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Abstract. A user’s informational need and preferences can be modeled
by criteria, which in turn can be used to prioritize candidate results
and produce a ranked list. We examine the use of such a criteria-based
user model in the context of two very different recommender scenarios:
news article recommendations and product recommendations. We ask
the following: are there nonlinear interactions among the criteria; and
should the models be personalized? We assume that that user ratings
on each criterion are available, and use machine learning to infer a user
model that combines these multiple ratings into a single overall rating.
We found that the ratings of different criteria have a nonlinear interaction
in some cases, for example, article novelty and subject relevance often
interact. We also found that these interactions vary from user to user.

1 Introduction

Choosing one or more items among many candidates often requires an evaluation
on multiple criteria. For instance, the search for habitable planets may involve
evaluating candidate observations on the basis of star type, observation quality
and telescope time. In other cases, it may be necessary to trade off competing
interests. For example, when evaluating potential Mars landing sites, it is neces-
sary to balance the priorities of various science teams, as well as the likelihood of
mission success and telemetric potential. Criteria-based models, which capture
multiple, potentially competing aspects of a user’s need, have been developed
and used in operations research [18]. In commercial applications, a better un-
derstanding of the involved criteria for a particular user need could also lead to
better marketing and product development opportunities.

A previous study showed that using a linear combination of multiple criteria
to model the user’s need can improve information retrieval results [20]. This
paper goes beyond a linear combination to model the interactions among the
criteria. Specifically, we seek answers to the following questions:

1. Is there evidence that some criteria interact in the decision/rating process?
2. If so, are there discernible patterns to these interactions?
3. Given interactions, are these interactions consistent across users?



To answer these questions, we perform our study within the context of two
very different recommendation tasks: news article recommendations — a rep-
resentative task for adaptive filtering; and product recommendations (for flat
panel televisions) — a representative task for collaborative filtering. We expect
certain interactions might exist. For example, low ratings on certain criteria
might negate higher ratings in other criteria. Is respect for an article’s author
still important when the article is not of the desired topic? Is the durability of a
television a factor if it has a poor picture? Or it may be that certain high ratings
limit the impact of other criteria. For instance, considering two articles with the
same breaking news, does the readability of the article make much difference?
It is these sorts of interactions that we are searching for. On the two tasks, we
test for the presence of interactions by comparing the root mean squared error
(RMSE) of learned linear and nonlinear user models for predicting the overall
item rating or recommendation.

The rest of the paper is organized as follows. In Section 2, we review related
work. In Section 3, we describe our recommender datasets. In Section 4, we detail
our approach to represent criteria interactions and to select the best model. We
present our experimental results in Section 5 and our conclusions in Section 6.

2 Related Work

In information retrieval, the limited adoption of criteria-based user models has
been mostly restricted to enhancing standard relevance-based models with nov-
elty. Researchers have studied criteria such as information-novelty for search [6],
summarization [4], filtering [22] and topic detection and tracking [1]. Prior re-
search on a user’s perception/criteria have found that a wide range of factors
(such as personal knowledge, topicality, quality, novelty, recency, authority and
author qualitatively) affect human judgments of relevance [2][10][17][19][16].

Most of the research in the information retrieval community that uses mul-
tiple criteria has been in information filtering. Manouselis and Costopoulou cat-
egorize 37 recommender systems that implicitly use some multi-criteria aspect
in their operation [11]. These systems primarily use only the weighted sum (i.e.,
linear combination) model. Of the information filtering systems we are aware of,
PENG [13] is the most similar in application to our experimental domain. PENG
is a multi-criteria news bulletin filtering system that utilizes several criteria, in-
cluding content, coverage, reliability, novelty and timeliness. A later evaluation
of PENG, using only content and coverage, showed comparable or superior per-
formance to other approaches [3]. Farah and Vanderpooten have explored the
use of multiple criteria in search using rank-based methods. In their work [8],
the user provides query terms as the only input (and thus criterion) for the
search process. From this, additional criteria are formed from elements of the
web page, such as text, keywords, anchor text and incoming links. Later work
[9] expanded on this notion by using the rankings produced by several high
performing algorithms, with each algorithm essentially acting as a criterion or
critic.



Learning user models based on multiple criteria (as opposed to content alone)
is not common in information retrieval. Näıve Bayesian classifiers were used to
learn content-based user profiles for movie search [7]. A more complicated scheme
was used to predict whether a user would watch television programs [14], first
by building a model of what genres a user likes, and then classifying each show
based on its genres by means of a support vector machine. DIVA [12] uses a
somewhat similar approach to recommend movies, using the C5.0 algorithm to
classify each movie based on its metadata.

Outside the information retrieval community, general additive independence
models have gained some popularity, and are akin to our current approach. One
method for estimating generalized additive independent utility functions is to
treat criteria as random variables and use Bayesian techniques to estimate them
[5]. This same utility decomposition concept was later applied to the multi-issue
negotiation task, by representing the utility of a buyer in a utility graph [15].

3 Datasets

We used two recommendation datasets for our research. Each dataset had four
criteria and one overall rating defined. The range of these ratings are different
for different criteria, as the data were originally collected for other research. For
consistency, we have rescaled all ratings to have minimum and maximum values
of 0 and 1, respectively. After this rescaling, the ratings were either binary (0
or 1) or five-valued (0.0, 0.2, 0.4, 0.6, 0.8 or 1.0). For both data sets, we restrict
ourselves to user-item pairs with complete ratings (i.e., any items with missing
ratings were excluded from our study).

3.1 News Recommendation

Our news recommendation data were provided by the University of California,
Santa Cruz and Carnegie Mellon University [21]. The data were previously col-
lected in a user study performed on the Yow-now news filtering system. Yow-now
was an information filtering systems that delivered news articles to users from
various RSS feeds. Approximately twenty-five users used the Yow-now system
for about a month, reading news for at least one hour each day, rating approxi-
mately 9000 articles in all, with an average of 383 articles rated per user (with
a standard deviation of 252.8). This allowed us to explore creating personalized
user models with the Yow-now dataset.

The users rated each article according to the following four criteria:

Authoritative : how authoritative the article appeared (binary).
Novel : the novelty of the article (five-valued).
Readable : the ease of reading the article (binary).
Relevant : the degree to which the article was relevant to the general subject

category of the article (five-valued).

The overall user rating of the article was given on a five-point scale.



3.2 Product Recommendation

Our product recommendation data came from a crawl of the Epinions.com review
site. Our dataset is restricted to flat panel television reviews. Approximately 1100
users reviewed 1200 items, with an average of 1 review per user (with a standard
deviation of 0.29). With such a small number of reviews per user, it was clearly
not possible to build personalized user models with this dataset.

The users rated each product according to the following four criteria:

Sound : The sound quality of the television (five-valued).
Ease of Use : Ease of use of the various features and menus (five-valued).
Picture Quality : All visual aspects of the television’s picture (five-valued).
Durability : Durability of the television set (five-valued).

The overall user rating of the article was given on a five-point scale.

4 Approach

To test for interactions among criteria in the final decision/rating process, we
compared the performance of two sets of models on a rating prediction task.
The first model is a linear combination of ratings on the criteria, which makes
the assumption that the criteria do not interact in the user decision process.
The second set of models are nonlinear combinations that explicitly represent
interactions among pairs of criteria, assuming that such interactions occur in
in the user decision process. Both models take the user’s item rating on each
criterion as input, and output a prediction of the item’s overall rating.

In our experiment, we first used machine learning to estimate the model
parameters from training data. We then compared the prediction accuracy of the
two sets of models on testing data. If the nonlinear model performed better, then
we would have expected similar results in practice under conditions comparable
to our study. On the other hand, if there were no such interactions in practice,
the nonlinear model should have performed no better than the linear model. As
mentioned earlier, we used RMSE as our evaluation measure, as is commonly
done for recommender systems.

4.1 Lower Bound of Root Mean Squared Error

Although not necessary to determine if interactions among criteria exist, we
defined a lower bound on RMSE to give our findings context. We defined an
oracle who makes the optimal prediction for each set of values, but without
knowing the actual overall user rating. Users were not entirely consistent when
rating items; not only did different users give identical ratings on each criterion
but a different overall rating, but single users also gave different overall ratings
on two items that were otherwise rated identically. Such differences may have
been due to some random variability in the ratings (from difficulty in estimating
or user changes over time), or may also have been due to other factors, such as
the coarseness of the ratings or from other criteria excluded from the study.



In any case, given that the overall rating was not a single-valued function of
the ratings over the criteria, it was not possible to entirely eliminate prediction
error. Instead, our oracle minimized RMSE over the entire dataset in the follow-
ing way: given a set of ratings on each criterion, it predicted the overall mean
rating from the entire dataset (using both training and test sets), as the mean
produces the minimum RMSE. In this sense, the oracle knew the distribution
of the entire dataset, but made the best possible prediction based only on the
ratings over criteria, and without differentiating between the test and training
set. We stress that the oracle was a lower bound which is unlikely to be found
in all cases by any particular generalization algorithm.

4.2 Linear Model

The linear model is simply a linear combination over the ratings for each crite-
rion; the independent variables are the ratings on the criteria, plus a bias term,
and the dependent variable is the overall rating. If it was possible to select the
best nonlinear model in every case, the RMSE of the linear model would serve
as a upper bound on RMSE, as the linear model is a special case of nonlin-
ear models described below. However, due to overfitting, it is possible to select a
nonlinear model that is suboptimal and worse than the linear model. The RMSE
achieved by the linear model is our baseline and a failure to improve upon it
would indicate a lack of evidence for the criteria interactions the nonlinear model
tries to capture. The linear model is simply:

PL =

m∑
i=1

wivi (1)

where PL is the predicted overall rating, vi is the item rating on the ith criterion,
and wi are the coefficients to be learned.

4.3 Nonlinear Model

The general class of nonlinear models allows for any consistent prediction of
overall rating based on the ratings on each criterion. However, this introduced
too many possible models to effectively choose from, given the small amount
of data, and exacerbated by inconsistency in the overall ratings (as noted ear-
lier). Therefore, we limited ourselves to interactions between pairs of criteria.
Observing interactions on this restricted set would be sufficient to show that cri-
teria interactions existed, though we may not have found the optimal nonlinear
model. Conversely, a failure to observe interactions would not have indicated that
interactions do not exist, as the interaction may have been on several criteria.

We modeled interactions among pairs of criteria by creating derived binary
features that correspond to specific ratings on criteria in a linear combination:

Pab =

m∑
i=1

wivi + cab

m∑
x∈A

m∑
y∈B

I((va = x), (vb = y)) (2)



where Pab is the predicted overall rating, a and b are the selected criteria pair,
A is the set of possible values for criterion a, B is the set of possible values for
criterion b, I is an indicator function that returns 1 when the arguments hold, 0
otherwise, vi is the item rating on the ith criterion, and wi and cab are the coef-
ficients to be learned. Note that the first summation is simply Equation 1, and
the second summation is simply a linear combination over a new set of (derived)
features. In other words, we have created new binary features for each possible
pair of ratings on criteria a and b. For example, when combining authority and
readability (two binary criteria), 2 ∗ 2 = 4 new binary features are created; when
combining authority and novelty (a binary and a five-valued criteria), 2 ∗ 5 = 10
new binary features are created. One can think of these induced binary features
as correction factors, and as such, any nonlinear combination involving only
these two features can be represented.

Since both datasets have four criteria, this gives us C2
4 = 6 pairs of criteria

to choose from. We also added a seventh nonlinear form (all-pairs) which uses
all six pairwise combinations. We are further aided by the fact our criteria are
discrete and take on a small set of values; for our data, the number of pair values
for a criteria pair ranges from four to twenty-five. Table 1 shows the number of
unique pairs of ratings observed for each criteria pair; a binary feature is created
for each unique pair of ratings.

Table 1. Number of unique ratings possible when combining pairs of criteria.

Yow-now Authority Novelty Readability (Subject) Relevance

Authority n/a 10 4 10
Novelty n/a 10 25

Readability n/a 10
(Subject) Relevance n/a

Epinions.com Sound Ease of Use Picture Quality Durability

Sound n/a 24 22 24
Ease of Use n/a 25 24

Picture Quality n/a 24
Durability n/a

4.4 Regularization

Since both sets of models take a linear form (as we have represented the nonlinear
form as a linear model on a new feature space, as described above), we may use
linear regression to find model parameters that minimize RMSE on the training
data. However, our goal is to minimize RMSE on the unseen testing data, not the
training data, and given the small training set size, some form of regularization is



needed to avoid overfitting. We use Tikhonov regularization, a special case of L2-
norm regularization or ridge regression. The analytical solution to the minimize
RMSE with regularization is:

W = (λI + XTX)−1(λW0 + XTY) (3)

where an exponent of T indicates matrix transposition, λ controls the amount
of regularization, I is the identify matrix, X is the instance matrix, Y is the
vector of target values, W0 is the regularization vector we specify and W is the
vector of coefficients we seek. Larger values of λ causes the solution to be closer
to W0. We also added a constant term to our ratings representation to account
for any bias in the overall rating.

For the linear model, we biased towards the following regularization vector:

W0 =
[

0.0 0.25 0.25 0.25 0.25
]

(4)

where the first position is the constant bias term and the remaining terms are
the coefficients for the four criteria. We chose Wo such that all criteria would be
weighted evenly, and the minimum (maximum) overall rating would be predicted
when the minimum (maximum) rating was given on each criterion.

For the nonlinear models, we biased the model against interactions between
criteria. The first five terms of the nonlinear regularization vector are the same
as in the linear case, followed by zeros for each unique criteria pair value:

W0 =
[

0.0 0.25 0.25 0.25 0.25 0.0 .... 0.0
]

(5)

Since the number of criteria pairs varies, the size of W0 also varies.

4.5 Tuning and Model Selection

The λ term in equation 3 controls the tradeoff between coefficients that minimize
RMSE on the training set, and coefficients that are closer to the regularization
vector (W0) described above. Higher values of λ moves the solution closer to the
regularization vector, while allowing for higher RMSE; lower values of λ do the
opposite. We automatically tuned the value of λ with ten-fold cross-validation on
the training set alone. For a candidate value of λ and for each fold of the training
data, we used the other 90% of the training data to learn the coefficients (using
Equation 3); we used these coefficients to predict the overall ratings and record
the RMSE. Starting with λ = 0, we tried successfully higher values of λ until the
mean RMSE (i.e., the average over all ten folds) consistently increases. We then
tried values of λ between the best two observed until no further reduction in
RMSE is found. We did this in parallel for all seven nonlinear models, as well as
the linear model, for eight models in all. From these eight models, we selected the
one with the lowest mean RMSE across all the folds with the best corresponding
value of λ. Note that we could select the linear model as the best model; we
would run this model for comparison purposes in any case. Finally, the final
coefficients were learned from the entire training set (i.e., no cross-validation)
using this chosen model and value of λ.



5 Experimental Results

Table 2. Non-personalized models results over 1000 trials

RMSE RMSE RMSE Mean RMSE Possible RMSE
Method Mean Std. Dev. Median Reduction Reduction Achieved

Yow-now

W0 only 0.2507 0.00408 0.2508 -36.99% -1281.63%
Lower Bound 0.1830 0.00352 0.1829 2.61% 100.00%

Linear 0.1879 0.00362 0.1880 0.00% 0.00%
Nonlinear 0.1853 0.00117 0.1852 1.38% 52.74%

Epinions.com

W0 only 0.2225 0.00911 0.2223 -10.09% -83.27%
Lower Bound 0.1776 0.00665 0.1774 12.12% 100.00%

Linear 0.2021 0.00659 0.2021 0.00% 0.00%
Nonlinear 0.2008 0.00700 0.2005 0.64% 5.31%

We tested for interactions among criteria by contrasting the observed RMSE
of our criteria interaction models with that of the linear model. To decrease the
possibility for random misleading effects, we ran the experiment 1000 times (i.e.,
1000 trials). The test set was randomly chosen from the full dataset each time,
which means different trials will have different training sets and testing sets, and
a single item is likely to serve as both training and test data (but in different
trials; no testing data is ever included in training data). This is valid because all
of our modeling choices (regularization tuning and learning model coefficients)
are done solely on the basis of the training data.

Table 2 shows the RMSE results on both datasets without personalization.
Four methods are reported: RMSE results using the regularization vector W0

only (equivalent to setting regularization parameter λ to infinity); the lower
bound on RMSE; the learned linear combination; and the learned nonlinear
combination. The mean RMSE reduction shows how much the RMSE decreased
as a percentage of the learned linear combination. However, the lower bound is
very close to the linear combination, so there is not much potential for RMSE re-
duction. The possible RMSE reduction shows how much of this potential RMSE
reduction is achieved; by definition, it is always 100% at the lower bound.

The nonlinear model has a lower RMSE for both datasets, but the difference
is very small. This is not surprising as the RMSE for the linear model is quite
close to the lower bound. The possible RMSE tells a different story. For the
Yow-now model, over half of the possible RMSE reduction was achieved with
the nonlinear model. For the Epinions.com model, much less of the possible
RMSE reduction was achieved. The smaller dataset size may have played a role,



Table 3. Personalized Yow-now model results over 1000 trials

Most Most RMSE RMSE RMSE Mean RMSE Possible RMSE
User Articles Sel. Pct Mean Std. Dev. Median Reduction Reduction Achieved

u51 305 〈2,4〉 46% 0.1654 0.01761 0.1654 -1.45% -18.38%
u56 362 〈2,4〉 53% 0.1277 0.01274 0.1272 1.86% 13.56%
u58 569 B 31% 0.2032 0.01204 0.2033 -1.25% -19.77%
u59 358 C 66% 0.1280 0.00943 0.1281 0.41% 7.32%
u60 138 〈1,2〉 48% 0.1488 0.02475 0.1440 -1.23% -6.45%
u62 161 B 42% 0.1065 0.01161 0.1065 -2.86% -21.18%
u63 472 〈2,4〉 60% 0.1089 0.01522 0.1092 -1.89% -15.59%
u65 607 〈3,4〉 76% 0.1347 0.01537 0.1329 4.53% 34.26%
u66 443 〈2,4〉 53% 0.1487 0.01723 0.1472 0.85% 4.72%
u67 590 〈2,4〉 96% 0.2344 0.01240 0.2345 5.23% 45.00%
u68 388 B 57% 0.1455 0.00932 0.1453 -1.11% -21.74%
u69 848 C 82% 0.1772 0.00772 0.1770 1.01% 13.44%
u73 232 B 33% 0.1678 0.01700 0.1677 -0.68% -5.95%
u74 14 〈3,4〉 33% 0.1969 0.07209 0.1810 1.42% 2.93%
u76 603 〈1,2〉 58% 0.0888 0.00834 0.0888 -1.14% -17.68%
u80 218 〈3,4〉 55% 0.2795 0.03244 0.2802 0.00% 0.03%
u82 516 C 97% 0.1064 0.01385 0.1062 9.98% 55.37%
u83 1079 〈2,4〉 73% 0.0960 0.00473 0.0960 3.06% 38.19%
u84 426 〈2,4〉 43% 0.2318 0.01475 0.2321 -0.89% -12.35%
u87 129 B 68% 0.1740 0.02131 0.1734 -0.99% -7.49%
u88 54 〈2,4〉 56% 0.1704 0.03602 0.1689 -2.02% -4.51%
u91 367 C 59% 0.2212 0.01646 0.2215 0.46% 3.79%
u92 310 B 21% 0.1557 0.01097 0.1557 -2.74% -21.73%

micro 0.1539 1.21% 8.42%
macro 0.1616 0.46% 1.99%



Fig. 1. Interactions of the 〈novelty,relevance〉 criteria pair for users u67 and u83

as less data will tend to produce poorer learned models but also a lower lower
bound (because there are less opportunities for inconsistent ratings).

Table 3 shows the results when a separate model is learned for each user
(personalized models), as well as the microaverage and macroaverage. Results
are generally poorer for users with less data. Performance varies a lot among
users: mean RMSE ranges from 0.0888 to 0.2795; mean RMSE reduction ranges
from -2.86% to 9.98%; and the percentage of possible RMSE reduction achieved
ranges from -21.73% to 55.37%. In fact, a slight majority of users had negative
results with respect to the baseline. Comparing Table 3 with Table 2, we can see
that the microaverage over the personalized models is lower than even the lower
bound on the non-personalized model. This shows that there was considerable
differences among user models, and thus personalization reduced RMSE.

Table 3 also shows the most frequently selected nonlinear model (Most Sel.)
for each user. Due to space limit, the criteria are numbered as 1 (authority), 2
(novelty), 3 (readability) and 4 (subject relevance). For example, our method
selected the novelty and subject relevance pair (listed as 〈2,4〉) for user u51 in
46% of the trials. Additionally, B indicates the basic linear model (no criteria
interactions) and C indicates the all-pairs nonlinear model. The same model was
not always selected for the same user on every trial, because it was dependent
on the trial’s randomly selected training set. Users that showed mostly a linear
trend had an increase in RMSE because overfitting occurred when a nonlinear
model was selected. Also, users that did not show a consistent preference for a
particular form also had an increase in RMSE, for similar reasons.

From Table 3, we see that a variety of criteria interact in the personal models,
and in fact each pair was selected at least once on some trial. However, some
pairs tend to interact more than others. For the non-personalized models, the
all-pairs nonlinear form was always selected for the Yow-now dataset, while the
〈sound,picture quality〉 pair was selected 82% of the time for the Epinions.com
dataset. For the personalized Yow-now models, 〈novelty,relevance〉 was the most
commonly selected pair, and indeed along with 〈readability,relevance〉 and the
all-pairs nonlinear form accounted for all mean reductions in RMSE.



Figure 1 show the mean learned interactions for users u67 and u83, who had
some of the largest RMSE reductions. Though our method consistently selected
〈novelty,relevance〉 for both users, the learned interactions were quite different.
The plot for u67 has a smooth surface, with an upward adjustment for higher
values on either of the criteria while the other criterion remains low. On the
other hand, u83 ’s plot has no such easily interpretable pattern, which was also
true for most users. More research is needed to understand these interactions.

6 Conclusions and Future Work

Our results show that interactions among criteria exist in criteria-based infor-
mation retrieval models, at least in some cases, as measured by an observed
reduction in RMSE. We observed this reduction in both non-personalized and
personalized models. However, the amount of RMSE reduced by exploiting in-
teractions was slight in the datasets we used; in fact, it often increased RMSE,
but the magnitude of the reduction for some users outweighed the increases for
the rest. Personalization was more clearly beneficial. In terms of the interactions
themselves, certain criteria had consistently stronger observed interactions than
others, but we could not discern an interpretable pattern in these interactions.

Despite our use of regularization, overfitting remained a problem, as evi-
denced by the occasional increase in RMSE over the linear model. This could
potentially be avoided by opting for the linear model when there is insufficient
evidence for interactions (i.e., when the reductions are not consistently observed
in the training data, or not large enough relative to the training set size). This
could be expanded to a Bayesian framework, using prior probabilities to avoid se-
lecting less probable models when there is not sufficient support in the data. Even
without these improvements, in our experiments we were successful in reducing
the overall mean RMSE by exploiting criteria interactions and personalization.
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