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Abstract: This paper is focused on adaptively controlling a linear infinite-dimensional system to cause it
to track a finite-dimensional reference model. Given a linear continuous-time infinite-dimensional plant
on a Hilbert space and disturbances of known waveform but unknown amplitude and phase, we show
that there exists a stabilizing direct model reference adaptive control law with certain disturbance
rejection and robustness properties. The plant is described by a closed, densely defined linear operator
that generates a continuous semigroup of bounded operators on the Hilbert space of states.

The central result will show that all errors will converge to a prescribed neighborhood of zero in an
infinite dimensional Hilbert space. The result will not require the use of the standard Barbalat Lemma
which requires certain signals to be uniformly continuous. This result is used to determine conditions
under which a linear Infinite-dimensional system can be directly adaptively controlled to follow a
reference model. In particular we examine conditions for a set of ideal trajectories to exist for the tracking
problem. Our results are applied to adaptive control of general linear diffusion systems described by self-
adjoint operators with compact resolvent.

I. Introduction

Many control systems are inherently infinite dimensional when they are described by partial differential
equations. Currently there is renewed interest in the control of these kinds of systems especially in flexible
aerospace structures, smart electric power grids, and the quantum control field [1]-[2],[18]. New general results
in the theory of control of partial differential equations can be found in [11], [19]-[20]. And a very different
approach to adaptive control of specifically parabolic partial differential equations can be seen in [21]. In this
paper we want to consider how to make a linear infinite-dimensional system track the output of a finite-
dimensional reference model in a robust fashion in the presence of persistent disturbances.

In our previous work [3]-[6] we have accomplished direct model reference adaptive control and disturbance
rejection with very low order adaptive gain laws for MIMO finite dimensional systems. When systems are
subjected to an unknown internal delay, these systems are also infinite dimensional in nature. Direct adaptive
control theory can be modified to handle this time delay situation for infinite dimensional spaces [7]. However,
this approach does not handle the situation when partial differential equations (PDEs) describe the open loop
system.

This paper will provide a foundation for the topic of direct adaptive control on infinite dimensional spaces.
This paper considers the effect of infinite dimensionality on the adaptive control approach of [4]-[6]. We will
prove here a Robust Stability Theorem for infinite-dimensional spaces. We will show that the adaptively
controlled system is robustly globally asymptotically stable using this new result. In order to accommodate
robust behavior, we must give up the idea of all errors converging to zero and replace it with the idea of
convergence to a prescribed neighborhood of zero whose radius is determined by the size of the unmodeled
disturbance.

We want to apply this robust theory to linear PDEs governed by self-adjoint operators with compact
resolvent such as linear diffusion systems. And we will also see some of the new technical difficulties
encountered in infinite-dimensional direct adaptive control and find out that the devil really is in the details.
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I1. Adaptive Robust Tracking with Disturbance Rejection
Let X be an infinite dimensional separable Hilbert space with inner product (X, Y) and corresponding

norm ||X|| = ,/(X, X) . Also let A be a closed linear operator with domain D(A) dense in X. Consider the Linear
Infinite Dimensional Plant with Persistent Disturbances:

%(t) = AX(t)+Bu(t)+ I"uy (t) +v, x(0)=x, € D(A)

Bugibiui @
y(t):bx(t), y. =(c,x(t)), i=1l..m

where X € D(A) is the plant state, b, € D(A) are actuator influence functions, ¢, € D(A) are sensor
influence functions, U,y € R™ are the control input and plant output m-dimensional vectors respectively, and
Up is a disturbance with known basis functions @ . We assume v is a bounded but unknown disturbance with
M <M, <.

In order to accomplish some degree of disturbance rejection in a direct adaptive scheme, we will make use of
a definition, given in [7], for persistent disturbances:

Definition 1: A disturbance vector Uy € RY is said to be persistent if it satisfies the disturbance generator
equations:

{uD 0=00) {uD(t) =02,(t) o
25(t) = Fzp(t) 25 (t) =Ly (1)
where F is a marginally stable matrix and ¢ (t) is a vector of known functions forming a basis for all such
possible disturbances. This is known as “a disturbance with known waveform but unknown amplitudes”.
The objective of control in this paper will be to cause the output Y(t) of the plant to robustly asymptotically
track the output y,,(¢) of a linear finite-dimensional Reference Model given by:
Xm = A’T]Xm + Bmum
: m ®)
ym = mem’ Xm (O) = XO
where the reference model state X, (t) isan Ny-dimensional vector with reference model output Y, (t)
having the same dimension as the plant output Y(t) . In general, the plant and reference models need not have
the same dimensions. The excitation of the reference model is accomplished via the vector U, (t) which is
generated by
. . M
um = qum’um(o)_uo 4
The reference model parameters (An, Bm ) Cm, Fm) will be assumed completely known. What is meant by
“robust asymptotic tracking” is the following:
We define the output error vector to be
ey =Y—VYn t—o0 >N (O) ®)

where N(0) is a predetermined neighborhood of the vector 0.



The control objective will be accomplished by a direct Adaptive Control Law of the form:
u=G,x,+Gu, +Ge, +Gy¢, (6a)

The direct adaptive controller will have adaptive gains given by:
G, =-eu,7,; 7 >0

*

G =—€,XyVm: Ym>0

m
P U (6b)
G, =—-€87.; 7 >0
Gp =—€,05)p: Vo> 0
I11. Ideal Trajectories
We define the Ideal Trajectories for (1) in the following way:
X, =S/ X +S;u +S.2, =S,z X
TooTHIm TR I T withz ={u, |e Rt (7
u, =S, X, +S,U, +S,,2, =S,z ,
d
where the ideal trajectory x, (¢) is generated by the ideal control u.(z) from
OX
= = AX, + Bu, +T'u,
©)

y* :CX* = ym

If such ideal trajectories exist, they will be linear combinations of the reference model state, disturbance state,
and reference model input (7), and they will produce exact output tracking in a disturbance-free plant (8).
By substitution of (7) into (8) using (3)-(4), we obtain the linear Model Matching Conditions:

AS/, +BS;, = S;}A, (9a)
AS;, +BS,, =S,,F_+S,B,_ (9b)
Cs,=C, (9c)

CS;, =0 (9d)
AS,+BS,,+I'®=S,F (%)
CS;, =0 (9f)

The Model Matching Conditions (9a)-(9f) are necessary and sufficient conditions for the existence of the ideal

trajectories in the form of (7). These Model Matching Conditions (9a)-(9f) can be rewritten as:
AS, +BS,=S,L_+H
1 2 1=m 1 (10)
CS,=H,

* * * *

where S, =[S S5, S |iR" > D(A) =X, S, =[Sy S, SRR



B 0
A By H,=[0 0 -T¢]
L,={ 0 F, 0/ and B . Because (S,,S,) are both of finite rank, they are
0 0 E H, = [Cm 0 0]

bounded linear operators on their respective domains.

IV. Ideal Trajectory Existence and Uniqueness: Normal Form
To determine conditions for the existence and uniqueness of the Ideal Trajectories, we need two lemmae:
Lemma 1: If CB is nonsingular then P, = B(CB)™'C is a (non-orthogonal) bounded projection onto the

range of B, R(B), along the null space of C, N(C) with P, =1 —P, the complementary bounded
projection, and X = R(B)@® N(C) aswell as D(A) =R(B) ®[N(C) nD(A)].

Proof of Lemma 1: Consider
R’ =(B(CB)'C)(B(CB) 'C)
—B(CB)'C=PR '
Hence P, is a projection.
Clearly, R(P,) = R(B) and z =Bu € R(B) which implies
Pz =(B(CB)'C)Bu
=Bu=zeR(P)
Therefore R(R,) = R(B).
Also N(P,) = N(C) because N(C) = N(R,) and z e N(P,) implies that
P,z = 0 which implies that
CPz=CB(CB)*Cz=0 or N(R)< N(C).
So P, isa projection onto R(B) along N(C) but P, # P, so it is not an orthogonal projection in general.
We have X =R(R,)® N(PR,); hence X =R(B)® N(C).
Since b, € D(A), we have R(B) — D(A).
Consequently D(A) =(R(B) "D(A))@®(N(C) "D(A))=R(B) ®(N(C) "D(A)).
The projection P, is bounded since its range is finite dimensional, and the projection P, is bounded because
[Pl <1+[R <o
This completes the proof of Lemma 1.

Now for the above pair of projections (Pl.Pz) we will have

X _p X (RAR)PX+(PAR,)Px+(PB)U
ot ot — —— ——
Ay A B
TX _p, % _ (P,AR)PX+(P,AR,)Px+ (P,B)u
y = (CPPX+ (CP,)PX
= Yy

which implies that



oP, X
ot

OP,x
éi = A21P1X+ Azzpzx

y =CPx=Cx

= A,Px+A,P,x+Bu

because
y=Cx=C(B(CB)"'C)x=CPx ,

Px=B(CB)'Cx=B(CB)'y,
CP,=C-CB(CB)'C =0, and
P,B=B-B(CB)'CB=0.

Lemma 2: If CB is nonsingular, then there exists an invertible, bounded linear operator

C ~
w { }; X — X =R(B)x, such that
WZPZ

BEWB:[COB} and C=CW™=[1, 0] and A=WAW ™.

This coordinate transformation can be used to put (1) into normal form:
y= Auy"‘ AIZZZ +CBu

% = KQly + 'E‘zzzz o
where the subsystem: (A,,, A,, A, ) is called the zero dynamics of (1) and

'511 = CAnB(CB)il =CAB(CB)™; E&z = CAWZ*; '3‘21 E\/\/2’0‘218((38)71; '&22 EW2A22W2*

(0, PX) |
(6,,P,X)
and W, : X = 1, byW,x =| (6,, P,x) | is an isometry from N(C)intol,.

Proof of Lemma 2:
Since X is separable, we can let N(C) =sp {Hk }:;1 be an orthonormal basis.
(6,PX) ]
(6,,P,X)

Define W, : X — 1, by W,x =/ (6,, P,X) |.

Note that [W,X|* = >"|(6,, P,X)|" =||P,x|| < o0 which implies W,x €1, .
k=1
So W, is a bounded linear operator, and an isometry of W, N (C) into |, .

Consequently W,W, =1 on N(C).
Then we have W, W, = P, and the retraction: z, =W, P,x e, .



Also W, z, =W, (W,P,X) = P,X..

Now, using X = P,X + P, X from lemma 1, we have

y =CPX
=CPRA(Px+P,x)+CRBu
=C(B(CB)'C)AB(CB)'y+C(B(CB)'C)AW,z,) +C(B(CB)'C)Bu
=A,y+A,z,+CBu

and

z, =W,P,x
=WPR,[A(Px + P,x) + Bu]
=W,R,A(B(CB) ™"y +W,z,) +W,P,Bu
=W, (1 -B(CB)B)AB(CB) 'y +W, (I —B(CB)'B)AW, z,
= '&z1y+ 'E‘zzzz-

This yields the normal form (11).

C

Choose W E[ } which is a bounded linear operator. Then W has a bounded inverse explicitly stated as
2' 2

W™ =[B(CB)" W, ]

This gives

WwW =

| CB(CB)*  Cw;
\W,P,B(CB)™ W,PW,

0 ] T, ol_,
10 wWWw, | [0 1]

because R(W, ) = N(C).

Furthermore, W W =P, +W,W,P, = P, + P, = | because W,W, =1 on N(C).
Also direct calculation yields:

_ cB ] [cB
B=WB= =

C=cw'=[cB(CB)* cw;]=[1, 0]
-1 *
K owaw- _| CAB(CB) cAW;
W,P,AB(CB)™ W,P,APW;

This completes the proof of Lemma 2.
Now we can prove the following theorem about the Existence and Uniqueness of Ideal Trajectories:

Theorem 1: Assume CB is nonsingular. Then o(L,) = o(A,) ua(F,)uo(F) < p(A,,) where
p(A,,)={1 eC such that (A1 —A,,)*:1, — 1, is a bounded linear operator} if and only if there exist

unique bounded linear operator solutions (S,,S,) satisfying the Matching Conditions (10).
Note that we can also write o(L,) "o (A,,) =@ where o(A,)= [p(A,)]°.

- S _ H,
Proof of Theorem 1: Define S, =W ™S, = {S_a} andH, =WH, :{Ha}.
b b

From (10), we obtain



where (A, B,C) is the Normal Form (11).
From this we obtain:

S_a =H,
Sz = (CB)il[Hsz + H_a - ('Kqu + 'E‘izs_b)]
ApSy, =Sk, =H,—A,H,
We can rewrite the last of these equations as
(A1-A,)S, S, (Al —L,)=A,H,—H, =H forall complex A.

Now assume that L, is simple and therefore provides a basis of eigenvectors {¢k }t:l for R". This is not

essential but will make this part of the proof easier to understand. The proof can be done with generalized
eigenvectors and the Jordan form. So we have

(A '&Zz)s_bgok _S_b (A1 -L,)e = 'E‘lez - H_b =H
=0
which implies that

S_b(Pk = (4! - '&zz)_l |'_|(Pk
because 4, € o(L,) < p(A,,).
Thus we have

_ L _ _ L
Spz=Y a (A1 -Ay) HE V=) a4 eR".
k=1 k=1

since 4, € o(L,,) = p(A,,), all (A, 1 —A,,)™" are bounded operators.
Also H=AH, - H, is a bounded operator on R" .
Therefore S_b is @ bounded linear operator, and this leads to S, also bounded linear.
If we look at the converse statement and
let . eo(L,)Nno(A,)=¢.
Then there exists ¢, # 0 such that
(Al = A)S,0. =S, (Al =L))o = (A1 = A,)S, 0. =H.
——
In this case three things can happen when 4. € o'(A,,):
1) (4.1 — A,,) can fail to be one to one so multiple solutions of S, will exist
2) R(AI - Kzz) can fail to be all of X so no solutions S_ID may occur or
3) (A1 - Kzz)_l can fail to be a bounded operator so solutions S_b may be unbounded.

In all cases these three alternatives lead to a lack of unique bounded operator solutions for S, .
The proof of Theorem 1 is complete.

It is possible to relate the point spectrum o, (A,)= {/1 such that A1 — A, is not one to one} to the

set Z of transmission (or blocking) zeros of (A, B,C) . As in the finite-dimensional case [16], we can see
that

Al-A B
Z= {i such that V (1) z[ c 0}: D(A)XR™ — XxR™ linear operator is not one to one}



Lemma3: Z =0, (A,)={4 such that A1 — A, is not one to one} is called the point spectrum of

Ay
So the transmission zeros of the infinite-dimensional open-loop plant (A, B,C) are the eigenvalues of its
zero dynamics (A, A,, A),).

Proof of Lemma 3:

_ -A B - Al-A B||W O
From V(/1)={MC—: A §}={WO ﬂ{ c 0}{0 I} we obtain
%/—/

V()
AM-A B Al-A B
_ not one to one if and only if is not one to one.
C 0 C 0

But, using the Normal Form from Lemma 2,
Al-A, -A, CB

- A-A B — -
V(/i){ - o}: ~A, AM-A, 0
I 0 0
B b
And therefore 0=V (1)h =V (1)| h, | ifand only if
h3

h =0,h,=(CB)"A,h,, and (11 —A,,)h, =0.
So h=0ifandonlyif h, #0.

si-A B _
Therefore [ c O} is not one to one if and only if A€o, (Ay,).

This completes the proof of Lemma 3.

Using Lemma 3 and Theo. 1, we have the following Internal Model Principle:

Corollary 1: Assume CB is nonsingular and

0('522) =0, ('5‘22) = Gp(PZAPZ) where 'K‘zz =W, P,APW, .

There exist unique bounded linear operator solutions (S,,S,) satisfying the Matching Conditions (10) if and
only if o(L,)NZ =[c(A,)vo(F,)vo(F)INZ=¢ ,ie, no eigenvalues of (A,,F,,F) can be
zeros of (A,B,C).

Note:

Al —A,isnotl-1<3Ix#05P,x20&2z, =W,P,x#0& (1l —A,)z, =0

< Ix#03Px#08&0= (Al — A, )W,P,x = (AW,W, —W,PARW, )W, P,x
R

=W, (Al — P,AR,)W, W,P,x

< W, (Al —P,AP,)W, is not1-1on N(C)

But W, is an isometryon N(C)

.o, (Ay)=0,(P,APR).



V. Stability of the Error System: Almost Strict Dissipativity
The error system can be found from (1) and (8) by first defining
€= X—X, and AU =U—U,. Then we have

@ = Ae+BAuU+V
ot (12)

e, =y-Y,=y-y.=Ce
Now consider the definition of Strict Dissipativity for infinite-dimensional systems and the general form of this
adaptive error system to prove stability. The main theorem of this section will later be utilized to assess the
convergence and stability of the adaptive controller with disturbance rejection for linear diffusion systems.
Noting that there can be some ambiguity in the literature with the definition of strictly dissipative systems,

we modify the suggestion of Wen in [8] for finite dimensional systems and expand it to include infinite
dimensional systems.

Definition 2: The triple (A,, B,C) is said to be Strictly Dissipative (SD) if A, is a densely defined ,closed
operator on D(A,) < X acomplex Hilbert space with inner product (X, y) and corresponding norm
||X|| = .,/(X,X) and generates a C, semigroup of bounded operators U (t), and (B,C) are bounded finite

rank input/output operators with rank M where B: R™ — X and C: X — R™. In addition there exist
symmetric positive bounded operators P and Q on X such that

0< Prin ||e||2 <(Pe,e) < P ||e||2 ; 0<0Qu, ||e||2 <(Qe,e) <0, ||e||2 i.e. P and Q are bounded and
coercive, and

Re(PAe,e) = %[(PA:e, e)+(PAe, e)} = %[(PA:e, e)+(e,PAg)]

=—(Qe,€) <, [e|; ecD(A) (13)
PB=C"

where C” is the adjoint of the operator C .

We also say that (A, B,C) is Almost Strictly Dissipative (ASD) when there exists a G. € R™" such that
(A.,B,C) isstrictly dissipative with A, = A+BG.C .

Note that if P =1 in (13),by the Lumer-Phillips Theorem [10], p405, we would have

U.t))<e; t=0; o=qy,>0.

Henceforth, we will make the following set of assumptions:
Hypothesis 1: Assume the following:

i.) There exists a gain, G, such that the triple (A. = A+ BG_,C, B,C) is strictly dissipative, i.e. (A, B,C)
is ASD,

ii.) A is adensely defined ,closed operator on D(A) < X and generates a C, semigroup of bounded
operators U (t) ,and

iii.) @y, is bounded

From (7), we have U, = S, X +S.,U_ +S,.Z, and using (6), we obtain:



Au=U-U, = (Gme + Guum + Geey +GD¢D) - (Sglxm + S;zum + SZB ZD)
Lop

X

m

=G.e, +AGe, +[AG, AG, AG,] u, |=G.e, +AGry
4

*

where AG=G-G.;G=[G, G, G, G,];G.=[G] S,

*

S,, S;SL:I; and

T
n= [ey Xm um ¢D:| )
From (1), (6), (12), and (13), the Error System becomes

oe

— =(A+BG;C)e+BAGn+v=Ae+Bp+v,ee D(A);p=AGy
a A
e, =Ce (15)
y. 0 0 0
AG=G-G.=G=—eny: r= 0 m O Ol g
y 0 0 5 0
0 0 0

Since B, C are finite rank operators, so is BG,C . Therefore, A, = A+BG_C with D(A,) = D(A) generates
a C, semigroup U_(t) because A does; see [9] Theo. 2.1 p. 497. Furthermore, by Theorem 8.10 p 157 in [11],

x(t) remains in D(A) and is differentiable there for all t>0.This is because F(t)=Bpo=BAG#n is

continuously differentiable in D(A).
We see that (14) is the feedback interconnection of an infinite-dimensional linear subsystem with

ee D(A) < X and a finite-dimensional subsystem with AG € R™™. This can be written in the following

€ _
form using W= {AG} e D=D(A)XR™" < X = XxR™™:

a_Wth _ f(t,W)E|:ACe+ BpEt)+v}
ot _eyn 4

w(t,) =w, € D densein X = XxR™"

(16)

The inner product on X = XXR™™ can be defined as

X, X
(W, w,) = | T oo
AG, | | AG, which will make it a Hilbert space also.

= (X, X,) +trace(AG,AG, )

10



The following Robust Stabilization Theorem shows that convergence to a neighborhood with radius
determined by the supremum norm of v is possible for a specific type of adaptive error system. In the

following, we denote ||M ||2 =,/tr((M 7 *MT) as the trace norm of a matrix M where 7 > 0.
Theorem 2 (Robust Stabilization): Consider the coupled system of differential equations

oe .
E=A5e+ B(G(t)—G )z+v
AG

e, =Ce
G(t)=-e,z"y—aG(t)

(17)

el -
where €,ve D(A.),ze€ R™ and {G e X = XXR™" is a Hilbert space with

€ € €
inner product [[Gﬂ ' {GZZD =(e,e,)+ tr<617—162 ) norm {G}

G(t) is the mxm adaptive gain matrix and ¥ is any positive definite constant matrix, each of appropriate
dimension. Assume the following:

i.) (A, B,C) isAsD with A, = A+ BG.C
ii.) there exists Mg > 0 such that \/tr(G'G™) <M,

iii.) there exists M, > 0 such that sup|v(t)| <M, <o
t>0

1
2

= (||e||2 + tr(G}/’lG)) and where

qmin

max

iv.) thereexists o >0 suchthat a < , where 0., Pray are defined in Definition 2

2
i . . - 4 M
v.) the positive definite matrix y satisfies tr(y ) < .
aMg

then the gain matrix, G(t), is bounded, and the state, e(t) exponentially with rate e ™ approaches the ball of
radius

R*E(1+ pmax) MV
a pmin
Proof of Theorem 2: See Appendix I.
Now we can prove the robust stability and convergence of the direct adaptive controller (4) in closed-loop

with the linear infinite-dimensional plant (1)-(2).
Theorem 3: Under Hypothesis 1, we have robust state and output tracking of the reference model:

e
{ }——) N (0, R.) and since C is a bounded linear operator, we have:
AG t—o0

e, =Y—Y, =Ce——=—>N(0,R.) with bounded adaptive gains
G E[Ge G, G, GD]:G*+AG

Proof of Theo. 3: Follows directly from application of Theo2 to the error system (12) or (17).
Note that uniform continuity is not needed since Barbalat’s Lemma [15] is not invoked here.

11



VI.  Application: Adaptive Control of Unstable Diffusion Equations Described by Self
Adjoint Operators with Compact Resolvent

We will apply the above direct adaptive controller on the following single-input/single-output Cauchy
problem:

%: Ax+b(u+uy)+V,x(0) = x, € D(A)

y =(c,X), withb,c € D(A)
And the reference model will be

X, = A, X, +B,U, =-X, +U,

ym = Cme = Xm

u,=F,u, =0
For this application we will assume the disturbances are step functions. Note that the disturbance functions can
be any basis function as long as ¢, is bounded, in particular sinusoidal disturbances are often applicable. So

_ Up = (1)ZD o
we have @5 =1 and < which implies F =0 and 6, =1.
i 2, =(0)z, i
G, =-¢,6,7,

Let U=G,y+G, with :
GD = _eyj/D

We will assume that A is closed and densely defined, but is also a self adjoint operator with compact resolvent.

This means A has discrete real spectrum: A4, 24, >.... > -0 and {(pk }:;1 an orthonormal sequence of
eigenfunctions; see [9] Theo 6.29 p187.

Assume A, = 0Vk =1.2,....

Only a finite number of the eigenvalues maybe unstable (or positive); so we will say:

A2, 2.2 2—0 2 A, = —o0,whereo >0 is the desired stability margin.

Define the Orthogonal Projection Operators: X = Py X+ P;X

N ©
with P, EZ(X,¢k)gpk,PR = z (X,@,)p, where Py : X =S Esp{(ol,..., N }, P.: X —>S,.
k=1%’_1 —_—

k=N+1
Xk X

Let the sensor and actuator influence functions be the same and entirely in S :

N
c=b= Z(b,¢)ﬁ<)¢5k with all b, #0 and choose G.=-g <O0. Then A, = A—g.b’b remains self-

k=1 by

adjoint with discrete spectrum,

N N
AP X=> A Pyo, —0.Pb’bx =>4 0, —g.(b,Pyx)b
k=1 k=1

and B B because Pyb=b=c.
A Px= Z/lk Proy = Zﬂ‘kwk
k=N-+1 k=N+1
So Re(PA_x, x) = Re(PA_ Py X, X) + Re( PA,P; X, X) and,
in Definition 2, we will use P =1, and obtain the following results from [17]:

12



N N _
a) Re(AP X, X) = Z(%Xf - g*(Zkak)z) = )_(L (Ay —9.by QL )Xy ) where
k=1 k=1 T

A, =diag[4 I;b, =[b..b, [ ;x, =[x.. X, ]where (A,,b,,b},) is a finite dimensional system

that is controllable/observable if and only if b, #0.

b) (Ay.by, ,by,) is almost strictly positive real which is equivalent to by b, >0 and all zeros of the
open-loop transfer function being stable; see e.g.[13]. We have

N
c) byb, = Zbkz = ||b||2 =1> 0 and all zeros of the open-loop are stable when
k=k

-4 0 .. 0 B

TRl b, 0 A4-4 .. 0 b
HNE bT 0 = 0 0
N 0 0 .. A,—2 by

b, b, .. by 0

is nonsingular for all Re A >0 see [14] p286.
so (A,,by,by) is ASPR if and only if

det l__lN = (ﬂ-li\lzl(ﬂ'k _1))i

(_bkz) __N 2_N _
ﬂk_ﬂ'_ ébkﬂ-l:l,#k()‘k A) #0 (18)

forall ReA >0 and ReA # A, because in this application all eigenvalues are distinct and nonzero.

d) there exists G, = —(. such that (A, = A—g.cC’,B=Db,C =c") is Strictly Dissipative and

Re(A.X, X) < —a||x||ZVX e D(A) (19)

As long as (18) is satisfied, we can apply Theorem 3, and we have robust state tracking, X——-—X., and

robust reference model tracking, Y ——=—>Y,,, with bounded adaptive gains G = [Gm G, G, GD]
in the presence of persistent disturbances, via the direct adaptive controller.
Example: An Unstable Heat Equation

2

Let Ax= % + X on the D(A)={x such that x e C’[0,1] and x(t,0) = x(t,1) =0}  which
Z

implies that X(t, 2) :iem(x(o, 2), 4 (2))4 () with 4, =(B-k*)z* and ¢ =J2sin(kzx).

This is a heat equation with an internal source. When

p=2andb E%((ﬁl +¢,+4;) €S, =p{d. 4,4, } = D(A) this implies that
-1 0 0 1
A=l 0 p-4 0 7z2ande=%1 =Cy.
0 0 pB-9 1
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_ o poles: +7°,—27%—~Tn* o _
This system satisfies (6) and has and so is minimum phase with c b, =1>0
zeros : —49.35,-3.29

and is therefore ASPR. Consequently, the direct adaptive controller in (4) will produce: output tracking
&, =Y—-VYn wO with bounded adaptive gains in the presence of step disturbances.

VII. Perturbation Results
The previous results depend upon b=Pbe S .
However, it is possible to allow b = P b+ &P;b € D(A);£>0.
Define X, = B x and x; = P,x
this implies that

Re(Ae).x ) =Re|| A A MXN},{XN}

LEA ARt eA, [ X ] [ %
—Re L OMXN},[XN} +&Re(AAX, X)
_0 As || Xg Xg RSP GavTa

<|(AAX,X)|

2
<o (] + sl )+ el =+ -2l aap [
i

And this proves:
Re(A(£), X, X) < —(o —&| A x| forall 0< &< ——
0

—-& :
And we have (A(g),,B,C) strictly dissipative and we can apply Theorem 2 again.

Therefore, for small & > 0, all previous results are still true and we do not need b entirely confined to Sy

VIIl. Conclusions

In Theorem 2 we proved a Robust Stabilization result for linear dynamic systems on infinite-dimensional
Hilbert spaces under the hypothesis of almost strict dissipativity for infinite dimensional systems. This idea is an
extension of the concept of m-accretivity for infinite dimensional systems; see [9] pp278-280. In Theorem 3, we
showed that adaptive model tracking is possible with a very simple direct adaptive controller that knows very
little specific information about the system it is controlling. This controller can also mitigate persistent
disturbances. There was no use of Barbalat’s lemma which requires certain signals to be uniformly continuous.
However, we do not get something for nothing; we must relax the idea that all signals will converge to 0 and
replace it with the idea that they will be attracted exponentially to a prescribed neighborhood whose size
depends on the norm of the completely unknown disturbance. In order to cause such an infinite dimensional
system to track a finite dimensional reference model, we used the idea of ideal trajectories, and in Theorem 1 we
showed conditions for the existence and uniqueness of these ideal trajectories without requiring any deep
knowledge of the infinite dimensional plant.

We applied these results to a general linear infinite dimensional linear systems described by self-adjoint
operators with compact resolvent, in particular unstable diffusion problems using a single actuator and sensor
and direct adaptive output feedback. Such systems were shown to be able to robustly track the outputs of a finite
dimensional reference model in the presence of persistent disturbances.

These results do not require deep knowledge of specific properties or parameters of the system to accomplish
model tracking. And they do not require that the disturbance enter through the same channels as the control.
Finally, it is possible to substantially expand the results in Theorem 2 to nonlinear infinite dimensional systems,
but we have elected here to take a small (baby) step forward and show the possibilities of adaptive control for
infinite-dimensional systems.
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Appendix I: Proof of Theorem 2
From (16) and Pazy Cor 2.5 p107 [1], we have a well-posed system in (17) where A_ is a closed operator,
densely defined on D(A.) < X and generates a C,, semigroup on X , and all trajectories starting in D(A.)

will remain there. Hence we can differentiate signals in D(AC ).
Consider the positive definite function,

1 1
V == (Pee)+=tr[AGy *AG"
2( ee)+2 r[ y ] (A1)

where AG(t) =G(t) —G” and P satisfies (13).
Taking the time derivative of (A.1) (This can be done Ve e D(Ac) ) and substituting (2a) into the result yields

v :%[(P/x e.¢)+ (e, PA®)]+ (PBW ) +r[AGy "AGT [+ (Pe)w=AGz.

Invoking the equalities in the Definition 2 of Strict Dissipativity, using x'y = tr[yx'], and substituting (17) into
the last expression, we get (with <ey , W> = e;w),
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V =Re(PAe,e)+(e,,w)—a-tr[ Gy 'AG |-tr(e,z"AG) + (Pe,v)
(eyw)
<O ||e||2 — a~tr[(AG + G*)y‘lAGT]+ (Pe, V)
< —(qmin le[” + a-tr[AGyflAGT])+ a-‘tr[G*yflAGT]‘ +|(Pe,v)|
< —[zq—m‘”o%(Pe,e)+2ao%tr[AGy‘lAGT]}La-‘tr[G*y‘lAGT]‘+|(Pe,v)|

max

<-2aV + a~‘tr [G*y‘lAGT]‘ +|(Pe, V)|
Now, using the Cauchy-Schwartz Inequality
u[ey'ac"]<[e",lacl,

and
1

P2y

1

P2e

(Pe,v)| < =.J(Pv,v) ¢,/(Pe,e)

We have
V+2aV <a-|G”| [AG, + /P [V]/(Pe.€)

< a-HG*H2 |AG], + (\ P M, )/ (Pe, )

1
<(a[67, +/Prar Mv)ﬁ[%(Pe, e) +%||AG||§]2

1
V2

Therefore,
V22 @], + oM N2
V 2

Now, using the identity tr [ABC] =tr [CAB] ,

o7, [w(er @Y ) (e )

N

<|(r(@Y &G Y 6)) (tGr )

1

_ :tr(G*(G*)T )P () |
MV

< M, oM, ,=—+
aMg a
which implies that
V +2aV
T S(“\/ Prmax )va/i (A2)
V 2

From
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. .
%(ZGatV 2) =g \Y +21aV

VZ
<e (1+ pmax)MV«/E

Integrating this expression we have:

eatV (t)1/2 -V (0)1/2 < (1+ \' pmax)Mv (eat _1)
a

Therefore,

vV (t)1/2 <V (0)1/2 et (1+ N p{:ax ) M, (1_ e—at) (A3)

The function V (t) is a norm function of the state e(t) and matrix G(t) . So, since V (t)"*
t, then e(t) and G(t) are bounded. We also obtain the following inequality:

v Prin[6®)] <V ()

Substitution of this into (A.3) gives us an exponential bound on state e(7):

is bounded for all

at

B 1+ pma)( MV —al
||e(t)||ﬁe—mmV(OW”%@‘e ) (A4)

Taking the limit superior of (A.4), we have

. (1+ A\ pmax)
lim [e(t)] < ap M, =R.. (A5)

And the proof is complete.
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