
Learning the Task Management Space of an Aircraft Approach Model

Joseph Krall and Tim Menzies
Lane Department of CS&EE

West Virginia University, WV, USA
(kralljoe,tim.menzies)@gmail.com

Misty Davies
Intelligent Systems Division

NASA Ames Research Center, CA, USA
misty.d.davies@nasa.gov

Abstract

Validating models of airspace operations is a particu-
lar challenge. These models are often aimed at finding
and exploring safety violations, and aim to be accurate
representations of real-world behavior. However, the
rules governing the behavior are quite complex: non-
linear physics, operational modes, human behavior, and
stochastic environmental concerns all determine the re-
sponses of the system. In this paper, we present a study
on aircraft runway approaches as modeled in Geor-
gia Tech’s Work Models that Compute (WMC) simu-
lation. We use a new learner, Genetic-Active Learning
for Search-Based Software Engineering (GALE) to dis-
cover the Pareto frontiers defined by cognitive struc-
tures. These cognitive structures organize the prioriti-
zation and assignment of tasks of each pilot during ap-
proaches. We discuss the benefits of our approach, and
also discuss future work necessary to enable uncertainty
quantification.

The Motivation—Complexity in Aerospace
Complexity that works is built of modules that work
perfectly, layered one over the other. –Kevin Kelly

The National Airspace System (NAS) is complex. Each
airplane is an intricate piece of machinery with both me-
chanical and electrical linkages between its many com-
ponents. Engineers and operators must constantly decide
which components and interactions within the airplane can
be neglected. As one example, the algorithms that control
the heading of aircraft are usually based on linearized ver-
sions of the actual (very nonlinear) dynamics of the aircraft
in its environment. (Blakelock 1991) Each airplane must
also interact with other airplanes and the environment. For
instance, weather can cause simple disruptions to the flow
of the airspace, or be a contributing factor to major disas-
ters. (NTSB 2010) Major research efforts are currently fo-
cused on models and software to mitigate weather-based
risks. (Le Ny and Balakrishnan 2010)

The glue for these interacting airspace systems consists
primarily of people. Pilots and air traffic controllers are the
final arbiters and the primary adaptive elements; they are

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

expected to compensate for weather, for mechanical fail-
ures, and for others’ operational mistakes. They are also the
scapegoats. Illustratively, examine the failure of a software
system at the Los Angeles Air Route Traffic Control Cen-
ter on September 14, 2004. (Geppert 2004) Voice communi-
cations ceased between the controllers and the 400 aircraft
flying above 13,000 feet over Southern California and adja-
cent states. During the software malfunction, there were five
near-misses between aircraft, with collisions prevented only
by an on-board collision detection and resolution system
(TCAS). At the time, the FAA was in the process of patch-
ing the systems. As often happens in software-intensive sys-
tems, the intermediate ‘fix’ was to work around the problem
in operations—the software system was supposed to be re-
booted every 30 days in order to prevent the occurrence of
the bug. The human operators hadn’t restarted the system,
and they were blamed for the incident.

If the current state of airspace complexity causes palpita-
tions, experts considering what might happen in the planned
next generation (NextGen) airspace can be excused for full-
fledged anxiety attacks. The future of the NAS is more het-
erogeneity and more distribution of responsibility. We are
seeing a switch to a best-equipped best-served model—
airlines who can afford to buy and operate equipment can
get different treatment in the airspace. One example is the
advent of Required Navigation Performance (RNP) routes,
in which aircraft fly tightly-controlled four-dimensional tra-
jectories by utilizing GPS data. With GPS, an aircraft can
be cleared to land and decscend from altitude to the runway
in a Continuous Descent Arrival (CDA); these approaches
save fuel and allow for better-predicted arrival times. How-
ever, at airports with these approved routes, controllers must
work with mixed traffic—airplanes flying CDA routes and
airplanes flying traditional approaches. In the future, the
airspace will also include Unmanned Aerial Systems (fully-
autonomous systems, and also systems in which a pilot flies
multiple aircraft from the ground), and a wider performance
band for civil aircraft.

The overall traffic increase is leading to software-based
decision support for pilots and controllers. There is an ac-
tive (and sometimes heated) discussion about just how much
authority and autonomy should remain with people versus
being implemented in software. Decisions about where loci
of control should reside in the airspace is an example of a

Davies, Misty D. (ARC-TI)
Cite as: Joseph Krall, Tim Menzies, and Misty Davies. "Learning the Task Management Space of an Aircraft Approach Model." In the Proceedings of the 2014 AIAA Spring Symposium on Formal Verification and Modeling in Human Machine Systems.

wicked design problem (Rittel 1984; Hooey and Foyle 2007)
as evidenced by the following criterion:
• Stakeholders disagree on the problem to solve.
• There are no clear termination rules.
• There are ‘better’ or ‘worse’ solutions, but not ‘right’ and

‘wrong’ solutions.
• There is no objective measure of success.
• The comparison of design solutions requires iteration.
• Alternative solutions must be discovered.
• The level of abstraction that is appropriate for defining the

problem requires complex judgments.
• It has strong moral, political, or professional dimensions

that cannot be easily formalized.
In this paper we will first discuss a simulation that is de-

signed to study human-automation interaction for CDAs. We
will then overview the current state-of-the-art for uncertainty
quantification within this type of complex system, and focus
on techniques for exploring the Pareto Frontier. In the next
section, we will explain and demonstrate a new technique
(GALE) for quickly finding the Pareto Frontier for ‘wicked’
problems like those we study in our use case. We will con-
clude by overviewing our future plans.

How Do Pilots and Air Traffic Controllers
Land Planes? Our Test Case and Its Inputs

In this paper, we use the CDA scenario within the Geor-
gia Institute of Technology’s Work Models that Compute
(WMC). WMC is being used to study concepts of opera-
tion within the (NAS), including the work that must be per-
formed, the cognitive models of the agents (both humans
and computers) that will perform the work, and the under-
lying nonlinear dynamics of flight. (Kim 2011; Pritchett,
Christmann, and Bigelow 2011; Feigh, Dorneich, and Hayes
2012) WMC and the NAS are hybrid systems, governed both
by continuous dynamics (the underlying physics that allows
flight) and also discrete events (the controllers’ choices and
aircraft modes). (Pritchett, Lee, and Goldsman 2001) Hybrid
systems are notoriously difficult to analyze, for reasons we
will overview in the next section.

WMC’s cognitive models are multi-level and hierarchi-
cal, (Kim 2011) with:
• Mission Goals at the highest level, such as Fly and Land

Safely, that are broken into
• Priority and Values functions such as Managing Interac-

tion with the Air Traffic System. These functions can be
decomposed into

• Generalized Functions such as Managing the Trajectory,
that can still be broken down further into

• Temporal Functions such as Controlling Waypoints.
In this paper, we present some preliminary results in

which we have varied four input parameters to WMC in or-
der to explore their effects on the simulation’s behavior. We
list these parameters in bold, and then describe them. The
Scenario is a variable within the CDA simulation with four
values. In the nominal scenario, the aircraft follows the ideal
case of arrival and approach, exactly according to printed
charts, with no wind. In the late descent scenario, the air

traffic controller delays the initial descent, forcing the pilots
to quickly descend in order to ‘catch up’ to the ideal de-
scent profile. In the third, unpredicted rerouting, scenario,
the air traffic controller directs the pilot to a waypoint that is
not on the arrival charts, and from there returns the pilot to
the expected route. In the final scenario, the simulation cre-
ates a tailwind that the pilot and the flight deck automation
must compensate for in order to maintain the correct trajec-
tory. The late descent, unpredicted rerouting, and tailwind
scenarios all have further variants, modifying the times at
which the descent is cleared, the waypoint that the plane is
routed to, and the strength of the tailwind, respectively.

Function Allocation is a variable that describes differ-
ent strategies for configuring the autoflight control mode,
and has four different possible settings. A pilot may have
access to guidance devices for the lateral parts (LNAV) and
the vertical parts (VNAV) of the plane’s approach path. Civil
transport pilots are likely to have access to a Flight Manage-
ment System (FMS), a computer that automates many avi-
ation tasks. In the first Function Allocation setting, which
is highly automated, the pilot uses LNAV/VNAV, and the
flight deck automation is responsible for processing the air
traffic instructions. In the second, mostly automated, setting,
the pilot uses LNAV/VNAV, but the pilot is responsible for
processing the air traffic instructions and for programming
the autoflight system. In the third setting, the pilot receives
and processes the air traffic instructions. The pilot updates
the vertical autoflight targets; the FMS commands the lat-
eral autoflight targets. This setting is the mixed-automated
function allocation setting. In the final, mostly manual, set-
ting, the pilot receives and processes air traffic instructions,
and programs all of the autoflight targets.

The third parameter we are varying in this paper is the pi-
lots’ Cognitive Control Modes. There are three cognitive
control modes implemented within WMC: opportunistic,
tactical, and strategic. In the opportunistic cognitive control
mode, the pilot does only the most critical temporal func-
tions: the actions “monitor altitude” and “monitor airspeed.”
The values returned from the altitude and the airspeed will
create tasks (like deploying flaps) that the pilot will then per-
form. In the tactical cognitive control mode, the pilot cycles
periodically through most of the available monitoring tasks
within WMC, including the confirmation of some tasks as-
signed to the automation. Finally, in the strategic mode, the
pilot monitors all of the tasks available within WMC and
also tries to anticipate future states. This “anticipation” is
implemented as an increase in the frequency of monitoring,
and also a targeted calculation for future times of interest.

Finally, the fourth variable we explore in this paper is
Maximum Human Taskload: the maximum number of
tasks that can be requested of a person at one time. In
previous explorations using WMC (Kim 2011), the author
chose three different levels: tight, in which the maximum
number of tasks that can be requested of a person at one
time is 3; moderate, in which that value is 7; and unlim-
ited, in which a person is assumed to be able to handle up
to 50 requested tasks at one time. WMC uses a task model
in which tasks have priorities and can be active, delayed,
or interrupted. (Feigh and Pritchett 2013) If a new task is

2

passed to a person and that person’s maximum taskload
has been reached, an active task will be delayed or inter-
rupted, depending on the relative priorities of the tasks that
have been assigned. Delayed and interrupted actions may be
forgotten according to a probability function that grows in
the time elapsed since the task was active. For the studies
in this paper, we assume that people can handle between
1 and 7 tasks at maximum. (Miller 1956; Cowan 2000;
Tarnow 2010)

Our analysis seeks to explore the effects that each of
the four variables above has on the following five out-
puts: the number of forgotten tasks in the simulation (Num-
Forgotten Tasks), the number of delayed actions (NumDe-
layedActions), the number of interrupted actions (NumInter-
ruptedActions), the total time of all of the delays (Delayed-
Time), and the total time taken to deal with interruptions (In-
terruptedTime). In our results, we refer to these outputs as
(f1 f5) and average each of their values across the pilot
and the copilot.

In Kim’s dissertation (Kim 2011), she primarily studies
function allocation and its effect on eight different parame-
ters, including workload and mission performance. In this
sense, the WMC model by itself as Kim chose to use it
(much less the airspace it is meant to simulate) is ‘wicked’.
In particular, there is no single measure of success, and there
is no agreement as to which of the measures is more im-
portant. Kim analyzed all of the combinations of the above
four variables, and manually postprocessed the data in or-
der to reach significant conclusions about how the level-of-
automation affects each of her eight metrics.

An Overview of Uncertainty Quantification
Within Hybrid, Wicked Systems

Remember that all models are wrong; the practical
question is how wrong do they have to be to not be use-
ful. –George E.P. Box and Norman R. Draper

Validation is the process by which analysts answer “Did
we solve the right problem?” Uncertainty (and risk) quantifi-
cation is core to the validation of safety-critical systems, and
is particularly difficult for wicked design problems. WMC is
a tool that is aimed at validating concepts of operation in the
airspace. It abstracts some components within the airspace,
and approximates other components, and must itself be vali-
dated in order to understand its predictive strengths and lim-
itations. Validation efforts can take as a given that WMC’s
predictions are useful, and be focused on discovering the
risks in the concepts of operation (in which case the anal-
ysis is usually called risk quantification). Uncertainty quan-
tification within the model is usually focused on comparing
the predictions to those we get (or to those we expect to get)
in reality. The questions we are asking in each of these two
cases are different, but the underlying tools we use in order
to analyze them is often the same.

In the case of risk quantification, where we want to vali-
date the concept of operation, we explore the input and out-
put spaces of our models, looking for those that perform bet-
ter or worse among the many metrics we’ve chosen to exam-
ine. For simulations with long response times, or for which

we hope to learn about a broad class of behaviors using rela-
tively few trials, we build a secondary model that is easier to
evaluate than the original simulation. Whichever surface we
can evaluate, whether it is the original or a secondary model,
is called a response surface. In the case of uncertainty quan-
tification, where we want to validate our model, we again
build a response surface for our model and compare this
against the response surface built using real (or expected)
behaviors.

A common way of characterizing a response surface is by
building a Pareto Frontier. A Pareto Frontier occurs when a
system has competing goals and resources; it is the boundary
where it is impossible to improve on one metric without de-
creasing another. (Lotov, Bushenkov, and Kamenev 2004) A
Pareto Frontier is usually discovered using an optimization
methodology. In rare cases, it may be possible to analytically
discover the Pareto Frontier—this is unlikely in wicked de-
sign problems like those we are studying here. More often,
we use a learning technique to discover the Pareto Frontier
given concrete trials of the system.

Classical optimization techniques are often founded on
the idea that the response surface and its first derivative are
Lipschitz continuous everywhere (smooth). For smooth sur-
faces, it is possible to find a response surface that is arbitrar-
ily close to our desired function using polynomial approxi-
mations by the Weierstrass Approximation Theorem. (Bar-
tle 1976) For the hybrid, complex, non-linear problems we
are studying here, no such guarantee of smoothness exists.
Modal variables like the cognitive control modes in WMC
usually require combinatorial approaches in order to ex-
plore. For other WMC inputs, such as the maximum hu-
man taskload, a domain expert might reasonably suspect that
there is an underlying smooth behavior. For some WMC in-
puts we haven’t modeled yet, such as flight characteristics
of the aircraft or the magnitude of a tailwind, there is al-
most certainly a smooth relationship, but it may be nonlin-
ear. Classical techniques handle the mix of discrete and con-
tinuous inputs by solving a combinatorial number (in the dis-
crete inputs) of optimization problems over the continuous
inputs, and then comparing the results across the optimiza-
tions in a post-processing step. (Gill, Murray, and Wright
1986) This technique can be computationally very expen-
sive, especially when you consider that continuous optimiza-
tion techniques are sensitive to local minima (in our nonlin-
ear aerospace problems), and several different input trials
should be performed.

Statistical techniques such as Treed Gaussian Processes
and Classification Treed Gaussian Processes, can be used to
build statistical emulators as the response surfaces for sim-
ulators, and have the advantage that they can model dis-
continuities and locally smooth regions. (Gramacy 2007;
He 2012) As a disadvantage, they are limited by computa-
tional complexity to relatively few inputs (10s but not 100s).
More recent techniques, such as those based on particle fil-
ters, can handle significantly many more inputs. (He and
Davies 2013)

All of the above techniques have the limitation that they
optimize for one single best value. To optimize across sev-
eral criterion (such as the five we analyze for this paper or

3

the eight in Kim’s thesis) using the above techniques, the an-
alyst usually needs to build a penalty function, a formula that
is strictly monotonic in improvement across the desired met-
rics and weights each metric according to its relative value.
In this paper, we choose instead to explore the class of multi-
objective response surface methods, as detailed in the next
section.

GALE: Active Learning for Wicked Problems
Wicked problems have many features; the most important
being that no objective measure of success exists. Designing
solutions for wicked problems cannot aim to produce some
perfectly correct answer since no such definition of correct
exists. Hence, this approach to design tries to support effec-
tive debates by a community over a range of possible an-
swers. For example, different stakeholders might first elabo-
rate their own preferred version of the final product or what
is important about the current problem. These preferred ver-
sions are then explored and assessed.

The issue here is that there are very many preferred ver-
sions. For example, consider the models discussed in this pa-
per. Just using the current models, as implemented by Kim
et al. (Kim 2011), the input space can be divided 144 ways,
each of which requires a separate simulation. In our explo-
ration, we further subdivide the maximum human taskload
to evaluate 252 combinations. Worse yet, a detailed reading
of Kim’s thesis shows that her 144 input sets actually ex-
plore only one variant each for three of her inputs. Other
modes would need to be explored to handle:

• Unpredictable rerouting;
• Different tail wind conditions;
• Increasing levels of delay.

If we give three “what-if” values to the above three items
then, taken together, these 3*3*3*252 modes*inputs would
require nearly 7000 different simulations1. This is an is-
sue since, using standard multi-objective optimizers such as
NSGA-II (Deb et al. 2000), our models take seven hours
to reach stable minima. Hence, using standard technology,
these 7,000 runs would take 292 weeks to complete. In prin-
ciple, such long simulations can be executed on modern
CPU clusters. For example, using the NASA Ames multi-
core supercomputers, the authors once accessed 30 weeks of
CPU in a single week. Assuming access to the same hard-
ware, our 7,000 runs might be completed in under ten weeks.

The problem here is that hardware may not be available.
The example in the last paragraph (where 30 weeks of CPU
time was accessed in one week) was only possible since
there was a high priority issue in need of urgent resolution.
In the usual case at NASA, researchers can only access a
small fraction of that CPU. For example, if there has been
some incident on a manned space mission, then NASA en-
lists all available CPU time for “damage modeling” (which

1To be accurate, there are many more than 7,000 possible sim-
ulations, especially if we start exploring fine-grained divisions of
continuous space. Regardless of whether or not we need 7,000 or
7,000,000 simulations, the general point of this section still holds;
i.e. wicked problems need some way to explore more options faster.

is a large series of “what-if” queries that assess the poten-
tial impact of some event). At those times, researchers can
access zero CPU for any other purpose.

GALE, short for Geometric Active Learning Evolution,
combines spectral learning and response surface methods
to reduce the number of evaluations needed to assess a set
of candidate solutions. The algorithm is an active learner;
i.e. instead of evaluating all instances, it isolates and ex-
plores only the most informative ones. Hence, we recom-
mend GALE for simulations of wicked problems. The fol-
lowing notes are a brief overview on GALE. For full details,
see (Krall 2014; Krall and Menzies 2014).

Response surface methods (RSM) generate multiple small
approximations to different regions of the output space.
Multi-objective RSMs explore the Pareto frontier (the space
of all solutions dominated by no other). These approxima-
tions allow for an extrapolation between known members of
the population and can be used to generate approximations
to the objective scores of proposed solutions (so after, say,
100 evaluations it becomes possible to quickly approximate
the results of, say, 1000 more). Other multi-objective RSMs
make parametric assumptions about the nature of that sur-
face (e.g. Zuluaga et al. assume they can be represented as
Gaussian process models (Zuluaga et al. 2013)). GALE uses
non-parametric multi-objective RSMs so it can handle mod-
els with both discrete and continuous variables.

GALE builds its response surface from clusters on the
Pareto frontier. These are found via a recursive division of
individuals along the principal component found at each
level of the recursion2. Spectral learners like GALE base
their reasoning on these eigenvectors since they simultane-
ously combine the influences of important dimensions while
reducing the influence of irrelevant or redundant or noisy di-
mensions (Kamvar, Klein, and Manning 2003). Recursion
on n individuals stops when a division has less than

p
n

members. At termination, this procedure returns a set of leaf
clusters that it calls best.

During recursion, GALE evaluates and measures objec-
tive scores for a small m number of individuals. These
scores are used to check for domination between two parti-
tions of individuals, divided at the some middle point (cho-
sen to minimize the expected variance over each partition)
of that level’s component. GALE then only recurses on the
non-dominated half. That is, the best individuals found by
GALE are clusters along the Pareto frontier.

GALE is an active learner. During its recursion, when ex-
ploring n randomly generated solutions, GALE only eval-
uates at most m log2(n) individuals. One surprising result
from our experiments is that GALE only needs to check for
domination on only the m = 2 most separated individu-
als along the principal component (which is consistent with
Pearson’s original claim that these principal components are
an informative method of analyzing data (Pearson 1901)).

For reasons of speed, GALE uses a Nyström technique
(called FASTMAP) to find the principal component (Falout-
sos and Lin 1995; Platt 2005). At each level of its recursion,

2The principle component of a set of vectors shows the general
direction of all the vectors (Pearson 1901).

4

num s percentiles
eval f1 f2 f3 f4 f5 50th (75-25)th

GALE 33 0.8 0.0 0.0 0.0 0.0 82% 0%
NSGAII 4,000 1.2 0.0 0.0 0.0 0.0 84% 0%
SPEA2 3,200 1.0 0.0 0.0 0.0 0.0 84% 1%

Baseline - 8.2 0.1 0.1 0.2 0.1 100% 0%

Table 1: Raw values for f1, f2, f3, f4, f5 = NumForgotten-
Tasks, NumDelayedActions, NumInterruptedActions, De-
layedTime, InterruptedTime, respectively. Lower is better.

this technique finds in linear time the poles p, q (individuals
that are furthest apart) and the approximation to the principal
component is the line from p to q. GALE handles continuous
and discrete variables by adopting the distance function of
Aha et al., which can manage continuous and discrete vari-
ables (Aha, Kibler, and Albert 1991).

Ostrouchov and Samatova show that the poles found by
FASTMAP are approximations to the vertexes of the con-
vex hull around the individuals (Ostrouchov and Samatova
2005). Therefore, we can use FASTMAP as a response sur-
face method by extrapolating between the poles of the best
clusters. Given some initial set of individuals, GALE de-
fines the baseline to be the median value of all their ob-
jectives. (Note that this baseline and initial population are
generated only once, and then cached for reuse.) For each
cluster ci 2 best and for each pole (p, q) 2 ci, GALE sorts
the poles by their score (denoted s) where s is the sum of
the distance of each objective from the baseline (and better
scores are lower)3. The best individuals in leaf clusters are
mutated towards their better pole by an amount

8d 2 D, d = d+�

s(p)

s(q)

where q is the pole with better (and lowest) score, D are
the decisions within an individual, and 0 � 1 is a
random variable. GALE grows new solutions using ranges
in the mutated population. Numbers are discretized into ten
ranges using (x�min)/((max�min)/10). The most frequent
range is then found for each feature and new individuals are
generated by selecting values at random from within those
ranges. GALE then recurses on the new individuals.

GALE’s performance has been compared to two stan-
dard MOEAs (NSGA-II and SPEA2 (Deb et al. 2000;
Zitzler, Laumanns, and Thiele 2001)) on (a) a software pro-
cess model of agile development (Lemon et al. 2009), as
well as (b) a sample of the standard optimization certifica-
tion problems (Krall 2014; Krall and Menzies 2014). In that
study, GALE terminated using 20 to 89 times fewer evalu-
ations. Further, its solutions were usually as good or better
than those of NSGA-II or SPEA2. The conclusion from that
study was that GALE’s RSM was a better guide for mutation
than the random search of NSGA-II or SPEA2.

Results
We ran three optimization (GALE, NSGA-II, and SPEA2)
algorithms on CDA, and show their results in Table 1. The

3To be precise, s is the “loss” measure discussed by (Krall and
Menzies 2014), as inspired by (Zitzler and Künzli 2004).

Figure 1: Visualizations of %loss from baseline of objective
scores. Number of evaluations are shown on the horizontal
axis. Y-axis values show objectives achieved expressed as a
ratio of values seen in the baseline; e.g. y = 50 means that
an optimizer has achieved some objective value that is half
that seen in the baseline. Shown as red, blue, green lines is
the lowest seen objective score at that particular value along
the X-axis; lower values are better.

three algorithm rows of this table indicate the final objec-
tive scores of CDA in the f-columns. The Baseline row (the
same µ = 100 sized population is used for each algorithm)
indicates the starting points for those objectives. These algo-
rithm rows should be compared to the baseline row, and the
improvements are easily noticeable.

The previous paragraph addresses the validity of CDA,
e.g. if it can be optimized. Now, we turn who can optimize
best. When comparing optimizers, we need to compare 1)
how well, and 2) how fast. In Figure 1, colored lines repre-
sent the best seen improvements of each algorithm (lower is
better). In general, each color is evenly matched, except for
interrupted time (f5), where the red clearly outperforms the
blue and green. Thus, GALE is better on “how well”.

As for “how fast”, we return to Table 1 to compare the
“num eval” of each algorithm. Each evaluation is equiva-
lent to running CDA one time. Note that the average run-
ning time of CDA itself is about 8 seconds. This means that
GALE (33 evals) can optimize the CDA model in about 4
minutes versus the 7 hours needed by NSGA-II (4000 evals)
or SPEA2 (3200 evals). That is, GALE is about 60x faster.

Please note that these results are from running each algo-
rithm only once each. A more complete study is in progress,
but due to the recent government shutdown, we were unable
to complete our goal of 20 runs of NSGA-II and SPEA2.
However, in keeping with the main message of this paper,
we note that we could finish all the GALE runs (these are
not shown since it makes little sense to compare solo runs

5

with multiple runs).

Conclusion
In this paper, we’ve shown that GALE can learn the ‘wicked’
response surface for an aerospace task management model
at similar accuracy and much faster than other similar
techniques. Optimization (GALE), explanation (visualiza-
tions and charts), and encapsulation (ruleset summarization)
are tools that together comprise the validation of models.
GALE’s fast learning allows us to more thoroughly explore
the envelope of behaviors, leading to overall improved vali-
dation.

Our immediate next steps involve the thorough data col-
lection of experiments described in this paper, since only the
results for N=1 runs of each of NSGA-II, SPEA2 and GALE
were detailed. Our further plans are then to improve GALE’s
reporting suite on the learned results; we’d like to generate
succinct rulesets on how best to build test cases with optimal
solutions. This will include both ruleset summarization and
also validity assertions through re-evaluating the model on
individuals generated via the ruleset. Such a ruleset can be
used to validate the CDA model itself. In the longer term, we
intend to expand the analysis to include more complex and
realistic scenarios including a larger number of input param-
eters evaluated against more output metrics.

Acknowledgements
The work was funded by NSF grant CCF:1017330 and the
Qatar/West Virginia University research grant NPRP 09-12-
5-2-470. This research was conducted at NASA Ames Re-
search Center. Reference herein to any specific commercial
product, process, or service by trade name, trademark, man-
ufacturer, or otherwise, does not constitute or imply its en-
dorsement by the United States Government.

References
Aha, D. W.; Kibler, D.; and Albert, M. K. 1991. Instance-based learning
algorithms. Mach. Learn. 6(1):37–66.
Bartle, R. 1976. The elements of real analysis. John Wiley & Sons, second
edition.
Blakelock, J. H. 1991. Automatic Control of Aircraft and Missiles. Wiley-
Interscience.
Cowan, N. 2000. The magical number 4 in short term memory: A re-
consideration of mental storage capacity. Behavioral and Brain Sciences
24:87–185.
Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. 2000. A fast elitist
multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-
tionary Computation 6:182–197.
Faloutsos, C., and Lin, K.-I. 1995. FastMap: a fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets. In
Proceedings of the 1995 ACM SIGMOD international conference on Man-
agement of data, 163–174.
Feigh, K. M., and Pritchett, A. R. 2013. Modeling the work of humans
and automation in complex operations. In 51st AIAA Aerospace Sciences
Meeting.
Feigh, K. M.; Dorneich, M. C.; and Hayes, C. C. 2012. Toward a char-
acterization of adaptive systems: A framework for researchers and system
designers. Human Factors: The Journal of the Human Factors and Er-
gonomics Society 54(6):1008–1024.
Geppert, L. 2004. Lost radio contact leaves pilots on their own. IEEE
Sepctrum 41(11):16–17.
Gill, P. E.; Murray, W.; and Wright, M. H. 1986. Practical Optimization.
Elsevier.

Gramacy, R. B. 2007. tgp: An R package for Bayesian nonstationary,
semiparametric nonlinear regression and design by treed gaussian pro-
cess models. Journal of Statistical Software 19(9):1–46. http://www.
jstatsoft.org/v19/i09/paper.
He, Y., and Davies, M. 2013. Validating an air traffic management concept
of operation using statistical modeling. In AIAA Modeling and Simulation
Technologies Conference.
He, Y. 2012. Variable-length Functional Output Prediction and Boundary
Detection for an Adaptive Flight Control Simulator. Ph.D. Dissertation.
Hooey, B. L., and Foyle, D. C. 2007. Requirements for a design rationale
capture tool to support NASA’s complex systems. In International Work-
shop on Managing Knowledge for Space Missions.
Kamvar, S.; Klein, D.; and Manning, C. 2003. Spectral learning. In IJ-
CAI’03, 561–566.
Kim, S. Y. 2011. Model-Based Metrics of Human-Automation Function
Allocation in Complex Work Environments. Ph.D. Dissertation, Georgia
Institute of Technology.
Krall, J., and Menzies, T. 2014. GALE: Genetic active learning for search-
based software engineering. IEEE TSE (under review).
Krall, J. 2014. JMOO: Multi-Objective Optimization Tools for Fast Learn-
ing. Ph.D. Dissertation.
Le Ny, J., and Balakrishnan, H. 2010. Feedback control of the National
Airspace System to mitigate weather disruptions. In Decision and Control
(CDC), 2010 49th IEEE Conference on, 2055 –2062.
Lemon, B.; Riesbeck, A.; Menzies, T.; Price, J.; D’Alessandro, J.; Carlsson,
R.; Prifiti, T.; Peters, F.; Lu, H.; and Port, D. 2009. Applications of sim-
ulation and AI search: Assessing the relative merits of agile vs traditional
software development. In IEEE ASE’09.
Lotov, A. V.; Bushenkov, V. A.; and Kamenev, G. K. 2004. Interactive De-
cision Maps: Approximation and Visualization of Pareto Frontier. Applied
Optimization. Kluwer Academic Publishers.
Miller, G. A. 1956. The magical number seven, plus or minus two: Some
thoughts on our capacity for processing information. Psychological Review
101(2):343–352.
NTSB. 2010. Weather-related aviation accident study 2003-2007. Techni-
cal report, National Transportation Safety Board.
Ostrouchov, G., and Samatova, N. F. 2005. On FastMap and the convex
hull of multivariate data: Toward fast and robust dimension reduction. IEEE
Trans. Pattern Anal. Mach. Intell. 27(8):1340–1343.
Pearson, K. 1901. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine 2(11):559..572.
Platt, J. C. 2005. FastMap, MetricMap, and Landmark MDS are all
Nyström algorithms. In In Proceedings of 10th International Workshop
on Artificial Intelligence and Statistics, 261–268.
Pritchett, A. R.; Christmann, H. C.; and Bigelow, M. S. 2011. A simulation
engine to predict multi-agent work in complex, dynamic, heterogeneous
systems. In IEEE International Multi-Disciplinary Conference on Cogni-
tive Methods in Situation Awareness and Decision Support.
Pritchett, A.; Lee, S.; and Goldsman, D. 2001. Hybrid-system simu-
lation for National Airspace System safety analysis. Journal of Aircraft
38(5):835–840.
Rittel, H. 1984. Second generation design methods. In Cross, N., ed.,
Development in Design Methodology. New York: John Wiley and Sons.
Tarnow, E. 2010. There is no capacity limited buffer in the Murdock (1962)
free recall data. Cognitive Neurodynamics 4:395–397.
Zitzler, E., and Künzli, S. 2004. Indicator-based selection in multiobjec-
tive search. In in Proc. 8th International Conference on Parallel Problem
Solving from Nature (PPSN VIII), 832–842. Springer.
Zitzler, E.; Laumanns, M.; and Thiele, L. 2001. SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization. In
Giannakoglou, K. C.; Tsahalis, D. T.; Périaux, J.; Papailiou, K. D.; and Fog-
arty, T., eds., Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems, 95–100. International Center for
Numerical Methods in Engineering.
Zuluaga, M.; Krause, A.; Sergent, G.; and Püschel, M. 2013. Active learn-
ing for multi-objective optimization. In International Conference on Ma-
chine Learning (ICML).

6

