm involves at most N (number of nodes in the net-
work) non-trivial calls to DCbackprop, each of which (not
including the recursive call) has complexity O(N2) if a Fi-
bonacci heap is used for the priority queue, giving O(N3) in
all. At most O(N2) edges are added to the graph; this cost is
absorbed by the O(N3) overall complexity. The early termi-
nation calls to DCbackprop have O(1) cost and come from
superior calls or from determineDC. The former may be ab-
sorbed into the cost of line 20, while there are at most N of
the latter. We now turn to the task of proving correctness.

Theorem 3 The DCbackprop procedure encounters a re-
cursive repetition if and only if the STNU is not Dynamically
Controllable.

Proof: Suppose first there is a recursive repetition. Note
that if DCbackprop calls itself recursively, then there is a
(backwards) negative path from the source of the superior
call to that of the inferior. Since the distance calculations
involve applications of the Plus-Minus reductions, that im-
plies there is a reducible negative path from the first source
to the second. Thus, a recursive repetition involves a cycle
stitched together from reducible negative paths, which is a
semi-reducible negative cycle.

Suppose conversely that the STNU is not Dynamically
Controllable. Then it must have some semi-reducible nega-
tive cycle C. The intuition behind the proof is that the neg-
ative segments in C will either be bypassed, or will pile up

5It is useful to think of the distance calculation as taking place
in the projection where any initial contingent link takes on its max-
imum duration and every other contingent link has its minimum.
An unsuitable edge does not belong to that projection.



against each other. Since they cannot all be bypassed, this
will result in a recursive cycle. For the argument, it is con-
venient to temporarily remove lines 00-01 of the algorithm.
In that case, a recursive cycle will result in an infinite re-
cursion rather than returning false and we can talk about
termination instead of what value is returned.

Note that for every negative node A in C, DCback-
prop(A) will be called eventually, either as a recursive call
or as a top-level call from determineDC. By line 17, the exe-
cution of DCbackprop(A) may add a non-negative edge BA
from some other node B in C to A. We will call this a cross-
edge. Since the Dijkstra algorithm computes shortest paths,
we have weight(BA) ≤ DC(B, A).

If there is no infinite recursion, then every call to DCback-
prop must terminate. Our strategy will be to show that every
terminating call to DCbackprop(A) for some A in C will
add at least one cross-edge. These will then bypass all the
negative edges in C, which contradicts the fact that C is a
negative cycle.

First assume all the non-negative edges in C are ordinary
edges. (Lower-case edges add a slight complication that we
will address in due course.) Consider the very first termi-
nation of a DCbackprop(A) call for A in C. Note that the
execution cannot have included a recursive call; otherwise
the recursive call would have terminated first. The back-
ward Dijkstra propagation must reach the predecessor A′ of
A in C. This cannot be a negative node, since otherwise it
would cause a recursive call. If the distance to A′ is non-
negative, then DCbackprop(A) will add a non-negative A′A
edge. Otherwise the propagation must reach predecessor A′′
of A′ since A′ is not a negative node. (Thus, A′A is a non-
negative edge.) The propagation will continue to predeces-
sors until a non-negative distance is reached. This must hap-
pen eventually. (Otherwise the propagation would continue
all the way back to A and cause a recursive loop.) Then the
execution of DCbackprop(A) will add a cross-edge before
it terminates. For the inductive step, the argument is simi-
lar, except any recursive calls that have already terminated
will have left behind cross-edges, and the propagation will
be over those rather than the edges in the original cycle.

Now consider the case where C contains lower-case
edges. The difficulty here is that subpaths of C are not nec-
essarily shortest. Since the cross-edges resulting from the
Dijkstra calculation are shortest paths, the shortenings could
result in a closer moat edge for a lower-case edge. However,
by Theorem 3 of (Morris 2006), we can assume without loss
of generality that C is breach-free. (A lower-case edge in
the cycle has a breach if its extension contains an upper-
case edge from the same contingent link.) In that case, the
closer moat edge would still be usable.

Thus, we have shown every terminating call to DCback-
prop leaves behind a cross-edge, which results in a contra-
diction. It follows there is some non-terminating call, i.e., an
infinite recursion. When we put back lines 00-01, the recur-
sive cycle is trapped, and results instead in a determination
that the STNU is not Dynamically Controllable.

2

The algorithm as presented only adds non-negative edges,
which are the only ones needed for the Dijkstra calculations.

However, derived negative edges are implicit in the distance
calculation. Thus, when distance(u) is negative in line 14
of the algorithm, we could infer and save a negative edge
or wait condition. We will call the algorithm that does this
determineDC+. Results in the next section show that the net-
work resulting from determineDC+ is suitable for execution.

Dispatchability
Previous papers (e.g. (Shah et al. 2007)) have noted a re-
lationship between Dynamic Controllability and dispatcha-
bility, but have not investigated it formally. In this section,
we clarify the relationship between dispatchability and Dy-
namic Controllability and explore how dispatchability ap-
plies to an STNU. We start by relating dispatchability of an
STNU to the better-understood dispatchability of its STN
projections. Since wait edges may be needed for this prop-
erty to hold, we consider an extended STNU (ESTNU) that
may include wait edges. Recall that wait edges reduce to
ordinary edges in a projection.

A dispatching execution (Muscettola, Morris, &
Tsamardinos 1998) is one that respects direct precedence
constraints, and propagates execution times only to neigh-
boring nodes, but otherwise is free to execute a timepoint
at any time within its propagated bounds. An STN is
dispatchable if a dispatching execution is guaranteed to
succeed. It is shown in (Muscettola, Morris, & Tsamardinos
1998) that every consistent STN can be reformulated into
an equivalent minimum dispatchable network. The refor-
mulation procedure first constructs the AllPairs network
and then eliminates dominated edges that are not needed for
dispatchability. A fast version (Tsamardinos, Muscettola, &
Morris 1998) of the algorithm computes distances from one
node at a time and uses that to determine which edges from
that node are dominated.

We can extend these notions to an ESTNU by essentially
pretending that contingent timepoints are executed by the
agent and propagating the observed time. For an ESTNU
dispatching execution, we require the free choices are made
only for executable timepoints, and respect the waits and
precedences. We cannot directly mandate that the contingent
timepoints respect the precedences; however (see proof of
next result), this is indirectly achieved if the projections of
the ESTNU are dispatchable. Note that such a strategy does
not depend on future events. This leads to the following.

Definition 3 An ESTNU is dispatchable if every projection
is dispatchable.

Theorem 4 A dispatchable ESTNU is Dynamically Con-
trollable.

Proof: Suppose all the projections are dispatchable. We
show that an ESTNU dispatching execution will satisfy
precedence constraints for the contingent timepoints. Sup-

pose othewise and let A
[x,y]
=⇒ B −z−→ C be the subnetwork

where a precedence is violated for the first time in some
projection. Consider the state of the execution after A and
strictly before B, but within z/2 units of time prior to B. This
is a dispatching execution in the STN sense since no prece-
dence has been violated yet. However, the constraints in the



projection now force C into the past although it has not been
executed yet, which implies the projection is not dispatch-
able (Tsamardinos, Muscettola, & Morris 1998) contrary to
our assumption.6

Thus, the ESTNU dispatching strategy restricted to each
projection is a dispatching execution. If it fails, the projec-
tion in which it fails, and hence the ESTNU, are not dis-
patchable. 2

Since dispatchability is itself a desirable property, this
suggests the objective of transforming an STNU into an
ESTNU such that each projection is dispatchable, prefer-
ably in minimum dispatchable form (Muscettola, Morris, &
Tsamardinos 1998). It is natural to consider if the fast al-
gorithm discussed in (Tsamardinos, Muscettola, & Morris
1998), or some variant, can be adapted for this purpose. As it
turns out, the determinDC+ algorithm may itself be viewed
as such a variant, although it does not achieve minimum
form. First we prove some basic facts about dispatchabil-
ity of an STN in preparation for considering dispatchability
of STNU projections.

Recall that a path has the prefix/postfix property if every
nonempty proper prefix is non-negative and every nonempty
proper postfix is negative. It turns out that prefix/postfix
paths in an STN are related to edges in a minimum dispatch-
able network (MDN) for the STN. By results in (Muscettola,
Morris, & Tsamardinos 1998; Tsamardinos, Muscettola, &
Morris 1998), an MDN edge is either undominated or is one
(which may be arbitrarily chosen) of a group of concurrent
mutually dominating edges that are not strictly dominated.

Theorem 5 Every consistent STN has a minimum dispatch-
able network such that if AB is an edge in that MDN, then
there is a shortest path P from A to B in the STN such that
P has the prefix/postfix property.

Proof: First suppose AB is an undominated MDN edge.
Let P be any shortest path from A to B in the STN and let
C be any node strictly between A and B in P. Consider the
case where AB is negative. Then the prefix AC must be non-
negative; otherwise AB would be lower-dominated (Muscet-
tola, Morris, & Tsamardinos 1998). It follows that the post-
fix CB is negative. On the other hand, if AB is non-negative,
then CB must be negative (otherwise AB would be upper-
dominated), and then AC is non-negative.

For the mutual dominance case, we restrict the MDN edge
choice. Among a group of mutually dominating edges that
are not strictly dominated, we choose an MDN edge AB
such that a shortest path P from A to B does not contain
a shortest path for another edge in the group. We can then
use an argument similar to the undominated case because if
AB is dominated by AC or CB, it would be strictly domi-
nated. 2

This leads to a sufficient condition for dispatchability.

Definition 4 An STN is prefix/postfix complete (PP com-
plete) if whenever the distance graph has a shortest path

6As an example, given an STNU A
[2,4]
=⇒ B

−1−→ C, the min-
imum dispatchable network for the minimum-duration projection
includes A

1−→ C, which makes C precede B.

from A to B with the prefix/postfix property, there is also a
direct edge from A to B whose weight is equal to the shortest
path distance.
Theorem 6 A consistent STN that is PP complete is dis-
patchable.
Proof: By Theorem 5, the STN contains all the edges of
one of its MDNs; thus, it is dispatchable. 2

Prefix/postfix paths have a well-behaved structure. Sup-
pose a path P has the prefix/postfix property. Clearly if it
has more than one edge, then the first edge must be non-
negative and the last edge must be negative. Now consider
a negative edge e in the interior of P. The proper prefix of
P that ends with e will be non-negative; thus, there must
be some closest e′ to e such that the subpath Q from e′ to
e is non-negative. It is not difficult to see that Q will also
have the prefix/postfix property. We will call the subpath Q
the train of e in P. We get a similar train for every neg-
ative edge within P. Since they all have the prefix/postfix
property, the trains must be nested or disjoint. (This result is
similar to the Nesting Lemma for extensions of lower-case
edges.) Note that an innermost nested train consists of a neg-
ative edge preceded by all non-negative edges, and (like all
trains) has non-negative total distance.

For an ESTNU, it turns out that we only need to ensure
PP completeness for a subset of the projections. The AllMin
projection is where every contingent link takes on its min-
imum duration. In an AllMinButOne projection, one of the
contingent links takes on its maximum duration, and every
other contingent link takes on its minimum duration. We
will call these the basic projections of an ESTNU.
Theorem 7 Given an ESTNU, if the basic projections are
PP complete, then every projection is PP complete.
Proof: Suppose the basic projections are PP complete, and
consider a prefix/postfix shortest path P in one of the pro-
jections. The proof is by induction on the depth of nesting of
the trains in P. Recall that an innermost train must consist
of a negative edge preceded by all non-negative edges. It is
not hard to see that such a path has its minimum distance
in one of the basic projections. The subpath corresponding
to the train will still have the prefix/postfix property there.
(The postfixes are not larger, and the proper prefixes have
non-negative edges.) By PP-completeness of that basic pro-
jection, there must be an edge in the ESTNU that bypasses
the subpath. Its distance cannot be less than the subpath
since P is a shortest path; thus, they have the same dis-
tance. This reduces the depth of nesting. If the depth is zero,
the same reasoning can be used to infer a bypass edge for
the whole path. 2

This gives us some insight into the functioning of the de-
termineDC+ algorithm. The nested trains cause recursive
calls of DCBackprop. If DCBackprop(A) is called where
AB is a contingent link, then the algorithm may be viewed as
adding PP-completeness edges for the AllMinButOne pro-
jection for AB. If instead, the call is where A is the target of
ordinary negative edges, then it is adding PP-completeness
edges for the AllMin projection. The recursive calls ensure
that non-negative edges are added in the order correspond-
ing to the nesting. In summary, the algorithm is extending



the STNU so that it is prefix/postfix complete with respect
to the basic projections, and thus is dispatchable.

Closing Remarks
Note that in contrast to the fast MDN algorithm (Tsamardi-
nos, Muscettola, & Morris 1998), all the edges in the origi-
nal network are kept by determineDC+. The algorithm may
also add unneeded dominated edges in addition to the non-
dominated ones that it needs. The number of added edges
is significant because the complexity of a Dijkstra compu-
tation is sensitive to the number of edges. This suggests a
potential avenue for future improvement.

A class of STNs is said to be sparse if the number of edges
E is a fixed multiple of the number of nodes N (i.e., E scales
as O(N)). The cost of one Dijkstra call is O(E +N log N),
which is O(N log N) for a sparse network. Networks en-
countered in practical problems tend to be sparse. Typically
for an STN, if the original network is sparse, the minimum
dispatchable network is also sparse (Tsamardinos, Muscet-
tola, & Morris 1998),7 since it essentially contains the same
information in a concise form. It is reasonable to think the
same might be true for an STNU if only non-dominated
edges are added. Thus, if the algorithm could be improved
to not add any dominated edges, then the complexity might
in practice be comparable to that of the Fast Dispatchability
algorithm, i.e., O(N2 log N) for sparse networks. The issue
essentially is to prune unneeded edge additions from each
recursive call before the higher-level calls use them.

It might seem the ideal solution would be to adapt the fast
minimum dispatchability algorithm (Tsamardinos, Muscet-
tola, & Morris 1998) (FMDA) directly. For an STNU the
distance calculation could be backwards and invoke recur-
sive calls at negative nodes. However, the adaption would
also need to handle, or sidestep, the contraction of rigid
components in FMDA, which may be complicated by the
fact that a contingent link is itself a rigid constraint in a pro-
jection. Besides that, there is the question of how to adapt
the reweighting approach of FMDA (which makes possible
a Dijkstra computation where the original weights may be
negative), so that it works for all the basic projections. Also,
to be worth it, the adaptions would need to fit within the ex-
isting FMDA cost. These are challenges for future research.

Acknowledgment
This paper owes a profound debt to the many insights of
Nicola Muscettola, which include the key ideas underpin-
ning the cubic algorithm. The current author is responsible
for the formal treatment and proofs, and the results relating
Dispatchability and Dynamic Controllability.

References
Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduc-
tion to Algorithms. Cambridge, MA: MIT press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.

7Artificially constructed exceptions are unlikely to occur in
practice.

Hunsberger, L. 2013a. Magic loops in simple temporal
networks with uncertainty - exploiting structure to speed
up dynamic controllability checking. In ICAART (2), 157–
170.
Hunsberger, L. 2013b. Tutorial on dynamic
controllability. http://icaps13.icaps-conference.org/wp-
content/uploads/2013/06/hunsberger.pdf.
Morris, P., and Muscettola, N. 2005. Dynamic controlla-
bility revisited. In Proc. of AAAI-05.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proc. of
IJCAI-01.
Morris, P. 2006. A structural characterization of temporal
dynamic controllability. In CP, 375–389.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote agent: to boldly go where no AI system has gone
before. Artificial Intelligence 103(1-2):5–48.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Proc.
of Sixth Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR’98).
Muscettola, N. 2006. Personal Communication.
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2013. Incre-
mental Dynamic Controllability Revisited. In Proceedings
of the 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS). AAAI Press.
Rossi, F.; Venable, K. B.; and Yorke-Smith, N. 2006.
Uncertainty in soft temporal constraint problems: A gen-
eral framework and controllability algorithms for the fuzzy
case. Journal of Artificial Intelligence Research 27:617–
674.
Shah, J. A.; Stedl, J.; Williams, B. C.; and Robertson,
P. 2007. A fast incremental algorithm for maintaining
dispatchability of partially controllable plans. In Boddy,
M. S.; Fox, M.; and Thibaux, S., eds., ICAPS, 296–303.
AAAI.
Tsamardinos, I., and Pollack, M. E. 2003. Efficient so-
lution techniques for disjunctive temporal reasoning prob-
lems. Artificial Intelligence 151:43–89.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution.
In Proc. of Fifteenth Nat. Conf. on Artificial Intelligence
(AAAI-98).
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. JETAI 11:23–45.
Web. 2010. http://stackoverflow.com/questions/3833500/
dijkstras-algorithm-with-negative-edges-on-a-directed-
graph.


