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An important function of traffic flow management ensuring the number of aircraft 
entering a sector does not exceed the amount that can be safely controlled by the sector 
controller. One factor that makes this task difficult is the uncertainty of the impact of 
convective weather, as both the weather forecast and the impact given specific weather is 
uncertain. In this investigation, we study this effect indirectly by exploring the relationship 
between convective weather forecasts and observed peak sector occupancy. Specifically, we 
measure how well the peak sector occupacy can be predicted using area-based and 
directional-based weather translation models. We also present a methodology for comparing 
weather translation models using a machine learning approach. Our results over the entire 
range of weather forecasts show that weather translation models produce better predictions 
than models without translation, but little significant difference is observed among the 
weather translation models. When restricted to heavy forecasted weather, however, some 
statistically significant differences were observed among the weather translation models. 

Nomenclature 
CIWS = Corridor Integrated Weather System MAP = Monitor Alert Parameter 
CWAM1 = Convective Weather Avoidance Model MWU  = Mann-Whitney U 
DFWCI  = Divided Forecast Weather Coverage RMS = Root Mean Squared 
FWCI  = Forecast Weather Coverage Index WITI = Weather Impacted Traffic Index 

I. Introduction 
RAFFIC flow management is concerned with balancing the demand for airspace resources with the capacity of 
the same resource. A specific example of a resource, and the domain of our study, is that of a high altitude 

sector. A simple model of the demand of the sector for some period of time is the number of aircraft that would 
occupy the sector during that time in the absence of constraints. In contrast, the analogous capacity of a sector for 
some period of time is the number of aircraft the sector controller can safely manage. Traffic flow management 
actions are not needed when demand is less than or equal to the capacity, but are needed when demand exceeds 
capacity (a demand/capacity imbalance). For the most part, capacity cannot be increased through traffic flow 
management, so instead actions are taken to reduce the demand, i.e., the number of aircraft that would occupy the 
sector in that period of time. It is important to choose traffic flow management mitigating actions that reduce 
demand by only the necessary amount: too little reduction puts undue workload on the sector controller, but too 
much reduction can create delays and reduce airspace efficiency. 
 Unfortunately, both sector demand and capacity are uncertain quantities, particularly given the fact that they 
must be estimated well enough in advance to enact the appropriate traffic management intiatives. Uncertainty in 
demand can come from uncertainty in transit times, delays elsewhere (ground or air), unscheduled traffic, and other 
traffic flow initiatives. Uncertainty in demand comes from the variability among the individual controllers, as well 
as the specifics of the traffic and current environmental factors, such as convective weather. The current operational 
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standard for modeling capacity is the monitor alert parameter (MAP)1; a constant number that defined separately for 
each sector and taken as a default estimate of sector capacity. As it is a constant, it is independent of situational 
factors such as controller variability and environmental conditions; traffic flow managers must alter the estimate of 
demand based on their experience and without the assistance of decision support tools. 
 Our ultimate goal is to be able to provide better models of both demand and capacity, validated on historical 
data. Unfortunately, this is difficult as neither demand nor capacity are directly observable. Demand could be 
measured as the number of occupying aircraft plus all those that were routed away from the constrained sector; 
however it is difficult to aggregate the latter number, and that would still miss aircraft proactively rerouted by the 
operators. Likewise, capacity can be measured by observing the aircraft count at the point the controller refuses to 
accept any new aircraft into the sector; however this is not a situation that should be intentionally created, and when 
it does happen, it is not necessarily easily captured or even frequent, as a goal of traffic flow management is to avoid 
such situations. 
 We use the aircraft peak count, defined as the observed instantaneous aircraft peak count in a sector over a 
fifteen minute period, to serve as a proxy of both capacity and demand. The observed aircraft count can be thought 
of as function of both demand and capacity. Assuming optimal operations, when demand is below capacity, the peak 
count is equal to demand, since the capacity is not a factor; when demand is above capacity, the peak count is equal 
to the capacity, since not all demand can be satisfied. As such, the peak count is not always an indicator of the actual 
capacity. We restrict our study to times when air traffic is normally reasonably high, with the expectation that this 
will increase the impact of capacity reductions on the observed peak count since demand will be closer to capacity 
under nominal operating conditions. 
 In this study, we attempt to build a model of how convective weather impacts capacity, ignoring any other 
potential impacts. We also do not try to model demand except in a rudimentary way; other research efforts addressed 
modeling demand (as captured by peak counts) in more detail2. Our main contributions are a comparison of the 
models, and a methodology for making such comparisons; the models themselves are largely derived from previous 
work. Our paper is organized as follows. In Section II we described previous efforts to model weather impacts on 
capacity, from which we largely draw from to build our models of weather impact capacity. In Section III we provde 
a formal defintion of all our models, along with two baselines. In Section IV, we describe the dataset used in our 
study, and describe several of its properties that expose some of the difficulties in observing the effect of weather on 
capacity. We present our experiment and results in Section V, and summarize our conclusions and opportunities for 
future work in Section VI. 

II. Related Work 
A simple model of weather-impacted capacity is simply the percentage of the sector (in terms of area or volume) 

that is free of convective weather that meets a certain threshold times the nominal capacity (often MAP). This 
concept has been given several names in the literature, for instance Weather Severity Index and Weather Avoidance 
Altitude Field coverage; we use Weather Coverage Index to refer to the volume of a sector occupied by qualifying 
weather. A prior simulation of delays due to weather included an analysis of historical data that showed reducing 
MAP by the Weather Severity Index (weather area) results in a reasonable upper bound observed peak sector 
counts.3 

More complex weather-impact models measure aspects of convective weather in terms of some property 
meaningful from a traffic flow management perspective. In order to capture directional aspects of capacity, a 
scanning method was developed that runs “scan lines” along particular directions4. Scan lines that intersect 
convective weather meeting a particular criteria are seen as partially or totally unusuable; it is assumed that aircraft 
do not deviate from the scan line. From this, the total reduction in capacity in the direction can be estimated. 

The MaxFlow/MinCut Theory has been used to model the available capacity under several air traffic control 
scenarios5. Contrasted with the scanning method, the restriction that aircraft must follow a straight line is loosened. 
Instead, the aircraft are modeled as entering and exiting the airspace at certain points; the width of the narrowest gap 
in their chosen transit determines the number of aircraft that can make the transit and thus an upper bound on the 
weather-impacted capacity. 

The MinCut concept has been applied to a flow-based model of sector capacity as well6. Flows are represented 
as triplets of sectors – an origin sector, transit sector, and destination sector chain. The flow-based model models the 
capacity of the transit sector in terms of the restrictions of its flows; the capacity of the flow is the nominal peak 
flow reduced by the amount of constriction according to the min cut. An evaluation of this model using the largest 
three flows showed a better linear fit with the 95th percentile observed peak count than did area- or volume-based 
capacity models. 
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Several efforts have been made during the past few years to understand the connection between weather and 
delay. Of particular importance is the the Weather Impacted Traffic Index7 (WITI). WITI captures the number of 
aircraft affected by weather at a given instant of time. Specifically, a grid is defined on the airspace, and the number 
of aircraft that fall within the same cell as severe weather are summed up to create the index. Studies7,8 have 
established that an aggregate national WITI has strong correlation with national OPSNET delays. 

 

III. Models 
Our approach to estimating the weather-impacted peak sector count requires some forecast of the weather. Finer-

grained forecasts potentially enable more precise predictions of weather impacts: location information could 
distinguish between scattered “popcorn” convective cells and a single convective mass, as well as the vertical 
position of the storm; differences in cell intensity may also distinguish between usable and impenetrable sections of 
the storm. On the other hand, excess resolution in the forecast is not particularly beneficial if it exceeds the level of 
accuracy the forecast. Probabilistic forecasts may ultimately lead to better predictions by presenting a range of 
possible weather scenarios, but introduce more complexity for the same reason, so we prefer deterministic forecasts 
for our initial study. Ultimately, any forecast model may be used, with a preference for more accurate and finer-
grained models. 

For this investigation, we have used the Convective Weather Avoidance Model9,10 (CWAM1) for our weather 
forecasts. CWAM1 is itself a translation of the Corridor Integrated Weather System (CIWS), which produces two-
hour forecasts (as well as shorter-term forecasts) every five minutes for the eastern corridor of the United States of 
America. CWAM1 is easier to use for our study than CIWS because it performs the first stage of translating weather 
forecasts into air traffic impacts. Of course, by selecting CWAM1, our study is influenced by whatever strengths or 
weaknesses it has. The goal of CWAM1 is to predict what percentage of traffic will avoid areas of convective 
weather. CWAM1 uses predictions of Vertical Integrated Liquid (a measure of the amount of liquid in a column of 
the storm) and echo tops (estimations of the height of the storm) from CIWS to create the predicted areas of 
avoidance. These areas of avoidance are represented as two-dimensional polygons every thousand feet in high 
altitude sectors with a resolution less than one nautical mile. A prior validation study11 showed that the 80% 
avoidance polygons were reasonably accurate, so we use only these 80% avoidance polygons as our representation 
of forecasted weather. 

As mentioned previously, our ultimate interest is in how weather affects the capacity of the sector, but this 
capacity is not easily observed. Instead, we use the observed peak count as a proxy for the sector capacity. Unlike 
capacity, observed peak count is also affected by the demand of the sector, so we also need to model this element as  
well. We use a simple model for demand; for a given sector and time of day, we use the average observed peak 
count over the study period when clear weather was forecasted. This demand model does not capture variation over 
the week or months, nor does it factor what has happened recently in this and other related sectors, so it is a 
somewhat crude model. In any case, the representation for weather and demand is translated into a single prediction 
for peak count, which we describe in Section V below. 

We explored use of several translations of the CWAM1 model, largely inspired by related literature: 

1) Forecast Weather Coverage Index  
Our simplest translation model, the Forecast Weather Coverage Index (FWCI), uses only the volume of the 

forecasted convective activity in the sector and does not account for any other features, such as inter-sector cell 
location, flight patterns, etc. Specifically, it is the percentage of the volume of the sector that is forecasted to have 
convective weather that meets the 80% avoidance criterion. Recall that CWAM1 produces (two-dimensional) 
polygons for various flight levels in the sector. For a given sector s and time t, let Fs be the set of flight levels for 
sector s, Pf,t be the set of CWAM1 polygons at flight level f at time t, and s to be the (two-dimensional) sector 
geometry. We compute FWCI as 

 

€ 

FWCIs,t =
1
Fs

p∩ s
sp∈Pf ,t

∑
f ∈F
∑  (1) 

where | Fs | is the size of the set Fs (i.e., the total number of flight levels), | p ∩ s | is the area of the intersection of p 
and s, and | s | is the area of sector s. Figure 1 shows a two-dimensional depiction of the FWCI calculation.  
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Figure 1. Example of Forecasted Weather Coverage Index. 

2) Divided Forecast Weather Coverage Index  
Similar in spirit to the WITI approach 7, we extend the FWCI model by superimposing an arbitrary grid to create 

the Divided Forecast Weather Coverage Index (DFWCI). We used 3 x 3 grid that covers the entire sector, with equal 
grid cell heights and width, extending from the bottom to the top of the sector (see Figure 2 for an example). This 
grid divides the sector into nine subsectors; though the grid cells are all equal in size, the subsectors may vary in 
volume, as the sector and the grid do not have the same geometry. Indeed, in some cases a subsector may be empty. 
DFWCI essentially repeats the FWCI on a smaller scale, resulting in nine estimates instead of one (a FWCI for each 
subsector). DFWCI is calculated as 

 

€ 

DFWCIi, j,s,t =
1
Fs

p∩ s∩ ci, j
s∩ ci, jp∈Pf ,t

∑
f ∈Fs

∑  (2) 

where ci,j is the geometry of the cell in the ith row and jth column, and all other quantities are defined as in the FWCI 
calculation. 

There are several motivations behind the DFWCI model. First, since the volume of airspace in lower in each 
DFWCI calculation (when compared to FWCI), it may better capture the impact on vital areas of the airspace. For 
instance, if the sector contains an important fix or crossing of streams of traffic, it may be easier to estimate the 
impact when evaluating the DFWCI estimate of the containing subsector than the FWCI estimate for the entire 
sector. Second, certain patterns among the cells may indicate meaningful weather structure in the sector. For 
instance, imagine an unbroken weather system occurring only in the middle column of subsectors. Such a pattern 
could indicate that the sector has very little capacity for East-West traffic; however, the FWCI for the entire sector 
would not reveal this pattern and thus give a less telling picture. Third, the variation in DFWCI estimates among the 
subsectors can provide an indication of the type of convective weather. Imagine the DFWCI estimates for the same 
sector from two different times that have an overall FWCI of 40%: one with a single convective cell, and one with 
scattered “popcorn” areas of convection. As stated, both would look the same in terms of FWCI, but would look 
very different in terms of DFWCI: the single convection case would have higher DFWCI estimates in some 
subsectors and little or zero DFWCI estimates in other subsectors, whereas in the popcorn case, the DFWCI 
estimates would be more even among the subsectors. 

On the other hand, the DFWCI estimates may provide finer resolution than is necessary or advantageous. If the 
sector capacity is primarily a function of the weather in the sector as a whole and not sensitive to the location of 
weather within the sector, then the additional resolution of DFWCI would make it more difficult to capture the larger 
picture. Likewise, two-hour forecasts may not be sufficiently accurate at the level of the DFWCI grid, in which case 
the higher resolution does not supply any additional information. 
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Figure 2. Example of Divided Forecast Weather Coverage Index. 

3) Directional Models 
Our third and final translation model is inspired by work of Klein et al.4 and is manifested as three related but 

distinct models. Each variant defines the same set of parallel scan lines and uses some aspect of their intersection 
with the forecasted convective polygons as the relevant feature (see Figure 3). Scan lines are run at a spacing of 
approximately every five nautical miles in a given direction; they can also be thought of as scan planes as each line 
intersects every flight level. The scan lines are run in nine directions, measured as a clockwise offset from due 
North; 0º, 20º, 40º, 60º, 80º, 100º, 120º, 140º and 160º. (The information would be redundant if we extended it 
further, since the 180º lines would be the same as the 0º lines). Like DFWCI but unlike FWCI, this creates multiple 
features for the translation model. Intuitively, one can regard the scan lines as capturing the capacity in the given 
direction, with the unobstructed lines representing clear lines and the obstructed ones potentially losing some 
capacity. In the original translation model, the greatest weather intensity was used to determine the reduction, but 
this is not meaningful in our representation with only one level of forecasted weather intensity (the 80% avoidance 
region). 

For each direction d, each scanning variant defines a set of set of scan lines Ld, in addition to flight levels Fs and 
CWAM1 polygons Pf,t  at flight level f at time t, as before. The definitions follow: 

 
1. Countscan model. 

The countscan model captures the number of scan lines that intersect some forecasted convective activity. For a 
given direction d, it is calculated as 

 

€ 

countscand ,s,t =
1

Fs Ld
I<0 p∩ l( )

l∈Ld

∑
p∈Pf ,t

∑
f ∈Fs

∑  (3) 

where I<0(•) is an indicator function that returns 1 when its argument is greater than zero, 0 otherwise. The idea 
behind the countscan model is that flights approximately travel along the scan lines; when convective weather 
intersects a scan line, that path is presumed to be unusable. However, the countscan model assumes flights follow a 
straight path across the sector, which is not always the case.  

 
2. Maxscan model. 

The maxscan model captures the highest percentage of a scan line intersecting any forecasted convective 
activity. For a given direction d, it is calculated as 

 

€ 

maxscand ,s,t =
1
Fs

max
l∈Ld

p∩ l
l

 

 
 

 

 
 

p∈Pf

∑
f ∈Fs

∑ . (4) 
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Figure 3. Example of Scanning Approach. 

The maxscan model is not meant to capture the directional capacity in the given direction d, but rather the 
perpendicular capacity, i.e., the directional capacity in direction d+90º. In this conception, the scan lines are 
perpendicular to the flow and when they intersect convective weather, chokeholds are created. Thus, the maximum 
constriction captures the smallest chokehold the traffic must flow through, and is presumed to the limiting factor. 
This is our approximation of the MinCut concept5. However, the maxscan model assumes that flights travel along 
the full length of the sector (i.e., no clipping), which is not always the case. 
 
3. Totalscan model. 

The totalscan model captures the average scan line intersection with forecasted convective activity. For a given 
direction d, it is calculated as 

 

 

€ 

totalscand ,s,t =
1

Fs Ld

p∩ l
ll∈Ld

∑
p∈Pf

∑
f ∈Fs

∑ . (5) 

The idea behind the totalscan model is similar to the countscan model, but does not use a binary model of 
permeability. Instead, the percentage of the scan line intersecting with forecasted convective activity is used as a 
gradual indicator of loss of capacity. Instead of a percentage, the raw intersection length could be used, but this just 
produces an approximation of the WCI model. Like the countscan model, the maxscan model assumes flights follow 
a straight path across the sector, which is not always the case. 
 
4. Mean models. 

Finally, we also use models that average the directional capacity estimates to produce a single estimate. We refer 
to these translation models as countscanmean, maxscanmean, and totalscanmean. 

4) Non-translation models 
 
We define two additional models that have no explicit weather component to act as baselines for our translation 

models. This allows us to put the performance of the weather translation models into a broader context, which is 
particularly important as the peak count is also affected by demand; we need to isolate the effect of the weather 
translation model. The first model, wxmean, includes only the average peak count over all times for that sector in the 
dataset, which are all peak times (i.e., 13:00-23:00 EDT) when weather was forecasted two hours in advance. 
Wxmean for a sector s at time t is simply defined as 

 

€ 

wxmeans,t =
1

T ∩Ws

peaks,x
x∈T∩Ws

∑ . (6) 
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where T is the set of peak times, Ws is the set of times in our dataset1 where some convective weather was forecast 
for sector s, and peaks,t is the recorded peak aircraft count for sector s and time x. Note that wxmean is not dependent 
on the specified time t. Ideally, a separate average would be computed for each time of day (e.g., for all 14:15 EDT 
time periods where weather was forecast), but we do not have enough data to compute means that are reliable 
estimates for the expected mean at that time. The wxmean model does allow for an impact from the presence of 
weather, but assumes that neither the properties of the weather (e.g., size, location) nor the time of day impact the 
peak count. 

Our second baseline model, clearmean, captures only the demand component based on observations when no 
weather was forecast. For a given sector s and time t, we calculate clearmean as follows: 

 

€ 

clearmeans,t =
1

Ht \Ws

peaks,x
x∈Ht \Ws

∑ . (7) 

where Ht are all times at the same time of day as t (e.g., if t is 14:45 June 17 EDT, then Ht is all times at 14:45 EDT), 
Ws is defined as before, and \ denotes set difference. The clearmean model assumes that there are no weather related 
impacts on observed peak count, but time of day does matter. 

 

 
Figure 4. Distribution of weather severity as measured by FWCI. 

IV. Data 
Our dataset covers the 122 days from June 1, 2007 to September 31, 2007 for the high altitude sectors in ZOB 

(Cleveland Air Route Traffic Control Center), ZID (Indianapolis Air Route Traffic Control Center), and ZDC 
(Washington, D.C. Air Route Traffic Control Center). Convective activity was forecast for 17% of the peak times 
over this period. However, this varied by sector, from a low of 8% to a high of 37%, with a standard deviation of 
6%. 

Figure 4 shows the distribution of forecast weather, as measured by FWCI, across the entire dataset. Weather 
severity, when measured in this way, appears to follow an exponential distribution, with light weather occuring far 
more frequently than heavy weather. Indeed, nearly 70% of our forecast weather situations predicted less than 10% 
coverage of the volume of the sector, according to our CWAM1 80% avoidance level. As a result, it will be more 
difficult to characterize the effects of heavy weather than light weather. Furthermore, if light weather has relatively 
little impact on capacity, then we would expect to see little impact from weather overall as light weather dominates 
our dataset. 

Figure 5 gives the distribution of observed peak count in the sectors over our study period of 13:00-23:00 EDT 
when clear weather was forecast. The distribution appears to be approximately normal, which leads us to the 
conclusion that peak count varies considerably, even when no weather is forecast for the sector. Indeed, it would 
appear that the normal situation in our dataset is 50% of the available capacity is being used for a given sector. 
Coupled with our earlier observation that most weather forecast is relatively light, it may be the weather impact on 
capacity may not be observable through peak count in most situations: if the weather tends to be light, and there 
tends to be significant unused capacity, then it may be that the resultant drop in capacity is not great enough to 
create a demand/capacity imbalance and hence unobservable through an analysis of peak aircraft counts. 

                                                
1 Here we use only data from the testing subset, as described in Section V. 
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Figure 5. Distribution of Peak Count. 

Overall, our analysis of the basic characteristics of the dataset reveals that relatively light forecasted weather and 
moderate amounts of traffic dominate the forecasted weather subset of the data. Observed peak counts, as measured 
in clear weather, showed noticeable variation within a given time of day and across the 13:00-23:00 time period, as 
shown in Figure 6. These results appeared to be fairly applicable to all sectors. 

 

 
Figure 6. Distribution of Standard Deviation of Observed Peak Count/Mean over all sectors and times 

V. Experimental Results 
Rather than define a priori a model of capacity, or report the best fitting parameters retrospectively, we adopt a 

machine learning approach to build and evaluate our models based on the data. Model construction and evaluation 
occur in two separate phases on disjoint training and test subsets of the dataset2. This matches the likely use in 
practice, as models are created based on historical data and applied to incoming data that were not available at the 
time of model construction. Many machine learning algorithms exist; for this study, we used straightforward linear 
regression as implemented in the Weka12 data mining software package. We use ten-fold cross-validation to 
decrease the chance of spurious results and make better using of the available data for training. Specifically, the 
dataset is split into ten approximately equal folds. For each fold, the remaining nine folds (approximately 90% of the 
data) is used as training data from which to infer the model, and the fold itself is used as testing data to evaluate the 
model. This means there are ten separate trials, each evaluated on separate (disjoint) subsets of the dataset, and all of 
the dataset is used for evaluation in some trial. Our results presented below are the aggregate results for the entire 
dataset over these ten trials. 

We make two assumptions that lead us to certain choices in the representation and experimental setup. The first 
assumption is that despite the overall variability, there are more and less busy times of day during our 13:00-23:00 
EDT study period. Therefore, it seems logical to include some representation of this time-varying demand 
component to enhance our weather translation models (but not the wxmean baseline). In our data representation, we 
combine the clearmean model with the translation models described in Section III.  

                                                
2 The clearmean model deviates somewhat from this as the training set is always the forecasted clear weather cases, 
and the peak count prediction is given by Eq. 7. 
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Our second assumption is that every sector may have different qualities, which would justify a different model 
for each one. For instance, different sectors have different geometries, which would affect the DFWCI 
representation. Also, different sectors may be dominated by different directional flows, or no particular flow, which 
would affect the directional models. Therefore, we perform linear regression on each sector separately. The 
downside of this decision is that there is less data available for each regression (since we are doing several disjoint 
regressions on the same data instead of one). The results we present are an aggregation of all the predictions from 
these separate models on their corresponding testing datasets. 

Our experiment was performed only on sector/time pairs from which some convective weather was forecast. For 
each model, a prediction of the peak count was made, and the difference between the observed peak count and the 
predicted peak count was recorded as the resulting error. We calculated the following statistics from these set of 
errors: 

• Error Bias: The overall error mean, indicating if the method is generally under- or over-estimating peak 
count. 

• Median Absolute Error: The median absolute error. Roughly half of the errors are lower than the median, 
and roughly half are above. 

• Mean Absolute Error 
• Root Mean Squared Error: Linear regression minimizes the root mean squared (RMS) error on the 

training set. Since the error is squared, large errors result in a disproportionately larger score. 
The median absolute, mean absolute and root mean squared errors are similar but not exactly the same. In some of 
our cases, a model will have better results in one error statistic and worse in another when compared to a different 
model. 

In addition to these means, we also evaluate the statistical significance of the results by comparing the absolute 
errors of two models with a one-tailed version of the Mann-Whitney U Test13 (MWU test, also called the Mann-
Whitney-Wilcoxen test). The (usual) two-tailed MWU test compares two samples to determine if the evidence 
suggests the medians of the respective generating distributions are different; we use only one tail to evaluate if one 
(distributional) median is higher than the other. Though this is related to the absolute median statistic, it is not the 
same as comparing only the two observed medians, as the MWU test compares all points from the samples and not 
just the corresponding medians. As a result, occasionally the MWU test will assign a significance level that is in 
opposition to the observed medians. We use the MWU test to evaluate whether the distribution of errors from model 
A (listed in the first column) has a lower absolute error median than model B (listed in the first row). The cited level 
of significance indicates the fraction of times this statement would be false under identical conditions (rounded up); 
thus lower numbers indicate a stronger level of significance. 0.05 is commonly used as the cutoff of acceptance. 
Numbers above 0.5 represent that the statement is false under most identical conditions; in other words, most of the 
evidence contradicts the statement. 

 

Table 1. Results over entire forecasted weather dataset. 

 Bias Median Abs. Error Mean Abs. Error RMS Error 
Wxmean 0.000 1.531 1.865 2.379 

Clearmean -0.002 1.500 1.843 2.368 
FWCI 0.000 1.418 1.723 2.211 

DFWCI -0.001 1.404 1.713 2.197 
Countscan 0.000 1.416 1.729 2.217 

Countscanmean 0.000 1.420 1.727 2.215 
Maxscan 0.000 1.420 1.733 2.222 

Maxscanmean -0.001 1.424 1.736 2.225 
Totalscan 0.000 1.411 1.712 2.194 

Totalscanmean 0.000 1.414 1.720 2.206 
 

 
 
Table 1 shows the results over all 28996 sector/time pairs that had at least some convective weather forecasted. 

There is almost no bias in the errors, indicating that there is no trend to consistently under- or over-predict peak 
count by a substantial amount among the various models. This is somewhat surprising, because this set includes the 
clearmean model, which predicts as if there is no forecasted weather, and still has only a very slight overestimate of 
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peak count. Within any given model, the mean absolute error is higher than the median absolute error, and the root 
mean squared error is higher still. This indicates that within the set of errors, less frequent but rather large errors 
occurred; in other words, each method made very inaccurate predictions at some point. Comparing among the 
models, clearmean has lower error statistics than wxmean; it also has significance under 0.05 when compared to 
wxmean, as shown in Table 2. This indicates that the time of day is an important factor in predicting the peak count, 
as wxmean has no time of day component. All the weather translation models have lower error statistics and a 
significant difference over both wxmean and clearmean. However, among the weather translation models, none have 
a significant difference at or below the 0.05 level with FWCI, though several have lower error statistics, and in fact 
only totalscan less than maxscanmean meets the 0.05 level of significance. None of the mean scanning models 
outperformed their non-mean scanning counterparts, though the differences were slight. Of all the models, DFWCI 
and totalscan had the lowest error statistics. 
 

Table 2. Statistical significance over entire forecasted weather dataset. 

 
Wx-

mean 

Clear-
mean FWCI DFWCI 

Count-
scan 

Count-
scan-
mean 

Max-
scan 

Max-
scan-
mean 

Total-
scan 

Total-
scan-
mean 

Wxmean – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Clearmean 0.01 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

FWCI 0.01 0.01 – 0.72 0.31 0.37 0.20 0.15 0.75 0.55 
DFWCI 0.01 0.01 0.29 – 0.14 0.19 0.08 0.06 0.54 0.33 

Countscan 0.01 0.01 0.70 0.87 – 0.58 0.38 0.30 0.89 0.74 
Countscanmean 0.01 0.01 0.64 0.82 0.43 – 0.31 0.24 0.85 0.68 

Maxscan 0.01 0.01 0.81 0.93 0.63 0.70 – 0.43 0.94 0.84 
Maxscanmean 0.01 0.01 0.86 0.95 0.71 0.77 0.58 – 0.96 0.88 

Totalscan 0.01 0.01 0.26 0.47 0.12 0.16 0.07 0.05 – 0.30 
Totalscanmean 0.01 0.01 0.46 0.68 0.27 0.33 0.17 0.13 0.71 – 

 
As shown previously in Figure 4, the majority of forecasted weather in our dataset is relatively light. Assuming a 

linear relationship between weather severity and impact on capacity, it follows that even a perfect weather 
translation would have little effect on our error statistics. Therefore, we performed an analysis over the subset where 
FWCI was 0.5 or above (weather forecasted for at least 50% of the volume of the sector), with the hope that the 
effect of weather might be more observable. However, this comes at a price, as the size of this subset is only 848 
sector/time of day pairs – less than 1/30th of the original dataset. This small size makes it harder to establish 
statistical significance and to have confidence in our mean statistics. 

Table 3. Results over subset where FWCI ≥0.5. 

 Bias Median Abs. Error Mean Abs. Error RMS Error 
Wxmean -1.715 2.145 2.291 2.792 

Clearmean -1.741 2.100 2.337 2.865 
FWCI 0.095 1.389 1.697 2.151 

DFWCI -0.011 1.383 1.651 2.096 
Countscan -0.545 1.484 1.768 2.217 

Countscanmean -0.591 1.521 1.790 2.245 
Maxscan -0.725 1.528 1.832 2.297 

Maxscanmean -0.857 1.576 1.859 2.329 
Totalscan 0.055 1.352 1.624 2.077 

Totalscanmean 0.098 1.359 1.683 2.134 
 

Table 3 shows the results on this restricted dataset. Error biases are larger as the models were fit to the entire 
training dataset, not just FWCI ≥ 0.5, and apparently are not as well adjusted for this subset. Wxmean and clearmean 
have the largest magnitude of bias as they do not model the extent of the weather. Indeed, the clearmean model has 
lost its apparent edge over wxmean, as clearmean does not make any allowance for the impact of weather, which is 
larger in this subset. As with the entire dataset, the weather translation models have superior error statistics and a 
significant difference (as shown in Table 4) over both wxmean and clearmean. Actually, the error statistics are lower 
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for the weather translation models overall. This might seem surprising, but it is because the peak counts have 
generally decreased in this subset, and so the magnitude of variance has decreased as well. The comparative results 
are primarily the same, but in some cases stronger. The statistical significance between FWCI and the maxscan 
models is below the 0.05 level, but in favor of FWCI – indicating the deficiency of maxscan and maxscanmean. 
Likewise, countscan and countscanmean compare unfavorably to FWCI, though the 0.05 level of significance is not 
reached. Indeed, both DFWCI, totalscan, and totalscanmean meet the 0.05 level of significance against countscan, 
countscanmean, maxscan, and maxscanmean, calling their worth into question. Finally, DFWCI and totalscan again 
have the best statstics, but more in the favor of totalscan. 
 

Table 4. Statistical significance over subset where FWCI ≥0.5. 

 
Wx-

mean 

Clear-
mean FWCI DFWCI 

Count-
scan 

Count-
scan-
mean 

Max-
scan 

Max-
scan-
mean 

Total-
scan 

Total-
scan-
mean 

Wxmean – 0.37 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Clearmean 0.64 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

FWCI 0.01 0.01 – 0.75 0.13 0.09 0.03 0.02 0.90 0.58 
DFWCI 0.01 0.01 0.26 – 0.04 0.03 0.01 0.01 0.71 0.33 

Countscan 0.01 0.01 0.88 0.97 – 0.40 0.23 0.14 0.99 0.91 
Countscanmean 0.01 0.01 0.92 0.98 0.61 – 0.30 0.20 1.00 0.94 

Maxscan 0.01 0.01 0.98 1.00 0.78 0.71 – 0.37 1.00 0.99 
Maxscanmean 0.01 0.01 0.99 1.00 0.87 0.81 0.64 – 1.00 1.00 

Totalscan 0.01 0.01 0.11 0.30 0.02 0.01 0.01 0.01 – 0.15 
Totalscanmean 0.01 0.01 0.43 0.68 0.10 0.07 0.02 0.01 0.86 – 

VI. Conclusions and Future Work 
In this paper, we evaluated several weather translation models in conjunction with a particular two-hour forecast 

product to predict the impact on sector capacity. However, capacity is not directly observable, so we used the 
observed peak aircraft count in the sector over a fifteen minute period. Other factors, such as demand, also affect the 
observed peak aircraft count, making analysis more difficult. To compenate, we incorporated a simple demand 
model into our representation based on observations when clear weather was forecast. We presented a methodology 
for comparing different weather translation models, by evaluating them on the same dataset, using a machine 
learning approach to infer the models, and using a statistical test to establish the significance of the results. Our use 
of the machine learning paradigm, when compared to simply finding the best linear fit,  is needed to decrease the 
possibility of spurious results given our methods have a different number of features. 

Our results show a statistically significant difference in the prediction of peak observed aircraft count of all of 
our weather translation models when compared to the simple demand model without weather translation, indicating 
that some impact of weather on capacity was captured in our weather translation models. In terms of statistical 
significance, little difference was observed in our weather translation models over the total dataset, though some 
variants were shown to be inferior when restricted to heavier weather conditions. Indeed, the simplest of the 
translation models (which measures only the percentage of the sector’s volume with forecasted weather) performed 
reasonably well when compared with all other translation models. In terms of absolute numbers, the translation 
methods that preserved more detail outperformed those that aggregated separate features into an average, suggesting 
that it may be preferable to maintain multiple weather features. 

More study is needed to differentiate between the various translation models. A better estimation of demand 
would eliminate some of the variability in the observed peak aircraft counts, making the differences in translation 
models easier to detect. Of all the translation models we used, DFWCI, which measures the forecasted weather 
volume in various subspaces of the sector, and totalscan, which measured the percentage of weather blockage in 
particular directions, showed the most promise. DFWCI could potentially be improved by choosing different 
divisions of the sector; the current subdivisions were completely arbitrary. Totalscan might be improved by 
weighting different segments within a direction unequally. However, all translation models in our study were 
dependent on the properties of the forecast product we used. Other forecast products, as well as shorter term 
forecasts or nowcasts, might reveal different properties of the translation models. 
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