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Abstract: This paper is focused on adaptively controlling a linear infinite-dimensional system to cause it 

to track a finite-dimensional reference model. Given a linear continuous-time infinite-dimensional plant 

on a Hilbert space and disturbances of known waveform but unknown amplitude and phase, we show 

that there exists a stabilizing direct model reference adaptive control law with certain disturbance 

rejection and robustness properties. The plant is described by a closed, densely defined linear operator 

that generates a continuous semigroup of bounded operators on the Hilbert space of states.  

The central result will show that all errors will converge to a prescribed neighborhood of zero in an 

infinite dimensional Hilbert space. The result will not require the use of the standard Barbalat Lemma 

which requires certain signals to be uniformly continuous. This result is used to determine conditions 

under which a linear Infinite-dimensional system can be directly adaptively controlled to follow a 

reference model. In particular we examine conditions for a set of ideal trajectories to exist for the tracking 

problem. Our results are applied to adaptive control of general linear diffusion systems described by self-

adjoint operators with compact resolvent. 

 

I. Introduction 

Many control systems are inherently infinite dimensional when they are described by partial differential 

equations. Currently there is renewed interest in the control of these kinds of systems especially in flexible 

aerospace structures, smart electric power grids, and the quantum control field [1]-[2],[18]. New general results 

in the theory of control of partial differential equations can be found in [11], [19]-[20]. And a very different 

approach to adaptive control of specifically parabolic partial differential equations can be seen in [21]. In this 

paper we want to consider how to make a linear infinite-dimensional system track the output of a finite-

dimensional reference model in a robust fashion in the presence of persistent disturbances. 

In our previous work [3]-[6]
 
we have accomplished direct model reference adaptive control and disturbance 

rejection with very low order adaptive gain laws for MIMO finite dimensional systems. When systems are 

subjected to an unknown internal delay, these systems are also infinite dimensional in nature. Direct adaptive 

control theory can be modified to handle this time delay situation for infinite dimensional spaces [7]. However, 

this approach does not handle the situation when partial differential equations (PDEs) describe the open loop 

system. 

This paper will provide a foundation for the topic of direct adaptive control on infinite dimensional spaces. 

This paper considers the effect of infinite dimensionality on the adaptive control approach of [4]-[6]. We will 

prove here a Robust Stability Theorem for infinite-dimensional spaces. We will show that the adaptively 

controlled system is robustly globally asymptotically stable using this new result. In order to accommodate 

robust behavior, we must give up the idea of all errors converging to zero and replace it with the idea of 

convergence to a prescribed neighborhood of zero whose radius is determined by the size of the unmodeled 

disturbance. 

We want to apply this robust theory to linear PDEs governed by self-adjoint operators with compact 

resolvent such as linear diffusion systems. And we will also see some of the new technical difficulties 

encountered in infinite-dimensional direct adaptive control and find out that the devil really is in the details.   
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II.  Adaptive Robust Tracking with Disturbance Rejection 

Let X  be an infinite dimensional separable Hilbert space with inner product ( , )x y  and corresponding 

norm ( , )x x x . Also let A be a closed linear operator with domain D(A) dense in X. Consider the Linear 

Infinite Dimensional Plant with Persistent Disturbances: 
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where )(ADx  is the plant state, )(ADbi   are actuator influence functions, )(ADci   are sensor 

influence functions, , mu y  are the control input and plant output m-dimensional vectors respectively, and 

Du  is a disturbance with known basis functions D . We assume v is a bounded but unknown disturbance with 

 vMv . 

In order to accomplish some degree of disturbance rejection in a direct adaptive scheme, we will make use of 

a definition, given in [7], for persistent disturbances: 

 

Definition 1: A disturbance vector 
q

D Ru   is said to be persistent if it satisfies the disturbance generator 

equations: 
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where F  is a marginally stable matrix and )(tD  is a vector of known functions forming a basis for all such 

possible disturbances. This is known as “a disturbance with known waveform but unknown amplitudes”. 

The objective of control in this paper will be to cause the output )(ty
 
of the plant to robustly asymptotically 

track the output ym t  of a linear finite-dimensional Reference Model given by: 
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where the reference model state ( )mx t   is an Nm-dimensional vector with reference model output ( )my t  

having the same dimension as the plant output )(ty .  In general, the plant and reference models need not have 

the same dimensions. The excitation of the reference model is accomplished via the vector ( )mu t  which is 

generated by 

 
m

mmmm uuuFu 0)0(;   (4) 

The reference model parameters  , , ,m m m mA B C F  will be assumed completely known. What is meant by 

“robust asymptotic tracking” is the following:  

We define the output error vector to be 

 (0)y m t
e y y N


    (5) 

where N(0) is a predetermined neighborhood of the vector 0. 
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The control objective will be accomplished by a direct Adaptive Control Law of the form: 

 m m u m e y D Du G x G u G e G      (6a) 

The direct adaptive controller will have adaptive gains given by: 
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 (6b) 

III. Ideal Trajectories 

We define the Ideal Trajectories for (1) in the following way: 
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where the ideal trajectory x t  is generated by the ideal control u t  from 
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If such ideal trajectories exist, they will be linear combinations of the reference model state, disturbance state, 

and reference model input (7), and they will produce exact output tracking in a disturbance-free plant (8). 

By substitution of (7) into (8) using (3)-(4), we obtain the linear Model Matching Conditions: 

 11 21 11 mAS BS S A      (9a) 

 
*

12 22 12 11m mAS BS S F S B       (9b) 

 11 mCS C   (9c) 

 12 0CS    (9d) 

 13 23 13AS BS S F      (9e) 

 13 0CS    (9f)  

The Model Matching Conditions (9a)-(9f) are necessary and sufficient conditions for the existence of the ideal 

trajectories in the form of (7). These Model Matching Conditions (9a)-(9f) can be rewritten as: 
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where 
* * *

1 11 12 13 : ( )LS S S S D A X      , 
* * *

2 21 22 23 : L mS S S S     ,  



4 

 

0

0 0

0 0

m m

m m

A B

L F

F

 
 


 
  

, and 

 

 
1

2

0 0

0 0m

H

H C

  



. Because ),( 21 SS  are both of finite rank, they are 

bounded linear operators on their respective domains. 

IV. Ideal Trajectory Existence and Uniqueness: Normal Form 

To determine conditions for the existence and uniqueness of the Ideal Trajectories, we need two lemmae: 

Lemma 1: If CB is nonsingular then CCBBP 1

1 )(   is a (non-orthogonal) bounded projection onto the 

range of B, ( )R B , along the null space of C, ( )N C  with 12 PIP   the complementary bounded 

projection, and ( ) ( )X R B N C   as well as ( ) ( ) [ ( ) ( )]D A R B N C D A   . 

 

Proof of Lemma 1: Consider 
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Hence 1P  is a projection.  

Clearly, 1( ) ( )R P R B  and ( )z Bu R B   which implies 
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Therefore 1( ) ( )R P R B .  

Also 1( ) ( )N P N C  because 1( ) ( )N C N P  and 1( )z N P  implies that  

1 0P z   which implies that  

1

1 ( ) 0 CPz CB CB Cz   or 1( ) ( )N P N C .  

So 2P  is a projection onto ( )R B  along ( )N C  but 
*

2 2P P  so it is not an orthogonal projection in general. 

We have )()( 11 PNPRX  ; hence ).()( CNBRX    

Since )(ADbi  , we have )()( ADBR  .  

Consequently      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )D A R B D A N C D A R B N C D A       . 

The projection 1P  is bounded since its range is finite dimensional, and the projection 2P  is bounded because 

.1 12  PP   

This completes the proof of Lemma 1. 
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which implies that 
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because  
1

1( ( ) )y Cx C B CB C x CPx    , 

1 1

1 ( ) ( )P x B CB Cx B CB y   , 

1

2 ( ) 0CP C CB CB C   , and  

1

2 ( ) 0P B B B CB CB   . 

 

Lemma 2: If CB is nonsingular, then there exists an invertible, bounded linear operator 
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This coordinate transformation can be used to put (1) into normal form:  

 
















22221
2

21211

zAyA
t

z

CBuzAyAy

 (11) 

where the subsystem: ),,( 211222 AAA  is called the zero dynamics of (1) and  
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Proof of Lemma 2: 

Since X is separable, we can let  
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This yields the normal form (11). 
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This completes the proof of Lemma 2. 

Now we can prove the following theorem about the Existence and Uniqueness of Ideal Trajectories: 

Theorem 1: Assume CB  is nonsingular. Then 22( ) ( ) ( ) ( ) ( )m m mL A F F A         where 

1

22 22 2 2( ) {  such that ( ) :  is a bounded linear operator}A C I A l l        if and only if there exist 

unique bounded linear operator solutions  ),( 21 SS  satisfying the Matching Conditions (10).  
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where  ( , , )A B C  is the Normal Form (11).  
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We can rewrite the last of these equations as  
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Now assume that mL  is simple and therefore provides a basis of eigenvectors   LL

kk 


for  
1

 . This is not 

essential but will make this part of the proof easier to understand. The proof can be done with generalized 

eigenvectors and the Jordan form. So we have  
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Also bHHAH  221  is a bounded operator on 
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Therefore bS  is a bounded linear operator, and this leads to 1S  also bounded linear. 
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In this case three things can happen when )( 22* A  :  

1) )( 22* AI   can fail to be one to one so multiple solutions of bS  will exist 

2) )( 22* AIR   can fail to be all of X so no solutions bS  may occur or  

3) 
1

22* )(  AI  can fail to be a bounded operator so solutions bS  may be unbounded.  

In all cases these three alternatives lead to a lack of unique bounded operator solutions for 1S . 

The proof of Theorem 1 is complete. 

It is possible to relate the point spectrum  22 22( )  such that  is not one to onep A I A     to the 

set Z of transmission (or blocking) zeros of ),,( CBA . As in the finite-dimensional case [16], we can see  

that 
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Lemma 3:  22 22( )  such that  is not one to onepZ A I A      is called the point spectrum of 

22A . 

So the transmission zeros of the infinite-dimensional open-loop plant ),,( CBA  are the eigenvalues of its 

zero dynamics ),,( 211222 AAA . 

 

 Proof of Lemma 3:  
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 
 

 not one to one if and only if 
0

I A B

C

  
 
 

 is not one to one. 

But, using the Normal Form from Lemma 2,  




























 


00

0
0

)( 2221

1211

mI

AIA

CBAAI

C

BAI
V 




  

And therefore 

1

2

3

0 ( ) ( )

h

V h V h

h

 

 
 

 
 
  

 if and only if  

1

1 3 12 20, ( ) ,h h CB A h   and 22 2( ) 0I A h   . 

So 0h   if and only if 2 0h  .  

Therefore 
0

sI A B

C

 
 
 

 is not one to one if and only if 
22 ( )p A  . 

This completes the proof of Lemma 3. 

 

Using Lemma 3 and Theo. 1, we have the following Internal Model Principle: 

 

Corollary 1: Assume CB  is nonsingular and 

22 22 2 2( ) ( ) ( )p pA A P AP     where 
*

22 2 2 2 2A W P APW . 

There exist unique bounded linear operator solutions  ),( 21 SS  satisfying the Matching Conditions (10) if and 

only if ( ) [ ( ) ( ) ( )]  m m mL Z A F F Z          , i.e., no eigenvalues of ),,( FFA mm  can be 

zeros of ),,( CBA .     

 

Note: 

 0)(&0&001-1not  is 222222222  zAIxPWzxPxAI 

).()(    

 on isometry an  is But 

on  1-1not  is )(

])([

)()(0&00

2222

2

*

2222

22

*

2222

22

*

222

*

2222222

APPA

N(C)W

N(C)WAPPIW

xPWWAPPIW

xPWWPAPWWWxPWAIxPx

pp

I

















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V. Stability of the Error System: Almost Strict Dissipativity 

The error system can be found from (1) and (8) by first defining 

 
*e x x   and *u u u   . Then we have  

 

*y m

e
Ae B u v

t

e y y y y Ce


   


     

 (12) 

Now consider the definition of Strict Dissipativity for infinite-dimensional systems and the general form of this 

adaptive error system to prove stability. The main theorem of this section will later be utilized to assess the 

convergence and stability of the adaptive controller with disturbance rejection for linear diffusion systems. 

Noting that there can be some ambiguity in the literature with the definition of strictly dissipative systems, 

we modify the suggestion of Wen in [8] for finite dimensional systems and expand it to include infinite 

dimensional systems. 

Definition 2: The triple ( , , )cA B C  is said to be Strictly Dissipative (SD) if cA  is a densely defined ,closed 

operator on XAD c )(  a complex Hilbert space with inner product ),( yx  and corresponding norm  

),( xxx   and generates a 0C  semigroup of bounded operators )(tU , and  ),( CB  are bounded finite 

rank input/output operators with rank M where : mB R X  and : mC X R . In addition there exist 

symmetric positive bounded operators P and Q on X  such that 
2 2 2 2

min max min max0 ( , ) ; 0 ( , )p e Pe e p e q e Qe e q e      , i.e. P and Q are bounded and 

coercive, and 

  

 

2

min

*

1 1
Re( , ) ( , ) ( , ) ( , ) ( , )

2 2

( , ) ; ( )

c c c c c

c

PA e e PA e e PA e e PA e e e PA e

Qe e q e e D A

PB C

       


    





 (13) 

where  
*C  is the adjoint of the operator C . 

We also say that ( , , )A B C  is Almost Strictly Dissipative (ASD) when there exists a *

mxmG   such that 

( , , )cA B C  is strictly dissipative with CBGAAc * . 

Note that if P I  in (13),by the Lumer-Phillips Theorem [10], p405, we would have 

min( ) ; 0 ; 0t

cU t e t q     .
 

Henceforth, we will make the following set of assumptions: 

Hypothesis 1: Assume the following: 

i.) There exists a gain, 
*

eG  such that the triple ),,( * CBCBGAA eC   is strictly dissipative, i.e. ( , , )A B C  

is ASD, 

ii.) A  is a densely defined ,closed operator on XAD )(  and generates a 0C  semigroup of bounded 

operators )(tU ,and 

iii.) D  is bounded 

From (7), we have Dmm zSuSxSu *

232221  

  and using (6), we obtain: 
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 

*

* 21 22 23

* *

( ) ( )

 

D

m m u m e y D D m m D

L

m

e y e y m u D m e y

D

u u u G x G u G e G S x S u S z

x

G e G e G G G u G e G









          

 
 

        
 
  

  

where   * * * *

* * 21 22 23; ; ;e m u D eG G G G G G G G G G S S S L         and 

T

y m m De x u     .
 

From (1), (6), (12), and (13), the Error System becomes 

 


















































0

000

000

000

000

    ; 

);(;)(

*

*

*

D

u

m

e

y

y

c

A

e

eGGGG

Cee

GADevBeAvGBeCBGA
t

e

c

















 (15) 

Since B, C are finite rank operators, so is 
*

eBG C . Therefore, 
*

c eA A BG C   with ( )cD A D(A)  generates 

a 
0C  semigroup ( )cU t  because A does; see [9] Theo. 2.1 p. 497. Furthermore, by Theorem 8.10 p 157 in [11], 

x(t) remains in D(A) and is differentiable there for all 0t  .This is because  GBBtF )(  is 

continuously differentiable in D(A). 

 We see that (14) is the feedback interconnection of an infinite-dimensional linear subsystem with 

XADe  )(  and a finite-dimensional subsystem with 
mxmG  . This can be written in the following 

form using 
mxmmxm XxXxADD

G

e
w 










   )( : 

 

 





























mxm

y

c

t

XxXDwtw

e

vtBeA
wtfw

t

w

in  dense )(

)(
),(

00

*



 (16) 

 

The inner product on
mxmXxX   can be defined as 

 

1 2

1 2

1 2

*

1 2 2 1

( , ) ,

( , ) trace( )

x x
w w

G G

x x G G

    
     

     

   

 which will make it a Hilbert space also. 
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The following Robust Stabilization Theorem shows that convergence to a neighborhood with radius 

determined by the supremum norm of   is possible for a specific type of adaptive error system. In the 

following, we denote 
1

2
tr( )TM M M   as the trace norm of a matrix M where 0 .

 
Theorem 2 (Robust Stabilization): Consider the coupled system of differential equations 

 

 

T

( )

( ) ( )

c

G

y

y

e
A e B G t G z

t

e Ce

G t e z aG t










   







  



 
(17) 

where , ( ), m

Ce v D A z R   and  
mxmXxRX

G

e









 is a Hilbert space with  

inner product  1 2 1

1 2 1 2

1 2

, ( , ) tr
e e

e e G G
G G

 
    

     
    

, norm  
1

2 1 2tr( )
e

e G G
G

  
  

 
 and where 

)(tG  is the mxm adaptive gain matrix and   is any positive definite constant matrix, each of appropriate 

dimension. Assume the following: 

i.) ( , , )A B C  is ASD with CBGAAc *  

ii.) there exists 0GM   such that 
* *tr( )T

GG G M  

iii.) there exists 0M   such that 


 Mt
t

)(sup
0

 

iv.) there exists  0    such that 

m ax

m in

p

q
a  , where min max,q p  are defined in Definition 2 

v.)  the positive definite matrix   satisfies 

2

1tr( )
G

M

aM

   
  
 

, 

then the gain matrix, G(t), is bounded, and the state, e(t) exponentially with rate 
ate

 approaches the ball of 

radius  

 
M

pa

p
R

min

max

*

1


 
Proof of Theorem 2: See Appendix I. 

 Now we can prove the robust stability and convergence of the direct adaptive controller (4) in closed-loop 

with the linear infinite-dimensional plant (1)-(2). 

 

Theorem 3: Under Hypothesis 1, we have robust state and output tracking of the reference model: 

(0 )*t

e
N , R

G 

 
 

 
 and since C is a bounded linear operator, we have: 

 

(0 )y m *t
e y y Ce N , R


     with bounded adaptive gains 

  *e m u DG G G G G G G    

 

Proof of Theo. 3: Follows directly from application of Theo2 to the error system (12) or (17). 

Note that uniform continuity is not needed since Barbalat’s Lemma [15] is not invoked here. 
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VI.  Application: Adaptive Control of Unstable Diffusion Equations Described by Self 

Adjoint Operators with Compact Resolvent 

We will apply the above direct adaptive controller on the following single-input/single-output Cauchy 

problem:  
















)(, with ),,(

)()0(,)( 0

ADcbxcy

ADxxvuubAx
t

x
D

 

And the reference model will be 

 

 

 

 

 
For this application we will assume the disturbances are step functions. Note that the disturbance functions can 

be any basis function as long as D  is bounded, in particular sinusoidal disturbances are often applicable. So 

we have 1D   and 
(1)

(0)

D D

D D

u z

z z





 which implies 0F   and 1D  . 

Let e Du G y G   with 

*

e y y e

D y D

G e e

G e





  


 

.

 
 

We will assume that A  is closed and densely defined, but is also a self adjoint operator with compact resolvent. 

This means A  has discrete real spectrum:    ....21     and  
1kk  an orthonormal sequence of 

eigenfunctions; see [9] Theo 6.29 p187.  

Assume ,....2,10  kk   

Only a finite number of the eigenvalues maybe unstable (or positive); so we will say: 

0 where,.... 121    NN  is the desired stability margin. 

Define the Orthogonal Projection Operators: xPxPx RN   

with 





11

),(,),(
Nk

k

x

kR

N

k

k

x

kN

kk

xPxP 


 where    NRNNN SXPspSXP :,,...,: 1  . 

Let the sensor and actuator influence functions be the same and entirely in NS : 

1

( , )

k

N

k k

k b

c b b  


   with all 0kb   and choose 
*

* 0G g   . Then bbgAAc

*

*  remains self-

adjoint with discrete spectrum, 

and 






























k

Nk

kkR

Nk

kRc

Nk

N

k

kNkN

N

k

kNc

PxPA

bxPbgbxbPgPxPA





11

*

1

*

*

1

 

 ),(

because cbbPN  . 

So ),Re(),Re(),Re( xxPPAxxPPAxxPA RcNcc   and,  

in Definition 2, we will use IP  , and obtain the following results from [17]: 

 















0mmm

mmmm

mmmmmmm

uFu

xxCy

uxuBxAx




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a) ))())((),Re( *

2

1

*

1

2

N

A

T

NNN

T

N

N

k

kk

N

k

kkNc xbbgAxxbgxxxPA

c
N


 



  where 

  ]...[;...];[ 11 NN

T

NNkN xxxbbbdiagA   where ),,(
T

NNN bbA  is a finite dimensional system 

that is controllable/observable if and only if 0kb  . 

b) ),,(
T

NNN bbA   is almost strictly positive real which is equivalent to 0N

T

N bb and all zeros of the 

open-loop transfer function being stable; see e.g.[13]. We have 

c)  01
22 



bbbb
N

kk

kN

T

N  and all zeros of the open-loop are stable when 




































 


0...

...00

...0...0...

0...0

0...0

0

21

22

11

N

NN

T

N

NN

N

bbb

b

b

b

b

bIA
H








  

is nonsingular for all Re 0  ; see [14] p286.  

So ( , , )
T

N NNA b b
 
is ASPR if and only if

 
 

 

2
2

1 1,

1 1

( )
det ( ( )) ( ) 0

N N
N Nk

N k k k l l k k

k kk

b
H b     

 
  

 


     


   (18) 

for all Re 0   and kRe   because in this application all eigenvalues are distinct and nonzero. 

 

d) there exists * *G g   such that 
* *

*( , , )cA A g cc B b C c     is Strictly Dissipative and  

 )(),Re(
2

ADxxxxAc    (19) 

As long as (18) is satisfied, we can apply Theorem 3, and we have robust state tracking, *xx
t
 


,  and 

robust reference model tracking, mt
yy 


, with bounded adaptive gains   Deum GGGGG   

in the presence of persistent disturbances, via the direct adaptive controller.
 

Example: An Unstable Heat Equation 

  

Let 

2
2

2

x
Ax x

z



 


 on the  2 ( )  such that C [0,1] and ( ,0) ( ,1) 0D A x x x t x t      which 

implies that 
1

( , ) ( (0, ), ( )) ( )k t

k k

k

x t z e x z z z
  





  with 
2 2( )k k     and 2 sin )k (k x  . 

This is a heat equation with an internal  source. When  

 1 2 3 3 1 2 3

1
2 and ( ) , , ( )

3
b S sp D A              this implies that 

2

1 0 0

0 4 0

0 0 9

NA



 



 
 

 
 
  

 and 

1
1

1
3

1

T

N Nb c

 
 

 
 
  

.
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 This system satisfies (6) and has 









29.3,35.49:

7,2,: 222

zeros

poles 
 and so is minimum phase with 01NN bc  

and is therefore ASPR. Consequently, the direct adaptive controller in (4) will produce: output tracking 

0 
tmy yye  with bounded adaptive gains in the presence of step disturbances. 

VII. Perturbation Results 

The previous results

 

depend upon N Nb P b S  .  

However, it is possible to allow 0);(   ADbPbPb RN .  

Define  and N N R Rx P x x P x    

this implies that 

 

2

12

21 22

( , )

22 2 2

Re( ( ) , ) Re ,

0
Re , Re( , )

0

( )  -( )          

c
N NN

c

R RR

c
N NN

R RR Ax x

N R

x

x xA A
A x x

x xA A A

x xA
Ax x

x xA

x x ΔA x σ - ε ΔA x




 



 

 

      
              

      
         

     

    

. 

And this proves:  

2

0

Re( ( ) , ) ( )cA x x A x



  



     for all 0
A


 


.  

And we have ),,)(( CBA c  strictly dissipative and we can apply Theorem 2 again.  

Therefore, for small 0 , all previous results are still true and we do not need b  entirely confined to 
NS . 

VIII. Conclusions  

In Theorem 2 we proved a Robust Stabilization result for linear dynamic systems on infinite-dimensional 

Hilbert spaces under the hypothesis of almost strict dissipativity for infinite dimensional systems. This idea is an 

extension of the concept of m-accretivity for infinite dimensional systems; see [9] pp278-280. In Theorem 3, we 

showed that adaptive model tracking is possible with a very simple direct adaptive controller that knows very 

little specific information about the system it is controlling. This controller can also mitigate persistent 

disturbances. There was no use of Barbalat’s lemma which requires certain signals to be uniformly continuous. 

However, we do not get something for nothing; we must relax the idea that all signals will converge to 0 and 

replace it with the idea that they will be attracted exponentially to a prescribed neighborhood whose size 

depends on the norm of the completely unknown disturbance. In order to cause such an infinite dimensional 

system to track a finite dimensional reference model, we used the idea of ideal trajectories, and in Theorem 1 we 

showed conditions for the existence and uniqueness of these ideal trajectories without requiring any deep 

knowledge of the infinite dimensional plant. 

We applied these results to a general linear infinite dimensional linear systems described by self-adjoint 

operators with compact resolvent, in particular unstable diffusion problems using a single actuator and sensor 

and direct adaptive output feedback. Such systems were shown to be able to robustly track the outputs of a finite 

dimensional reference model in the presence of persistent disturbances. 

These results do not require deep knowledge of specific properties or parameters of the system to accomplish 

model tracking. And they do not require that the disturbance enter through the same channels as the control. 

Finally, it is possible to substantially expand the results in Theorem 2 to nonlinear infinite dimensional systems, 

but we have elected here to take a small (baby) step forward and show the possibilities of adaptive control for 

infinite-dimensional systems. 
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Appendix I: Proof of Theorem 2 

From (16) and Pazy Cor 2.5 p107 [1], we have a well-posed system in (17) where 
cA  is a closed operator, 

densely defined on  ( )CD A X  and generates a 
0C  semigroup on X , and all trajectories starting in )( CAD  

will remain there. Hence we can differentiate signals in )( CAD .   

Consider the positive definite function, 

  T1tr
2

1
),(

2

1
GGePeV  

 (A.1) 

where 
 GtGtG )()(  and P  satisfies (13).  

Taking the time derivative of (A.1) (This can be done )( CADe ) and substituting (2a) into the result yields 

  GzwvPeGGePBwePAeeePAV cc   );,(tr),()],(),[(
2

1 T1 . 

Invoking the equalities in the Definition 2 of Strict Dissipativity, using x
T
y = tr[yx

T
], and substituting (17) into 

the last expression, we get (with wewe yy

*,  ), 
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 

1 T

,

2 1 T

min

2 1 T 1 T

min

1 Tmin

max

Re( , ) , tr tr( ) ( , )

tr ( ) ( , )

tr tr ( , )

2 1 1
( , ) 2 tr t

2 2

y

T T

c y y

e w

V PA e e e w a G G e z G Pe v

q e a G G G Pe v

q e a G G a G G Pe v

q
Pe e a G G a

p





 





 

  



         

         

               

 
           

 

1 T

1 T

r ( , )

2 tr ( , )

G G Pe v

aV a G G Pe v





 

 











    

        

 

Now, using the Cauchy-Schwartz Inequality 

1 T *

22
tr  G G G G       

and  

),(),( ),( 2

1

2

1

ePevPePPvPe    

We have 

1

2

*

max22

*

max22

1
2* 2

max 22

2 ( , )

( ) ( , )

1 1
( ) 2 [ ( , ) ]

2 2

V

V aV a G G p ν Pe e

a G G p M Pe e

a G p M Pe e G





    

   

   

 

Therefore, 

*

max1 2
2

2
( ) 2

V aV
a G p M

V




 

 

 

Now, using the identity    tr trABC CAB , 

   

    

 

1

2

1 1

* * 1 * * * 12 2
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1
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* * * * 1 1 2

1 1
* * 12 2
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M M
M

aM a

 

 

 



 

 



    
   

 
 
 
 

      

  

 

which implies that 

 

  max1

2

2
1 2

V aV
p M

V




 

 (A.2) 

From
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 

1

2
1

2

max

2
(2 )

1 2

at at

at

d V aV
e V e

dt
V

e p M




   

Integrating this expression we have: 

 

   11
)0()(

max2/12/1 


 atat e
a

Mp
VtVe


.

 

Therefore, 

 
 

 
max1/2 1/2

1
( ) (0) 1at at

p M
V t V e e

a

 


    (A.3)
 

The function ( )V t  is a norm function of the state ( )e t  and matrix ( )G t . So, since 
1/2( )V t  is bounded for all 

t , then ( )e t  and ( )G t  are bounded. We also obtain the following inequality: 

2/1

min )()( tVtep 
 

Substitution of this into (A.3) gives us an exponential bound on state e(): 

 
   at

at

e
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Mp
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e
te 






 1
1

)0()(
min

max2/1

min



 (A.4) 

Taking the limit superior of (A.4), we have  

 
 

*

min

max1
)(lim RM

pa

p
te 








.
 (A.5) 

And the proof is complete. 

 

 


