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Abstract—Batteries have seen an increased use in electric ground
and air vehicles for commercial, military, and space applications
as the primary energy source. An important aspect of using
batteries in such contexts is battery health monitoring. Batteries
must be carefully monitored such that the battery health can be
determined, and end of discharge and end of usable life events
may be accurately predicted. For planetary rovers, battery
health estimation and prediction is critical to mission planning
and decision-making. We develop a model-based approach uti-
lizing computaitonally efficient and accurate electrochemistry
models of batteries. An unscented Kalman filter yields state
estimates, which are then used to predict the future behavior of
the batteries and, specifically, end of discharge. The prediction
algorithm accounts for possible future power demands on the
rover batteries in order to provide meaningful results and an
accurate representation of prediction uncertainty. The frame-
work is demonstrated on a set of lithium-ion batteries powering
a rover at NASA Ames Research Center using real experimental
field test data.
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1. INTRODUCTION
Batteries have seen an increased use as the primary energy
source in electric ground and air vehicles for commercial,
military, and space applications. In such contexts, battery
health monitoring (BHM) becomes a critical issue, since
failure of the battery directly affects the availability of the
asset. Batteries must be carefully monitored such that the
battery health can be determined, and end of discharge and
end of usable life events may be accurately predicted. In
planetary rovers, a battery health management (BHM) system
is especially important, due to its role in short- and long-term
mission planning and decision-making [1, 2].

A BHM system consists of both battery state estimation
and prediction components. While much research has been
carried out on battery modeling and battery state estimation,
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the prediction component, i.e., prognostics, has only recently
begun to receive attention [3–5]. Even more recently, battery
prognostics has begun to be applied to electric vehicles.
In [6, 7], end of discharge prediction was developed for an
unmanned aerial vehicle platform. In [8], an approach for
predicting the remaining driving range of a battery-powered
car was developed. These approaches differ by the type of
battery model used, and the underlying estimation and pre-
diction algorithms. Empirical battery models are used in [6],
and equivalent circuit models are used in [7–9]. Equivalent
circuit models are popular because they are relatively simple
and computationally efficient. For estimation, the particle
filter algorithm is used in [2, 3, 6], whereas the unscented
Kalman filter (UKF) is used in [7–9]. The UKF is generally
preferred over the particle filter when the model assumptions
required for the UKF can be met, due to the much higher
computational requirements of the particle filter [10]. Predic-
tion algorithms used are typically sample-based algorithms,
such as Monte Carlo sampling. They differ due to how
future inputs are characterized and how that uncertainty is
incorporated into the predictions [11].

Our approach to a BHM system is different from previ-
ous approaches in several ways. First, we use a new
electrochemistry-based battery model recently developed
in [12]. Unlike similar models, it is composed only of
ordinary differential equations, thus leading to a model that is
as computationally efficient as equivalent circuit models. We
use the UKF for state estimation, based on this new model.
For prediction, we use an operator-centric approach that
provides best-, average-, and worst-case usage predictions.
The prognosis framework applied here is based on previous
work presented in [9, 11].

We apply our BHM system to a planetary rover testbed
developed at NASA Ames Research Center, in which we
monitor a set of 24 lithium-ion batteries that are used to
power the rover motors [13]. We provide experimental results
validating the rover battery model, and demonstrate battery
state estimation and end-of-discharge prediction using real
field test data.

The paper is organized as follows. Section 2 describes the
model-based prognostics framework. Section 3 summarizes
the battery model. Sections 4 and 5 discuss the estimation
and prediction approaches, respectively. Section 6 presents
the experimental results. Section 7 concludes the paper.

2. MODEL-BASED PROGNOSTICS
In this section, we first formulate the prognostics problem,
and present the uncertainty representation framework [11].
We then provide an architecture for model-based prognostics
that will be applied for BHM.
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Figure 1. Prognostics architecture.

Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (1)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (2)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.2 The unknown parameter vector θ(k)
is used to capture explicit model parameters whose values are
unknown and time-varying stochastically.

Prognostics is concerned with predicting the occurrence of
some event E that is defined with respect to the states,
parameters, and inputs of the system. We define the event
as the earliest instant that some event threshold TE : Rnx ×
Rnθ × Rnu → B, where B , {0, 1} changes from the value
0 to 1. That is, the time of the event kE at some time of
prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.
(3)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (4)

For batteries, the event E corresponds to end of discharge
(EOD). EOD is defined by a voltage threshold VEOD, where
TE is defined by V < VEOD. When the battery voltage is
less than the cutoff voltage, VEOD, EOD is reached and TE
evaluates to 1.

The prognostics problem is inherently uncertain, due to the
random nature of the system evolution (due to v(k)), and
nondeterministic future inputs (u(k) for k > kP ). Therefore,
kE and ∆kE are random variables, and we must compute
p(kE(kP )|y(k0:kP )) and/or p(∆kE(kP )|y(k0:kP )) [9, 14].

Uncertainty Representation

In order to predict kE , four sources of uncertainty must be
dealt with in general [11]: (i) the initial state at time kP ,
x(kp); (ii) the parameter values θ(k) for all k ≥ kP , denoted
as ΘkP (the subscript kP indicates the start time of the
trajectory); (iii) the inputs u(k) for all k ≥ kP , denoted
as UkP ; and (iv) the process noise v(k) for all k ≥ kP ,
denoted as VkP . In order to make a prediction that accounts
for this uncertainty, we require the probability distributions
p(x), p(ΘkP ), p(UkP ), and p(VkP ).

2Bold typeface denotes vectors, and na denotes the length of a vector a.

For describing the probability distribution of a generic trajec-
tory Ak, we introduce a set of surrogate random variables
λa = [λ1aλ

2
a . . .] [11]. We describe a trajectory using λa and

instead define p(λa), which in turn defines p(Ak). These
surrogate variables can be used to describe trajectories in
myriad ways. For the parameter, input, and process noise
trajectories we have the surrogate variables λθ, λu, and λv .
Additional discussion on the use of surrogate variables can be
found in [11].

Prognostics Architecture

We adopt a model-based prognostics architecture [11, 15],
in which there are two sequential problems, (i) the esti-
mation problem, which requires determining a joint state-
parameter estimate p(x(k),θ(k)|y(k0:kP )) based on the
history of observations up to time k, y(k0:kP ), and (ii)
the prediction problem, which determines at kP , using
p(x(k),θ(k)|y(k0:kP )), p(λθ), p(λu), and p(λv), a proba-
bility distribution p(kE(kP )|y(k0:kP )). The distribution for
∆kE can be trivially computed from p(kE(kP )|y(k0:kP )) by
subtracting kP from kE(kP ).

The prognostics architecture is shown in Fig. 1 [11]. In
discrete time k, the system is provided with inputs uk and
provides measured outputs yk. The estimation module uses
this information, along with the system model, to compute an
estimate p(x(k),θ(k)|y(k0:k)). The prediction module uses
the joint state-parameter distribution and the system model,
along with the distributions for the surrogate variables, p(λθ),
p(λu), and p(λv), to compute the probability distribution
p(kE(kP )|y(k0:kP )) at given prediction times kP .

3. BATTERY MODELING
In order to apply model-based prognostics, we require a
model. For this purpose, we employ an electrochemistry-
based lithium ion battery model developed in [12]. In contrast
to the empirical and equivalent circuit battery models used in
previous approaches [3,8,9], the new model presented in [12]
is based on the underlying electrochemical equations, but at a
level of abstraction high enough that the model is still efficient
with the improved fidelity. The model is represented as a
set of ordinary differential equations and can be converted
to a discrete-time representation and solved efficiently with a
sample time of 1 s. We summarize here the model equations
and refer the reader to [12] for additional details.

The battery model computes the voltage as a function of
time given the current drawn from the battery. Several
electrochemical processes contribute to the cell’s potential.
The different potentials are summarized in Fig. 2 (adapted
from [16]). The overall battery voltage V (t) is the differ-
ence between the potential at the positive current collector,
φs(0, t), and the negative current collector, φs(L, t), minus
resistance losses at the current collectors (not shown in the
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Figure 2. Battery voltages.

diagram).

The potentials at the current collectors are described by
several voltage terms. At the positive current collector is the
equilibrium potential VU,p. This voltage is then reduced by
Vs,p, due to the solid-phase ohmic resistance, and Vη,p, the
surface overpotential. The electrolyte ohmic resistance then
causes another drop Ve. At the negative electrode, there is
a drop Vη,n due to the surface overpotential, and a drop Vs,n
due to the solid-phase resistance. The voltage drops again due
to the equilibrium potential at the negative current collector
VU,n. We describe each of these voltages in the following
subsections.

Equilibrium Potential

The equilibrium potential (also known as the open-circuit
voltage) is captured using the Nernst equation:

VU,i = U0 +
RT

nF
ln

(
1− xi
xi

)
+ VINT,i, (5)

where i refers to the electrode (n for negative or p for
positive), U0 is a reference potential, R is the universal gas
constant, T is the electrode temperature (in K), n is the
number of electrons transferred in the reaction (n = 1 for Li-
ion), F is Faraday’s constant, x is the mole fraction of lithium
ions in the lithium-intercalated host material [17]. During
discharge, Li ions move out of the negative electrode and into
the positive electrode, so xn decreases while xp increases,
and VU,p − VU,n will decrease.

Here, VINT,i is the activity correction term (0 in the ideal
condition). We use the Redlich-Kister expansion:

VINT,i =
1

nF

(
Ni∑
k=0

Ai,k

(
(2xi − 1)k+1 − 2xik(1− xi)

(2xi − 1)1−k

))
.

(6)

Here we useNp = 12 andNn = 0. The identified parameters
are given in Table 1 [12].

We let qi represent the amount of Li ions in electrode i, as
measured in Coulombs. The flow of Li ions is opposite to the
flow of current, so qi changes in the same direction as xi, and
we have:

xi =
qi
qmax , (7)

Table 1. Battery Model Parameters

Parameter Value
U0,p 4.03 V
Ap,0 −33642.23 J/mol
Ap,1 0.11 J/mol
Ap,2 23506.89 J/mol
Ap,3 −74679.26 J/mol
Ap,4 14359.34 J/mol
Ap,5 307849.79 J/mol
Ap,6 85053.13 J/mol
Ap,7 −1075148.06 J/mol
Ap,8 2173.62 J/mol
Ap,9 991586.68 J/mol
Ap,10 283423.47 J/mol
Ap,11 −163020.34 J/mol
Ap,12 −470297.35 J/mol
U0,n 0.01 V
An,0 86.19 J/mol

where qmax = qp + qn refers to the total amount of available
Li ions. It follows that xp + xn = 1. When fully charged,
xp = 0.4 and xn = 0.6. When fully discharged, xp = 1 and
xn = 0.3

Concentration Overpotential

When a battery is discharged, the reactions take place at the
surface of the electrode and this results in a concentration
gradient across the cell. The model accommodates this by
splitting the total electrode volume into two individual control
volumes (CVs), one for the bulk (with subscript b) and one for
the surface (with subscript s).

For the volumes, the concentration of Li ions is computed as

cb,i =
qb,i
vb,i

(8)

cs,i =
qs,i
vs,i

, (9)

where, for CV v in electrode i, cv,i is the concentration and
vv,i is the volume. We define vi = vb,i + vs,i. Note now that
the following relations hold:

qp = qs,p + qb,p (10)
qn = qs,n + qb,n (11)

qmax = qs,p + qb,p + qs,n + qb,n. (12)

As the battery discharges, Li ions move from the surface layer
at the negative electrode, through the bulk, and to the surface
layer at the positive electrode, in order to match the flow of
electrons. Li ions also move from the bulk CV to the surface
due to the concentration gradient. The diffusion rate from the
bulk to the surface is expressed as

q̇bs,i =
1

D
(cb,i − cs,i), (13)

where D is the diffusion constant.

3For LixCoO2, x must be at least 0.4; Li cannot be reversibly removed
beyond that [17].
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The q variables are described as

q̇s,p = iapp + q̇bs,p (14)
q̇b,p = −q̇bs,p + iapp − iapp (15)
q̇b,n = −q̇bs,n + iapp − iapp (16)
q̇s,n = −iapp + q̇bs,n, (17)

where iapp is the applied electric current. Initially, cs,i = cb,i
thus diffusion is zero.

The concentration overpotential is the difference in voltage
between the two CVs due to the difference in concentra-
tion. Using the expression for equilibrium potential, we can
compute the potential for the bulk volume and the potential
for the surface layer; the difference between them is the
concentration overpotential. So, we can explicitly account
for the concentration overpotential simply by using as the
expression for equilibrium potential, the equilibrium potential
of the surface layer [12], i.e.,

VU,i = U0 +
RT

nF
ln

(
1− xs,i
xs,i

)
+ VINT,i, (18)

where xs,i is computed using

xs,i =
qs,i
qmax
s,i

, (19)

and

qmax
s,i = qmax vs,i

vi
. (20)

Ohmic Overpotential

The voltage drops due to the solid-phase ohmic resistances,
the electrolyte ohmic resistance, and the resistances at the
current collectors are constant and lumped together into re-
sistance Ro:

Vo = iappRo. (21)

Surface Overpotential

The overpotentials due to charge transfer resistance and SEI
kinetics are described by the Butler-Volmer equation, which,
for Li ion batteries, reduces to

Vη,i =
RT

Fα
arcsinh

(
Ji

2Ji0

)
, (22)

where Ji is the current density, and Ji0 is the exchange
current density. The current densities are defined as

Ji =
i

Si
(23)

Ji0 = ki(1− xs,i)α(xs,i)
1−α, (24)

where ki is a lumped parameter of several constants including
a rate coefficient, electrolyte concentration, and maximum
ion concentration.

State of Charge

The state of charge (SOC) of a battery is defined to be 1 when
the battery is fully charged and 0 when the battery is fully
discharged by convention. In this model, it is analogous to
the mole fraction xn, but scaled from 0 to 1. We distinguish
here between nominal SOC and apparent SOC [12]. Nominal
SOC is computed based on the combination of the bulk and
surface layer CVs in the negative electrode, whereas apparent
SOC is be computed based only on the surface layer. When
a battery reaches the voltage cutoff, apparent SOC is 0, and
nominal SOC is greater than 0 (how much greater depends
on the difference between the diffusion rate and the current
drawn). Once the concentration gradient settles out, the
surface layer will be partially replenished and apparent SOC
will rise while nominal SOC remains the same. Nominal (n)
and apparent (a) SOC are defined using

SOCn =
qn

0.6qmax (25)

SOCa =
qs,n

0.6qmaxs,n
, (26)

where qmaxs,n = qmax vs,n
vn

.4

Battery Voltage

Battery voltage can now be expressed as follows:

V = VU,p − VU,n − V ′o − V ′η,p − V ′η,n, (27)

where

V̇ ′o = (Vo − V ′o)/τo (28)

V̇ ′η,p = (Vη,p − V ′η,p)/τη,p (29)

V̇ ′η,n = (Vη,n − V ′η,n)/τη,n, (30)

and the τ parameters are empirical time constants (used since
the voltages do not change instantaneously).

The model contains as states x, qs,p, qb,p, qb,n, qs,n, V ′o , V ′η,p,
and V ′η,n. The single model output is V . Identified model
parameters are given in Table 2 [12].

Model Validation

Measured and predicted voltage curves for a 0.044 A dis-
charge (approximately equal to open-circuit voltage) are
shown in Fig. 3, and for a 2 A discharge in Fig. 4. The data
here was obtained from a laboratory setting using the rover
batteries. Clearly, the model is very accurate. Measured and
predicted voltage curves for battery data from a rover field
test are shown in Fig. 5. The model is still quite accurate in
this case. Note that the spike in predicted voltage occurring
near 4000 s is due to a gap in the recorded data, causing an
incorrect sample time to be given to the model.

4. ESTIMATION
In order to accurately predict the future behavior of the
battery, we must first estimate its state. For this purpose,
we use the unscented Kalman filter (UKF) [18, 19]. Among
nonlinear filters, the UKF generally has better accuracy than

4Note that SOC of 1 corresponds to the point where qn = 0.6qmaxs,n , since
the mole fraction at the positive electrode cannot go below 0.4, as described
earlier.
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Table 2. Battery Model Parameters

Parameter Value
qmax 1.32× 104 C
R 8.314 J/mol/K
T 292 K
F 96487 C/mol
n 1
D 7.0× 106 mol s/C/m3

τo 10 s
α 0.5
Ro 0.085 Ω

Sp 2× 10−4 m2

kp 2× 104 A/m2

vs,p 2× 10−6 m3

vb,p 2× 10−5 m3

τη,p 90 s
Sn 2× 10−4 m2

kn 2× 104 A/m2

vs,n 2× 10−6 m3

vb,n 2× 10−5 m3

τη,n 90 s
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Figure 3. Comparison of predicted and measured open-
circuit voltage.
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Figure 4. Comparison of predicted and measured voltage for
a constant 2 A discharge.

the extended Kalman filter, and avoids the high computational
cost of particle filters [20]. We summarize the filter basics
here; more details may be found in [18, 19].

The UKF approximates a distribution using the unscented
transform (UT). The UT takes a random variable x ∈ Rnx ,
with mean x̄ and covariance Pxx, which is related to a second
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Figure 5. Comparison of predicted and measured voltage for
a rover battery during a field test.

random variable y by some nonlinear function y = g(x),
and computes the mean ȳ and covariance Pyy using a set
of deterministically selected weighted samples, called sigma
points [18]. X i denotes the ith sigma point from x and
wi denotes its weight. The sigma points are always chosen
such that the mean and covariance match those of the original
distribution, x̄ and Pxx. Each sigma point is passed through
g to obtain new sigma points Y , i.e.,

Yi = g(X i) (31)

with mean and covariance

ȳ =
∑
i

wiYi (32)

Pyy =
∑
i

wi(Yi − ȳ)(Yi − ȳ)T . (33)

We use the symmetric unscented transform, which selects
2nx + 1 sigma points symmetrically about the mean [19]:

wi =


κ

(nx + κ)
, i = 0

1

2(nx + κ)
, i = 1, . . . , 2nx

(34)

X i =


x̄, i = 0

x̄+
(√

(nx+κ)Pxx

)i
,i = 1, . . . , nx

x̄−
(√

(nx+κ)Pxx

)i
,i = nx+1, . . . , 2nx

, (35)

where
(√

(nx + κ)Pxx

)i
refers to the ith column of the

matrix square root of (nx + κ)Pxx (e.g., computed using the
Cholesky decomposition). The number κ is a free parameter
that can be used to tune the higher order moments of the
distribution, and if x is assumed Gaussian, then selecting
κ = 3− nx is recommended [18].

The UKF assumes the general nonlinear form of the state
and output equations, but is restricted to additive Gaussian
noise. First, ns sigma points X̂ k−1|k−1 are derived from the
current mean x̂k−1|k−1 and covariance estimates Pk−1|k−1.
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The prediction step is:

X̂
i

k|k−1 = f(X̂
i

k−1|k−1,uk−1), i = 1, . . . , ns (36)

Ŷ
i

k|k−1 = h(X̂
i

k|k−1), i = 1, . . . , ns (37)

x̂k|k−1 =

ns∑
i

wiX i
k|k−1 (38)

ŷk|k−1 =

ns∑
i

wiYi
k|k−1 (39)

Pk|k−1 = Q+
ns∑
i

wi(X i
k|k−1 − x̂k|k−1)(X i

k|k−1 − x̂k|k−1)T , (40)

where Q is the process noise covariance matrix.

The update step is:

Pyy = R +

ns∑
i

wi(Yi
k|k−1 − ŷk|k−1)(Yi

k|k−1 − ŷk|k−1)T

(41)

Pxy =

ns∑
i

wi(X i
k|k−1 − x̂k|k−1)(Yi

k|k−1 − ŷk|k−1)T

(42)

Kk = PxyP
−1
yy (43)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1) (44)

Pk|k = Pk|k−1 −KkPyyK
T
k , (45)

where R is the sensor noise covariance matrix.

For the battery, we have 7 states, resulting in 15 sigma points.
An estimate of SOC can be computed from the estimates of
the states. This can be computed using the unscented trans-
form, in which the sigma points for the state are transformed
into sigma points for SOC, using the equations for computing
SOC from the battery charge. We can then extract mean and
variance of the SOC estimate from these transformed sigma
points.

5. PREDICTION
Prediction is initiated at a given time kP using the current
joint state-parameter estimate, p(x(kP ),θ(kP )|y(k0:kP )).
The goal is to compute p(kE(kP )|y(k0:kP )) using the state-
parameter estimates and assumptions about uncertainty re-
garding the future parameter, input, and process noise values.

In this work, we assume all parameters are known, so θ(k)
is empty. Further, we assume that, because the model is
so accurate, process noise is negligible. Of course, process
noise is not zero, but in this case the uncertainty in the future
inputs dominates significantly, so including process noise has
virtually no effect on the prediction results. In the following,
we describe the approach for the general case as originally
developed in [11].

For one realization of each of the uncertain quantities at
prediction time kP : the state x(kP ), the parameter trajectory

Algorithm 1 kE(kP )← P(x(kP ),ΘkP ,UkP ,VkP )

1: k ← kP
2: x(k)← x(kP )
3: while TE(x(k),ΘkP (k),UkP (k)) = 0 do
4: x(k + 1)← f(k,x(k),ΘkP (k),UkP (k),VkP (k))
5: k ← k + 1
6: x(k)← x(k + 1)
7: end while
8: kE(kP )← k

ΘkP , the input trajectory UkP , and the process noise trajec-
tory VkP , the corresponding realization of kE can be com-
puted with the system model as shown in Algorithm 1 [11].
In Algorithm 1, the function P simulates the system model
until the threshold TE evaluates to 1.

This algorithm requires computing first realizations of the
state-parameter distribution, the parameter trajectory, the in-
put trajectory, and the process noise trajectory. The distribu-
tion for the state comes from the UKF, and the distributions
for the parameter, input, and process noise trajectories are
defined indirectly by the set of surrogate variables. So, we
are interested in computing the distribution for kE from the
distributions for p(x(kP ),θ(kP )), p(λθ), p(λu), and p(λv)
(see Fig. 1).

In this paper, since only future input uncertainty is con-
sidered, we need to define only the surrogate variables for
the future input trajectory. Here, future input trajectories
may take many complex forms. Instead of representing
these complexities directly, we consider instead an equivalent
constant-loading distribution for the future inputs. That is,
we assume that the future power usage for a battery will be
constant with the value drawn from some distribution.

Prediction methods differ by how they sample from the
given distributions, and how they call P. Different methods
were investigated in [11], including Monte Carlo sampling,
unscented transform sampling, and the inverse first-order-
reliability method (FORM). In the case of the rover, the
operator really only needs to know EOD predictions for best-
, average-, and worst-case usage scenarios. For the state
estimate, we use as samples the sigma points provided by the
UKF. Each sample is simulated forward three times, once for
each use case. From this we obtain best-, average-, and worst-
case EOD predictions, each with some small variance (due to
the state estimate variance).

If instead the operator desires a probability distribution, then
an equivalent constant-loading distribution can be selected.
We can determine the appropriate statistics for an equivalent
constant-loading distribution by analyzing field experiments.
Assuming a normal distribution, we can compute the average
power for each field experiment, then compute the mean and
variance of the average power. For a particular realization
of the input, we can sample the average power from this
distribution, and use that power for k ≥ kP . In this paper
we use a mean power draw of 3.3 W with a variance of 1.0.

In this case, we have one surrogate variable needed to de-
scribe the future input, which is used to define the constant
power draw, as defined by the determined statistics. In
order to sample efficiently from this distribution, we use the
unscented transform method, as originally described in [9].
The unscented transform described in Section 4 is used to
sample from the future input distribution, and in this case
only 3 samples are needed since there is only a single
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Figure 6. Battery current.

surrogate variable. This is much more efficient than the
hundreds or thousands of samples required for Monte Carlo
sampling. Prediction then proceeds in the normal way, with
the P function being called for the sigma point combinations
(each state sigma point is simulated for each future input
sigma point). Using the unscented transform equations we
can then determine the statistics of EOD, namely, the mean
and variance. (For additional statistical moments, extended
versions of the unscented transform or Monte Carlo sampling
are required. Alternatively, the inverse FORM method can
be used to determine cumulative distribution function values
at desired points.) Mathematical details of this approach are
provided in [9, 11].

6. RESULTS
In this section, we present experimental results obtained
from the planetary rover testbed at NASA Ames Research
Center [13]. The rover motors are powered by 24 lithium-ion
batteries, with two strings of 12 batteries in series, connected
in parallel. So, each battery sees only about half of the total
current required to operate the motors. Fully charged, each
battery supplies 4.2 V. The batteries can be safely discharged
to 2.5 V, but the drop from about 3.3 V down to 2.5 V happens
relatively quickly, so to prevent overdischarge, the voltage
cutoff used is VEOD = 3.3 V.

The BHM system monitors the health state of each battery,
and periodically provides EOD predictions, to let the rover
operator know how much longer the rover can be used in the
field. We demonstrate the BHM system as it performs on a
field test of the rover. In this scenario, the rover was executing
various maneuvers, e.g., moving straight, turning at various
speeds, and stopping. The current drawn from the batteries
during these maneuvers is shown in Fig. 6.

As described in Section 3, the battery model is very accurate.
As a result, the battery state can be confidently estimated, as
shown in Fig. 5. The SOC estimate for a single battery is
shown in Fig. 7. We plot here the apparent SOC, which is
computed with respect to the charge available at the electrode
surface. Due to the development of concentration gradients,
apparent SOC may increase when the diffusion rate from the
bulk to the surface layer exceeds the discharge rate of the
battery, as observed in the figure. On larger time scales, SOC
is seen to decrease steadily, and rover operation ceases once
SOC reaches around 5%.

The future power demands on the battery are unknown, espe-
cially in the driving scenario presented here, where an opera-
tor is deciding spontanteously where to drive the rover. If the

0 1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

Time (s)

St
at

e 
of

 C
ha

rg
e

Figure 7. Estimated battery state of charge.
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Figure 8. ∆kE predictions with known future inputs.

future usage of the rover is known exactly, the BHM system
should be able to obtain accurate predictions, since the model
is accurate. Prediction results in this case are shown in Fig. 8,
and the results are very accurate. There is some slight positive
bias, which is due in part to sensor noise, because EOD is
determined based on measured battery voltage, which, due
to noise, will be earlier than actual EOD because the voltage
threshold will be reached first due to noise. Overall, results
are still very accurate, and have virtually no spread, since the
estimation results had very little variance. Relative accuracy
of the predictions averages to 98%, with a spread of only
0.16% relative standard deviation. Accuracy can only be
improved with a better model, and, given the model we have,
represents the best possible performance. This serves as a
baseline for the scenarios where the future inputs are not
known.

If the future battery usage is unknown, we provide the op-
erator with prediction results for three separate cases, best-,
average-, and worst-case power demands. Prediction results
in this case are shown in Fig. 9. Clearly, predictions assuming
average-case usage are not accurate, as the actual power
usage is less than the average case up until 4000 s; after that
the average power usage of the remainder of the scenario is
greater than the average case. The average relative accuracy
in this case is 83.3% based on the predictions corresponding
to the average case. The predictions based on average usage
still falls within the bounds set by the best- and worst-case
usage. These results are with respect to continued usage, so
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Figure 10. ∆kE predictions for equivalent constant-loading.

the operator knows how much driving time is remaining, i.e.,
the predictions do not include time spent while the rover is
stopped.

Using the equivalent constant-loading distribution, we obtain
the predictions given in Fig. 10. Here, because the actual
mean power drawn in this scenario is larger than in the
collection of field experiments, the median ∆kE predictions
are larger than the true values. Relative accuracy computed
using these values is only 63%. Because of the large variety
of scenarios in the field experiments, the spread is large,
at 45% relative standard deviation. These numbers can be
improved only if additional information is known about the
future usage and that information is captured in the future
input characterization, e.g., through the use of additional
surrogate variables [11].

7. CONCLUSIONS
In this paper, we described a battery health monitoring
framework for a rover. The prognostics framework was

detailed, along with algorithms for state estimation and end-
of-discharge prediction. The provided battery model was
validated with both laboratory and field test data. Validation
of the BHM system was demonstrated using data from an
actual field test of the rover.

Future work will include end-of-life prediction for the batter-
ies, which must track the degradation of the battery health
over multiple usage cycles. Initial results suggest that the
battery model described here is applicable in this case [12].
In addition, when there is some knowledge available as to
the future operation of the rover, e.g., a set of waypoints,
or a large set of past driving scenarios, future inputs can be
characterized in a more complex way than presented here,
which can potentially lead to more accurate results with much
less spread [11]. However, this depends on what kind of
information is desired by the operator, as in many cases,
predictions for best-, average-, and worst-case usage are
sufficient.
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