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Abstract— Pneumatic-actuated valves play an important role
in many applications, including cryogenic propellant loading
for space operations. Model-based prognostics emphasizes the
importance of a model that describes the nominal and faulty
behavior of a system, and how faulty behavior progresses in
time, causing the end of useful life of the system. We describe
the construction of a testbed consisting of a pneumatic valve that
allows the injection of faulty behavior and controllable fault pro-
gression. The valve opens discretely, and is controlled through
a solenoid valve. Controllable leaks of pneumatic gas in the
testbed are introduced through proportional valves, allowing the
testing and validation of prognostics algorithms for pneumatic
valves. A new valve prognostics approach is developed that
estimates fault progression and predicts remaining life based
only on valve timing measurements. Simulation experiments
demonstrate and validate the approach.
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1. INTRODUCTION
Pneumatic-actuated valves play a critical role in many sys-
tems. For example, in cryogenic propellant loading, these
valves are used to control the flow of propellant, and failures
may have a significant impact on launch availability [1].
There is thus a critical need for valve health monitoring and
prognosis. In order to mature such approaches, testbeds can
be used to inject faults in a controlled way, and validate
valve prognosis algorithms. To fulfill this need, we have
constructed a pneumatic valve testbed that satisfies these
requirements [2].

In earlier work on valve prognosis [1, 3, 4], we developed
methods for valve prognosis based on particle filtering. This
approach, however, can be computationally intensive, and
when measuring only valve position, as is the case in real
valve operations, the only useful information is valve timing
values, such as opening and closing times. In this paper,
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Figure 2. Discrete-controlled valve.

we develop a new approach that is much more efficient and
requires only valve opening and closing times to isolate and
identify faults, and predict end of life (EOL) and remaining
useful life (RUL). The approach still follows the general
estimation-prediction framework developed in the literature
for model-based prognostics [5, 6]. We present simulation-
based experiments that demonstrate the approach and inves-
tigate its sensitivity to noise in the valve timing values.

The structure of the paper is as follows. Section 2 discusses
the overall setup of the valve prognostics testbed. Section 3
presents the valve model. Section 4 develops the valve
prognosis framework, and Section 5 presents simulation-
based prognosis results. Section 6 concludes the paper.

2. VALVE TESTBED
The prognostics demonstration testbed, shown in Fig. 1, has
been developed to demonstrate valve prognosis in the context
of cryogenic refueling operations. The dashed lines denote
the electrical signals, including the data acquisition I/O sig-
nals, power lines, etc. The solid lines denote the pneumatic
pressure lines connecting the supply and the valves. Power
is provided by both a typical power supply and a battery
backup supply, and includes a fail-safe mode to isolate the
prognostics demonstration testbed from the cryogenic testbed
on which it will be applied in the future.

The testbed includes a discrete-controlled valve (DV), illus-
trated in Fig. 2, which is a normally-open valve with a linear
cylinder actuator. The valve is closed by filling the chamber
above the piston with gas up to the supply pressure, and
opened by evacuating the chamber to atmosphere, with the
spring returning the valve to its default position.

A three-way two-position solenoid valve (SV), illustrated in
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Figure 1. Prognostics demonstration testbed schematic.

Figure 3. Three-way two-position solenoid valve.

Fig. 3, is used for controlling the operation of the DV valve.
The cylinder port connects to the valve, the normally closed
(NC) port connects to the supply pressure, and normally
open (NO) port is left unconnected, allowing venting to
atmosphere. When the solenoid is energized, the path from
the NC port to cylinder port is open, allowing gas to pass
from the supply to the valve, thus actuating the valve. When
deenergized, the supply pressure is closed off and the path
from the cylinder port to the NO port is opened, thus venting
the DV valve which opens the valve due to the return spring.
The solenoid is powered by 24 V dc either through the power
supply or the batteries.

As part of a backup power supply source, Li-ion batteries are
used for powering the solenoid valve. Each cell has a voltage
of around 4.2 V when fully charged. The terminal voltage of
the battery rises/falls with a charge/discharge cycle, respec-
tively. In order to obtain a total dc voltage of around 24 V to
operate the solenoid, we connect 6 batteries in series.

The data from the different sensors is collected using an
8-slot NI cDAQ-9188 Gigabit Ethernet chassis as the data
acquisition (DAQ) system that is designed for remote or dis-

tributed sensor measurements. For the experimental testbed,
control and data acquisition must be done remotely to meet
safety requirements. A single NI CompactDAQ chassis can
measure up to 256 channels of sensor signals, analog I/O,
digital I/O, and counter/timers with an Ethernet interface back
to a host machine. All the operations for the cDAQ-9188
are controlled through an interface designed in LabVIEW.
Additional details of the testbed and data aquisition system
are described in [2].

With the testbed, we can investigate solenoid valve prog-
nostics [7], battery prognostics [8], and pneumatic valve
prognostics [1]. In this work, we focus on faults affecting the
pneumatic valves. Pneumatic valves can suffer from leaks,
increase in friction due to wear, and spring degradation [1].
Friction and spring faults cannot be injected or their rate of
progression controlled, so we are limited only to leak faults,
which, in any case, are the most common faults. In the
configuration shown in Fig. 1, two different leak faults may
be considered: (i) a leak to atmosphere, and (ii) a leak from
the supply. In the former, this can manifest as a leak across
the NO seat of the solenoid valve, or a leak on the gas line
going to the pneumatic valve. In the latter case, the fault can
manifest as a leak across the NC seat of the solenoid valve.
To emulate these faults, we install two remotely-operated
proportional valves, as shown in Fig. 1. One valve leaks
to atmosphere (henceforth called the vent valve), while the
other is installed on a bypass line around the solenoid valve
(henceforth called the bypass valve).

The leak valves combine a solenoid valve with an electronics
package that digitally modulates the control signal to provide
analog proportional control. They are two-way normally-
closed valves and operate on 24 V dc, powered through the
power supply or the batteries. The leak valves allow control
over how much they can be opened in order to control the
leakage rate and support desired damage progression profiles.

Fig. 5 illustrates for a leak to atmosphere, using a vent valve
V1. The leak through V1 emulates a leak at the cylinder port
or across the NO seat. Similarly, Fig. 4 illustrates the setup
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for a leak from the supply, using a bypass valve V2. The leak
through V2 emulates a leak across the NC seat. The effect of
these faults on valve behavior will be described in Section 3.

3. VALVE MODELING
We consider here a normally-open valve with a linear cylinder
actuator, shown in Fig. 2. The valve is opened by filling
the chamber above the piston with pneumatic gas up to the
supply pressure. The valve is closed by evacuating the gas

to atmosphere, with the return spring forcing the valve back
to its default position. We present here the model using
continuous-time. For implementation purposes, we convert
to a discrete-time version using a sample time of 1× 10−3 s.

We develop a physics model of the valve based on mass and
energy balances. The system state includes the position of
the valve, x(t), the velocity of the valve, v(t), the mass of the
gas in the volume above the piston, and the mass of the gas in
the pipe connecting the solenoid valve to the pneumatic valve
port:

x(t) = [x(t) v(t) mt(t) mp(t)]
T
.

The position is defined as x = 0 when the valve is fully
closed, and x = Ls when fully open, where Ls is the stroke
length of the valve.

The derivatives of the states are described by

ẋ(t) = [v(t) a(t) ft(t) fp(t)]
T
,

where a(t) is the valve acceleration, ft(t) is the mass flow
going into the pneumatic port from the pipe, and fp(t) is the
total mass flow into the pipe.

The single input is considered to be

u(t) = [ut(t)] ,

where ut(t) is input pressures to pneumatic port, which alter-
nates between the supply pressure and atmospheric pressure
depending on the commanded valve position.

The acceleration is defined by the combined mass of the
piston and plug, m, and the sum of forces acting on the
valve, which includes the force from the pneumatic gas,
Fp = (pt(t) − patm)Ap, where pt(t) is the gas pressures on
the top of the piston, and Ap is the surface area of the piston;
the weight of the moving parts of the valve, Fw = −mg,
where g is the acceleration due to gravity; the spring force,
Fs = k(x(t) + xo), where k is the spring constant and xo
is the amount of spring compression when the valve is open;
friction, Ff = −rv(t), where r is the coefficient of kinetic
friction, and the contact forces Fc(t) at the boundaries of the
valve motion,

Fc(t) =

kc(−x), if x < 0,
0, if 0 ≤ x ≤ Ls,
−kc(x− Ls), if x > Ls,

where kc is the (large) spring constant associated with the
flexible seals. Overall, the acceleration term is defined by

a(t) =
1

m
(Fs − Fp − Ff − Fw + Fc)

The pressure pt(t) and the pipe pressure, pp(t), are calculated
as:

pt(t) =
mt(t)RgT

Vt0 +Ap(Ls − x(t))
pp(t) =

mp(t)RgT

Vp

where we assume an isothermal process in which the (ideal)
gas temperature is constant at T , Rg is the gas constant for
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the pneumatic gas, Vt0 is the minimum gas volume for the
gas chamber above the piston, and Vp is the pipe volume.

The gas flows are given by:

fp,in(t) = fg(ut(t), pp(t))

fp,leak(t) = fg(pp(t), pleak)

fp,t(t) = fg(pp(t), pt(t))

fp(t) = fp,in(t)− fp,t(t)− fp,leak(t)

ft(t) = fp,t(t)

where fp,in is the flow into the pipe from the supply or at-
mosphere, fp,leak is a leak term with pleak being the pressure
outside the leak, fp,t is the flow from the pipe to the chamber
above the piston, and fg defines gas flow through an orifice
for choked and non-choked flow conditions [9]. Non-choked
flow for p1 ≥ p2 is given by fg,nc(p1, p2) =

CsAsp1

√√√√ γ

ZRgT

(
2

γ − 1

)((
p2
p1

) 2
γ

−
(
p2
p1

) γ+1
γ

)
,

where γ is the ratio of specific heats, Z is the gas compress-
ibility factor, Cs is the flow coefficient, and As is the orifice
area. Choked flow for p1 ≥ p2 is given by

fg,c(p1, p2) = CsAsp1

√√√√ γ

ZRgT

(
2

γ + 1

) γ+1
γ−1

.

Choked flow occurs when the upstream to downstream pres-
sure ratio exceeds

(
γ+1
2

)γ/(γ−1)
. The overall gas flow equa-

tion is then given by

fg(p1, p2) =



fg,nc(p1, p2) if p1 ≥ p2
and p1

p2
<
(
γ+1
2

) γ
(γ−1) ,

fg,c(p1, p2) if p1 ≥ p2
and p1

p2
≥
(
γ+1
2

) γ
(γ−1) ,

−fg,nc(p2, p1) if p2 > p1

and p2
p1
<
(
γ+1
2

) γ
(γ−1) ,

−fg,c(p2, p1) if p2 > p1

and p2
p1
≥
(
γ+1
2

) γ
(γ−1) ,

.

The only available measurement is the valve position, so we
have

y(t) = [x(t)] .

Fig. 6 shows a nominal valve cycle. The valve starts in
its default open state. The valve is commanded to close at
0 s. Supply pressure (75 psig) is delivered to the pipe and
to the valve, causing the piston to lower, closing the valve
just after 1 s. At 4 s, the valve is commanded to open,
and the pipe is opened to atmosphere. The pipe pressure
and valve pressure drop, and once the pressure drops low
enough, the spring overcomes the pressure force and the
piston moves updwards. The valve completes opening just
after 6 s. The valve parameters were identified from known
valve specifications, and unknown parameters estimated to
match the nominal opening and closing times.
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Figure 6. Nominal valve operation.
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Figure 7. Valve timing with leak from supply, with linearly
increasing leak area.

As discussed in Section 2, we consider two different leak
faults, one in which there is a leak from the supply pressure
input to the valve (pleak is the supply pressure), emulated
using the bypass valve, and one in which there is a leak
out to atmosphere (pleak is atmospheric pressure), emulated
using the vent valve. In the former case, the valve will close
more slowly and open faster, and in the latter, the valve will
open more slowly and close faster. With a large enough leak,
the valve may fail to open or close fully. Fig. 7 shows the
changes in valve timing with the leak from the supply, and
Fig. 8 shows the changes in valve timing with the leak to
atmosphere. Here, we consider a damage progression model
where the leak hole area increases linearly with time.
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We define end of life through the use of timing limits on the
valves, as is done in real valve operations [1]. The valve in
the testbed is required to open within 6 s and close within 3 s.

4. VALVE PROGNOSIS
We describe in this section the prognosis framework de-
veloped for the valve. We follow here the same general
estimation-prediction framework of model-based prognos-
tics [5, 6, 10]. However, since we use only valve timing
values for prognosis, we use a simpler estimation approach,
similar to that developed in [11], as opposed to more complex
and computationally intensive filtering approaches used in
previous works. We first formulate the prognostics problem,
followed by a description of the estimation approach and a
description of the prediction approach.

Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)),

y(k) = h(k,x(k),θ(k),u(k),n(k)),

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.2

In prognostics, we are interested in predicting the occurrence
of some event E that is defined with respect to the states,
parameters, and inputs of the system. We define the event
as the earliest instant that some event threshold TE : Rnx ×
Rnθ × Rnu → B, where B , {0, 1} changes from the value
0 to 1 [12]. That is, the time of the event kE at some time of
prediction kP is defined as

kE(kP ) , inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}.

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP .

In the context of systems health management, TE is defined
via a set of performance constraints that define what the

2Bold typeface denotes vectors, and na denotes the length of a vector a.

acceptable states of the system are, based on x(k), θ(k), and
u(k) [6]. In this context, kE represents end of life (EOL),
and ∆kE represents remaining useful life (RUL). For valves,
timing requirements are provided that define the maximum
allowable time a valve may take to open or close, and these
define TEOL [1].

The prognostics problem is to compute estimates of EOL
and/or RUL. To do this, we first perform an estimation step
that computes estimates of x(k) and θ(k), followed by a
prediction step that computes EOL/RUL using these values
as initial states. For the case of the valve, the future inputs
are known, i.e., the valve is simply cycled open and closed,
so there is no uncertainty with respect to future inputs.

Estimation

Since only valve position is measured, only valve timing
values are useful for prognostics. We can extract from the
continous position measurement this information, by com-
puting the difference in time between when the valve is
commanded to move, and when it reaches its final position.
Using the model, we can search for the leak parameter value
that matches the observed opening or closing time. We
can do this using an optimization routine. We provide the
observed timing value and an initial guess of the leak size.
The algorithm then tries different parameter values to try
to minimize the error between predicted valve timing (via
simulating the model) and observed valve timing. We use
the standard Nedler-Mead simplex algorithm for this purpose.
Another method is to build a lookup table mapping leak size
to open and close times, using the simulation model [11].
With a fine enough granularity, a lookup table will provide
the same results as the optimization routine but at a fraction of
the computational cost. To estimate the parameter that defines
how the fault evolves in time, we assume a linear progression
of the leak parameter and perform a linear regression on the
history of estimated leak parameters.

For the leak to atmosphere, only closing times can be used.
This is because, in the presence of this leak, the valve may
not get up to the full supply pressure when the valve closes in
time for the next cycle, so since the internal valve actuator
pressure is not measured, we do not have a correct initial
condition for the simulation with which to estimate the leak
parameter value for the following opening time. For the
supply leak, we have analogous situation and can use only
opening times for leak parameter estimation.

Prediction

Given the current estimated leak parameter value, and the
regression parameters, we can compute the value of the leak
parameter at any future time, defining the damage progres-
sion equation. Given the maximum leak parameter value
corresponding to valve EOL, we can solve for the time at
which this occurs using the determined damage progression
equation.

We can isolate which fault is present by inspecting the asso-
ciated predictions. If we assume a supply leak is present, but
the leak is to atmosphere (or vice versa), the estimated leak
parameter values will decrease in time and the EOL and RUL
values will be nonsensical.
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Figure 9. Leak parameter estimation for a leak from supply,
based on valve opening times, in the noise-free case.
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5. RESULTS
We consider the case where the valve is cycled repeatedly,
and the leak hole area (controlled by the open percentage of
the leak valve) is slowly increasing linearly with time. We
begin with the ideal case in which there is no noise and so
valve opening and closing times can be acquired precisely.
Fig. 9 shows the estimated leak parameter after each cycle for
a leak from the supply. Based on the opening times, the leak
parameter can be estimated very accurately, since the model
is very accurate. Fig. 10 shows the RUL predictions after
each cycle (rounded to the nearest cycle), where α = 0.1
represents a desired accuracy constraint, and RUL∗ denotes
the true RUL. Convergence occurs quickly, and accurate EOL
predictions are available after only two cycles. Relative
accuracy is 100% averaged over all predictions, since the
model is known exactly and there is no noise. This represents
the ideal case.

Similar results are obtained for the leak to atmosphere. Ac-
curate estimation results are achieved, as shown in Fig. 11, as
well as accurate predictions Fig. 12. Again, this represents
the ideal case.

We consider now the case where sensor and model noise are
present, resulting in noisy computations of valve opening and
closing times. We assume a noise variance on the timing
values of 1× 10−3. Fig. 13 shows the measured valve timing
values for a leak from supply. Fig. 14 shows the associated
estimated leak parameter values, and Fig. 15 shows the RUL
predictions. Results are clearly less accurate in the presence
of noise. Leak parameter estimation loses accuracy due to
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Figure 11. Leak parameter estimation for a leak to atmo-
sphere, based on valve closing times, in the noise-free case.
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Figure 12. RUL predictions for a leak to atmosphere, in the
noise-free case.

noisy timing values, and, as a result, RUL predictions take
longer to converge. Here, relative accuracy for the RUL
predictions averages to 79.6%, and estimates converge only
after 7 cycles; after that point, relative accuracy improves to
86.0%.

Fig. 16 shows the measured valve timing values for a leak
to atmosphere. Fig. 17 shows the associated estimated leak
parameter values, and Fig. 18 shows the RUL predictions.
Results here are also less accurate in the presence of noise.
Here, relative accuracy for the RUL predictions averages to
79.9%, and estimates converge only after 8 cycles; after that
point, relative accuracy improves significantly to 97.6%.
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Figure 13. Valve open and close times for a leak from supply,
with noise.
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Figure 14. Leak parameter estimation for a leak from supply,
based on valve opening times.
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Figure 15. RUL predictions for a leak from supply.

With an order of magnitude less noise variance, relative accu-
racy becomes 96.5% for the leak from supply fault, converg-
ing after 5 cycles after which relative accuracy improves to
98.5%. For the leak to atmosphere, relative accuracy becomes
95.3% for the leak from supply fault, converging after 3
cycles after which relative accuracy improves to 96.8%. For
an order of magnitude more noise, average relative accuracy
reduces to 31.4% for the supply leak, never converging to
within 10% of the true value. For the leak to atmosphere,
average relative accuracy reduces to 34.4% with convergence
in 23 cycles, after which relative accuracy improves to 97.7%.
This analysis demonstrates the sensitivity of the approach
to noise in the timing values and stresses the importance of
accurate calculation of these values. Of course, with a more
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Figure 16. Valve open and close times for a leak to
atmosphere, with noise.
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Figure 17. Leak parameter estimation for a leak to atmo-
sphere, based on valve closing times, in the noise-free case.
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Figure 18. RUL predictions for a leak to atmosphere, in the
noise-free case.

slowly progressing fault, more data points will be available
and the estimates should be able to converge much faster
relative to the EOL value.

6. CONCLUSIONS
In this paper, we described a testbed for injecting faults in
pneumatic valves. We developed a model of the valve includ-
ing leak faults, and presented a novel valve prognosis frame-
work that operates with limited measurements, using only
valve timing information for prognosis. We demonstrated the
approach in simulation, and analyzed the robustness of the
approach with different noise values.

Future work will involve validating the prognosis framework
with experimental data from the testbed, and applying the
approach to a second type of valve that is continuously
controlled.
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