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Abstract—Prognostics is the process of predicting a system’s
future states, health degradation/wear, and remaining useful life
(RUL). This information plays an important role in prevent-
ing failure, reducing downtime, scheduling maintenance, and
improving system utility. Prognostics relies heavily on wear
estimation. In some components, the sensors used to estimate
wear may not be fast enough to capture brief transient states
that are indicative of wear. For this reason it is beneficial to
be capable of detecting and estimating the extent of component
wear using steady-state measurements. This paper details a
method for estimating component wear using steady-state mea-
surements, describes how this is used to predict future states,
and presents a case study of a current/pressure (I/P) Transducer.
I/P Transducer nominal and off-nominal behaviors are char-
acterized using a physics-based model, and validated against
expected and observed component behavior. This model is used
to map observed steady-state responses to corresponding fault
parameter values in the form of a lookup table. This method was
chosen because of its fast, efficient nature, and its ability to be
applied to both linear and non-linear systems. Using measure-
ments of the steady state output, and the lookup table, wear is
estimated. A regression is used to estimate the wear propagation
parameter and characterize the damage progression function,
which are used to predict future states and the remaining useful
life of the system.
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1. INTRODUCTION
As systems are becoming more complex, more expensive,
and are being sent to increasingly unreachable places, such
as space or the bottom of the ocean, wear detection, estima-
tion, and prediction become increasingly important. Wear
detection, estimation, and prediction play a critical role in
preventing failure, scheduling maintenance, and improving
system utility.

Many modern wear estimation techniques rely on measure-
ment of the system’s transient states [1–4]. However, in some
components, the available sensors may not be fast enough
to capture brief transient states that are indicative of wear.
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This can either be a result of sensor technological limits, or
budgetary constraints on sensor selection (as sensors with
higher resolution and higher sampling frequencies are gen-
erally more expensive). For this reason, it is beneficial to
be capable of detecting and estimating the extent of com-
ponent wear as well as predicting the system’s remaining
useful life using only steady-state measurements. Previous
work in prognostics does not address this need, and a new
methodology is required.

This paper describes a method for predicting system end of
life from component wear using only steady-state measure-
ments. This is accomplished utilizing the steady-state wear
estimation method described in [5]. This method utilizes
a physics-based model that accounts for system behavior
in both nominal and degraded conditions, and that is tuned
utilizing physical specifications and knowledge of system
behavior. This model is then used to map the effect of various
modes of wear on steady-state behavior. Combined with
regression, this method is used to predict future wear states,
system remaining useful life (RUL), and system end of life
(EOL) using steady-state measurements.

As a case study, this method is applied to a current/pressure
transducer, henceforth referred to as an I/P Transducer or
IPT. I/P Transducers are effectively pressure regulators that
vary the output pressure depending on the supplied electrical
current signal. They operate by throttling a nozzle to create a
pressure difference across a diaphragm, which controls the
throttling of a valve. These are often used for supplying
precise pressures to control pneumatic actuators and valves.

The paper is organized as follows. The development of the
IPT model is described in Section 2. Section 3 details the
process of mapping IPT wear from steady state conditions,
and using that mapping to detect and estimate wear in phys-
ical systems. The prognostic methods employed for this
research are described and demonstrated in Section 4. The
paper concludes with a discussion of the implications of this
research and a description of future work in Section 5.

2. I/P TRANSDUCER MODELING
In this section, we develop a physics-based model of both
healthy and faulty IPT behavior. This is used to identify how
faulty behavior affects performance for development of the
wear detection, estimation methodology, and prediction ap-
plications. This model was created using domain knowledge
of the system’s behavior and physical dimensions.

As a case study, we use a Marsh Bellofram Type 1000 IPT,
illustrated in Figures 1 and 2. Some specifications for this IPT
are included in Table 1 [6]. This model was chosen because
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Figure 1: Current/pressure transducer schematic.

Figure 2: Current/pressure transducer.

of its use for cryogenic propellant loading applications, and,
specifically in the pneumatic valve testbed at NASA Ames
Research Center [7]. The IPT is divided into three distinct
control volumes (CVs), each marked in a different color and
pattern in the image. The IPT output pressure varies with
the current supplied to the magnet assembly. When the
current is high, the magnet assembly throttles the flow out
of the pilot nozzle, allowing less air to escape. With a low
input current more gas escapes from the nozzle, lowering the
pilot pressure. The pressure difference across the diaphragm
moves the valve, which adjusts the gas flow between CV1 and
CV2. Adjusting this flow changes the pressure in CV2 and in
the outlet.

Table 1: IPT Specifications

Name Type 1000 IPT
Manufacturer Marsh Bellofram
Supply Pressure Range 18-100 psig
Input Signal Range 4-20 mA
Output Pressure Range 3-15 psig

In this section we will describe development, configuration,
validation, and use of the IPT model for both the nominal and
wear conditions.

Problem Formulation

We assume the system may be described by

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)
y(t) = h(t,x(t),θ(t),u(t)n(t)) (2)

where t ∈ R is the continuous time variable, x(t) ∈ Rnx

is the state vector, θ(t) ∈ Rnθ is the parameter vector,
u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv is the process
noise vector, f is the state equation, y(t) ∈ Rny is the output
vector, n(t) ∈ Rnn is the measurement noise vector, and h is
the output equation.

In prognostics, we are interested in when the performance
of a system lies outside some desired region of acceptable
behavior. For this purpose, we define a threshold function
TEOL(x(t),θ(t),u(t)), such that TEOL evaluates to 1 when
the performance is deemed unacceptable, and 0 otherwise [1].

At some point in time, tP , the system is at (x(tP ),θ(tP ))
and we are interested in predicting the time point t
at which this state will evolve to (x(t),θ(t)) such that
TEOL(x(t),θ(t),u(t)) = 1. Using TEOL, we formally
define EOL with

EOL(tP ) ,
inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t)u(t)) = 1},

(3)

i.e., EOL is the earliest time point at which TEOL is met.
RUL is expressed using EOL as

RUL(tP ) , EOL(tP )− tP .

In model-based prognostics [1, 2, 4], the prognostics problem
is composed of two distinct steps: estimation and prediction.
For estimation, the objective is in general to estimate the
states x(t), which include wear variables xw, and the wear
parameters θw ⊆ θ. In this work, we make the single fault
assumption, so only we consider only a single fault parameter
at a time, and, for the fault models used in this paper, we
consider only a single associated wear parameter θw ∈ θw. In
steady-state conditions, the states of the IPT are known except
for the fault variable, so we need only estimate the fault
variable and its wear parameter, using the measured steady
state output, ySS, and a known input, u. Given estimates of
the fault parameter and wear parameter, we can predict the
growth of the fault and compute when the system will reach
EOL, i.e., the time at which TEOL evaluates to 1.

Nominal Model

The IPT model was developed using mass and energy bal-
ances. Each CV contains gas at a specific pressure, chang-
ing depending on the gas in-flow and out-flow. The sys-
tem’s state consists of the pressures at each control volume
(p1(t), p2(t), ppilot(t)), the position and velocity of the valve
(xV (t) and vV (t), respectively), and the flexure position and
velocity (xF (t) and vF (t), respectively).

The IPT performance is dependent on the supply pressure
provided at the inlet, pi(t), and the signal current sent to the
magnet assembly, i(t). These two values make up the input
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vector, u(t). For the IPT being modeled, the signal current
is between 4 and 20 mA, which varies the outlet pressure,
pout(t), between 3–15 psig. Outlet pressure is considered to
be the only value in the output vector, y(t).

The input (u(t)), state (x(t)), state derivative (ẋ(t)) and
output (y(t)) vectors are summarized below:

u(t) =

[
pi(t)
i(t)

]
(4)

x(t) =



p1(t)
p2(t)
ppilot(t)
pout(t)
xV (t)
vV (t)
xF (t)
vF (t)


(5)

ẋ(t) =



ṗ1(t)
ṗ2(t)
ṗpilot(t)
ṗout(t)
vV (t)
aV (t)
vF (t)
aF (t)


(6)

y(t) = pout(t) (7)

Here velocity, v, and acceleration, a, are defined as the deriva-
tive of position, x, and velocity, respectively. Additionally,
gas flow into a control volume from a bordering control
volume is represented by q̇ij , where the subscript i represents
the first control volume and j the bordering one and q̇ij is
the fluid flow into i from j. The flow, q̇ij , is a function of
the pressure in the control volume, pi, pressure in the second
control volume, pj , the area of the opening between them,
Aij , and the discharge coefficient, Cd [8]. These equations
are summarized below:

ẋ = v (8)
v̇ = a (9)

q̇ij = CdAijCl

√∣∣p2i − p2j ∣∣ ∗ sgn(p2i − p2j ) (10)

Cl =

√
γ

R ∗ T

(
2

γ + 1

) γ+1
γ−1

(11)

here γ represents the heat capacity ratio, R represents the gas
constant, and T the temperature in that control volume. In this
case the temperature is assumed to be constant throughout the
IPT.

Each of the ṗ terms are dependent on the bordering control
volumes. The sum over all the interactions with a given
control volume gives the total pressure flux. Accounting for

all the bordering CVs the ṗ equations become

ṗ1 =(q̇12 + q̇10)
R ∗ T1
V1

(12)

ṗ2 =(q̇21 + q̇2p + q̇2Out)
R ∗ T2
V2

(13)

ṗp =(q̇p2 + q̇pNozzle)
R ∗ Tp
Vp

(14)

ṗout =q̇out2
R ∗ Tout
Vout

(15)

The signal current is supplied to the magnet assembly, which
reacts, applying pressure on the flexure. This pressure is
greater for greater signal currents. As the flexure stretches, it
throttles the airflow out of the nozzle. For low input signals,
the flexure flexes less, allowing more air to escape from
the pilot volume, decreasing its pressure. The pilot volume
is supplied from CV2 by a small entry to the right of the
diaphragm as seen in Figure 1. The net force on the flexure
is the sum of the magnet assembly force (FMag), the resistive
force of the Flexure (FFlex), and friction (FFriction):

FF = FMag + FFlex + FFriction. (16)

where the individual forces are

FMag =
i2

2
(Cmag − Cmag2 ∗ rmag) (17)

FFlex =− kFlex(xF − xF0) (18)
FFriction =CfvF (19)

Here the lumped parameters Cmag and Cmag2 include the
gap between the coils and the metal, the area of the metal, the
number of turns of the coil, and the magnetic constant. The
coil resistance is represented by rmag . Here the value Cf is
the coefficient of friction.

The pressure difference between CV2 and CVpilot produces
a closing force on the valve. The lower the input signal
the greater the closing force. The net force on the valve
(FV ) is the sum of the forces of the Valve Spring (FV S), the
force created by the pressure difference across the Diaphragm
(FDiaphragm), and the force of friction (FFriction). The
throttling of this valve changes the flow rate between CV1
and CV2, affecting the output pressure Pout.

FV = FV S + FDiaphragm + FFriction (20)

where the individual forces are

FV S =− kV ∗ (xV − xV 0) (21)
FDiaphragm =(pPilot − p2) ∗AD (22)
FFriction =CfvV (23)

where AV and AD are the areas of the valve and the di-
aphragm, respectively, and kV is the valve spring coefficient.

Each of these relationships were then converted to be in terms
of acceleration using the following relationship

aV =
1

mV
FV (24)

aF =
1

mF
FF (25)
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Figure 3: Outlet pressure for different currents.

where mV and mF are the mass of the valve and flexure,
respectively.

The movement of both the flexure and the valve are derived
by integrating their respective acceleration equations. The
nominal output pressure response is illustrated in Figure 3a,
with its respective signal current in Figure 3b.

This IPT model was qualitatively validated by comparing
the simulated behavior with known behavior. This domain
knowledge was gathered from system documentation, con-
versations with the manufacturing company, and observations
of actual behavior.

Wear Model

Through discussions with the manufacturers and with users
of I/P transducers and similar components, five possible wear
modes were indicated. These wear modes are described
below:

1. Inlet Leak A leak where the supply pressure is provided
to CV1. Modeled by adding a leak of area Ain for fluid flow
between CV1 and the surrounding environment (at 1 atm).
The resulting fluid flow is represented by

q̇in = CdAinCl

√
p21 − p2atm (26)

2. Valve Seat Leak A leak between CV1 and CV2. Modeled
by adding a leak of area AV S for fluid flow between CV1 and
CV2. A negative AV S models clogging of the valve.

q̇V S =CdAV SCl

√
|p21 − p22| ∗ sgn(p21 − p22) (27)

3. Outlet Leak A leak at the outlet. Modeled by adding
a leak of area Aout for fluid flow between CV2 and the

surrounding environment (at 1 atm).

q̇out =CdAoutCl

√
p22 − p2atm (28)

4. Valve Spring Weakening A weakening of the valve
spring. Modeled by decreasing the spring coefficient, kV .

5. Magnet Assembly Weakening A weakening of the mag-
net assembly. Modeled by increasing the resistance in the
magnet coils, rmag .

The wear state vector, xw, is added to the state vector to
model wear, and the additional equations are added to f . The
wear state vector consists of values representing the state of
wear for each of the five wear modes, is shown in the below
equation

xw =


Ain
AV S
Aout
kV
rmag

 (29)

Wear by its nature progresses with time and/or use. This
distinguishes it from event-driven faults, and allows for the
implementation of prognostics. This model implements wear
propagation models for each of the wear modes described
above.

In the case of the valve spring, the wear rate, k̇(t), is a
function of the wear rate coefficient, wk, the force exerted by
the spring, and the valve velocity [9]. Spring wear is therefore
a function of use instead of time. The wear propagation
equation has been included below in Equation 30.

k̇(t) = −wk |Fs(t)v(t)| (30)
Leak propagation is a function of the exposed area, or the
circumference of the leak, which is proportional to the square
root of the area. The resulting equations for inlet leak,
valve seat leak, and outlet leak are shown in Equations 31-
33, where wleak is the leak wear rate coefficient. This
relationship causes the area to change quadratically with time.

Ȧin(t) = wLin ∗
√
Ain(t) (31)

ȦV S(t) = wLV S ∗
√
AV S(t) (32)

Ȧout(t) = wLout ∗
√
Aout(t) (33)

Coil degradation, like spring wear, is a function of use. Coil
degradation is proportional to the electrical power through
the coil, P , as seen below in Equation 34. The power is a
function of the supplied current, i, and the operating voltage,
V (Equation 35).

ṙ = wCoil ∗ P (34)
P = i ∗ V (35)

The wear parameters vector, θw, consisting of values repre-
senting the wear parameter change rate for each of the five
wear modes, is shown in the below equation

θw =


wLin
wLout
wLV S
wkV
wrmag

 (36)
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Model Verification and Validation

To test non-damaged model realism, a series of experiments
were conducted using the IPT from the Pneumatic Valve
Testbed. These experiments involved taking measurements
of the tuned IPT’s steady state output pressure for a variety
of input currents. The results showed that the output pressure
is nearly linear with input current, as expected. These results
were then compared with the modeled results. The model is
designed so that the results measured from the IPT and the
modeled results are very similar.

3. WEAR ESTIMATION
Wear estimation is the process of estimating the current extent
of wear on a system. This is important for prognostics
(predicting failure), scheduling maintenance, and triggering
automated mitigation actions. This is often done using meth-
ods such as a Kalman Filter or Particle Filter [10, 11]. In this
work, since we have only steady-state measurements to use
for prognostics, there is nothing to track since the transients
are missed, and so a filtering approach would not be appro-
priate. Instead we employ an algorithm to directly estimate
unknown parameters form steady-state measurements, given
the model.

A lookup table method was used for fault estimation. This
method was chosen because of its fast, efficient nature and its
ability to be applied to both linear and non-linear systems. To
define this lookup table the I/P transducer was simulated at
various states of each wear mode and various input currents.
The steady state output pressure was recorded for each case.
The result was used as a reverse lookup table to estimate the
wear given a specific observed steady state output pressure
for a given input current. Values between data points were
linearly interpolated. This was found to be sufficiently accu-
rate given a high granularity lookup table. The granularity
of the lookup table can be adjusted to increase accuracy as
needed.

The resulting outlet pressure for each fault mode given a high
and low input current can be seen in Figure 4. Here the outlet
pressure given a high input current is indicated by the green
dashed line, while that based on a low current is indicated by
the blue solid line. All possible values for the IPT at a given
fault level fall between these two points. In this case it was
found that monitoring the steady state output pressure does
not allow for the estimation of the damage state in the case of
an inlet leak. This leak results in a decrease in the pressure in
CV1, which does not result in a change in the output pressure
until a much larger leak (around 0.2 m2). For this reason the
Inlet Leak case has not been included in the figures.

By contrast, the valve seat leak has a definite increasing effect
on the outlet pressure (Figure 4a). This change in output
pressure is a result of additional gas coming into CV2 from
CV1 through the leak opening. For a leak of 0.3 mm2 the
outlet pressure increased by 0.2577 psig for a high signal
current and 0.5757 psig for a low current.

The outlet leak also has a definite and measurable effect on
the outlet pressure. As the leak grows in size, more gas es-
capes fromCV2, resulting in a lower outlet pressure as seen in
Figure 4b. For a leak of 5 mm2 the outlet pressure decreases
by 2.101 psig for a high signal current and 0.207 psig for a
low current.

The valve spring exerts a force on the valve system countering
that of the diaphragm. As the spring wears, the spring
coefficient, k, decreases. This results in a lower counter force
against the diaphragm, causing an increased output pressure
as the spring coefficient decreases, as seen in Figure 4c. The
effect of this is much more prominent for high input current,
where the force of the diaphragm is higher. For a weakening
of 34.8 to a k of 1146.3 N/m the outlet pressure changed by
0.38 psig for a high signal current and 0.08 psig for a low
current.

Finally, wear in the magnet-coil assembly is simulated here
by increasing the coil resistance. This, in turn, reduces the
force of the magnet on the flexure proportionally with input
current. The decreased force results in a greater pressure
difference across the diaphragm. This closes the valve, and
results in a decreased output pressure as seen in Figure 4d.
This effect is much almost unseen for the low input current as
a result of how the effect scales with current. For an increase
of 0.1 Ω to a rMag of 180.1 Ω the outlet pressure decreased
by 0.045 psig for a high signal current and remained the same
for a low current.

Each of these four wear modes resulted in a change in
outlet pressure. The results for single point wear have been
summarized in Table 2.

Table 2: Affect of Wear Modes on Outlet Pressure

Wear Mode Effect
Inlet Leak None

Valve Seat Leak Increased Outlet Pressure
Outlet Leak Decreased Outlet Pressure
Worn Spring Increased Outlet Pressure
Work Coil Decreased Outlet Pressure

Once the relationship between the fault parameter (θ), input
current (i), and the measured steady state output (ySS) has
been determined the resulting knowledge base can be used
for wear isolation and estimation.

Two measurements with two different input current levels
are required to completely isolate the fault cause. This is to
differentiate between two faults that result in the same effect
on output pressure. For example, if the outlet pressure is
measured to be higher than it should be, that could either
be indicative of a worn spring or a valve seat leak. Each
of these leaks has a different relationship with input current.
The second measurement allows for isolation between sim-
ilar such faults. For systems with additional fault modes
additional measurements may be needed to isolate between
similar faults.

The following section details an example of this method.

Example

For this example let us assume we have a worn spring with a
spring coefficient of 1150 N/m (down 31.1 N/m).

The first measurement of steady state outlet pressure is
14.69 psig at the maximum signal current of 20 mA. Using
the reverse lookup table there are two possible options: a leak
in the Outlet of 55.62 mm2, or worn spring with a spring
constant of 1152.8 N/m (down 28.3).

To definitely isolate the wear mode a second measurement is
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Figure 4: Damaged outlet pressure.

taken, this time with the minimum signal current of 4 mA.
The outlet pressure is measured to be 2.917 psig. This can
either correspond to a leak in the outlet of 12.37 mm2, or
worn spring with a spring constant of 1145 N/m (down 36.1).

Both measurements predict a worn spring of about the same
wear state. This consistency leads the user to estimate that
there is a worn valve spring with a spring coefficient of about
1148.9 N/m. This is calculated by taking the average of the
two estimates. The difference in these measurements is due to
measurement noise (n). Additional measurements at different
input currents could be used to further refine the damage
estimate, and filter out system noise.

4. PROGNOSTICS
Once wear has been discovered and diagnosed, it is useful
for mitigation decisions to know how this wear will evolve
over time. This information can then be used to predict the
time remaining until the component is no longer usable, or
the remaining useful life.

In this case wear propagation behavior is well defined. For
this reason regression is used to identify the wear rate pa-
rameters, θw (Eq. 36), given the wear propagation equations
(Eqs. 30-35). The wear knowledge base is used to determine
what fault parameter value corresponds to end of life. For
this case, EOL was defined as the time when the output
pressure varies from the desired output pressure by 0.5 psig.
Component RUL is then calculated by solving the regression
equations (Eqs. 37-40) for the time that the wear will equal
the end of life wear parameter, TEOL. These equations are
the solution to the wear rate differential equations (Eqs. 30-
34). In these equations the terms Ain0, AV S0, Aout0, and

kV 0 represent the initial wear at time zero andCf is the fitting
constant for each leak.

Ain = CfinwLin ∗ t2 +Ain0 (37)

AV S = CfV SwLV S ∗ t2 +AV S0 (38)

Aout = CfoutwLout ∗ t2 +Aout0 (39)
kV = wkV ∗ n+ kV 0 (40)

This method works well for the cases of the leaks, where
the wear propagates quadratically with time. The spring
parameter on the other hand is a function of the force on
the spring and velocity of the valve (Eq. 30), and is therefore
dependent on use. For this reason the regression equation is
defined as a function of the number of cycles, n. The spring
regression equation is then solved for the number of cycles
at which the device will fail, nEOL. Here a cycle is defined
as a sequence where the input current is cycled between the
lowest value, and the highest value, returning to the original
value.

Note that for this method to work at least two wear estima-
tions are needed, requiring at least four steady-state pressure
measurements. Like with wear estimation, additional mea-
surements improve the accuracy of the result.

The following section details an example of this method.

Example

For this example lets assume that there have been three steady
state outlet pressures at three different supply currents have
been recorded for each of three separate times. At each of
these three times the wear estimation method described in
Section 3 has been applied. The measurements and results of
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Table 3: Outlet Pressure and Wear Estimations

Time (hr) Cycle Current Pout Wear
0 0 20 mA 14.69

Worn Valve Spring
1149 N/m

0.1 0 4 mA 2.917
0.2 1 12 mA 8.804
1000 4322 20 mA 14.62

Worn Valve Spring
1146.3 N/m

1000.1 4322 4 mA 2.920
1000.2 4323 12 mA 8.770
2000 9733 20 mA 14.58

Worn Valve Spring
1142.9 N/m

2000.1 9733 4 mA 2.911
2000.2 9734 12 mA 8.747

wear estimation has been included in Table 3. In this case the
IPT monitoring system is set up to take measurements every
1000 hours for wear estimation and prediction.

given these wear parameter estimates and cycle numbers the
regression algorithm reveals the following regression equa-
tion

kV = −.00062192n+ 1148.9 (41)

Using the lookup table it can then be determined that the low-
est kV can fall without causing Pout to change 0.5 psig at any
input current is 1133.85 N/m. Solving the regression equation
for n predicts an end of life, nEOL, at cycle 24360. As
the current cycle is 9734 the remaining useful life, nRUL, is
14626 cycles. This information can then be used to schedule
maintenance prior to failure. Scheduling maintenance closer
to the point of failure can save both time and money.

5. CONCLUSIONS AND FUTURE WORK
This paper details the development of a model-based prog-
nostics and wear estimation approach using steady state
measurements of the outlet pressure of a current/pressure
transducer. This approach was then applied for the wear
modes of Valve Seat Leaks, Outlet Leaks, Spring Wear, and
Coil Wear, which were determined to be the most likely
modes of failure.

This method was shown to be effective in identifying and
predicting wear in simulations for a worn coil, worn spring,
outlet leak, and leak in the valve seat. With each of these wear
modes the resulting effect on the outlet pressure was different
when considering two different input currents. Measuring the
outlet pressure at two different input currents allows for the
identification of the failure mode. The lookup table created
in this study can then be used to estimate the severity of
the wear. Multiple wear estimations over time can then
be used to estimate the RUL. The results here demonstrate
the effectiveness of steady state wear estimation for an I/P
transducer.

This approach to prognostics allows for RUL estimation and
wear estimation for components where sensors may not be
fast enough to capture brief transient states that are indicative
of wear. The results from this can be used to more efficiently
schedule maintenance, or trigger automated mitigation ac-
tion.

This study relied on physics-based simulations of IPT behav-
ior validated against observations of actual system behavior.
Future work includes testing this method of wear estimation
in this testbed. Additionally, future work includes the estima-

tion of multiple simultaneous wear modes, and uncertainty in
wear estimation from steady state conditions.
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