
 1

Wireless Space Plug-and-Play Architecture (SPA-Z)

Richard Alena
NASA Ames Research Center

650-604-0262
Richard.l.alena@nasa.gov

John Ossenfort
SGT Inc.

NASA Ames Research Center
John.Ossenfort@nasa.gov

Thom Stone
CSC Inc.

NASA Ames Research Center
Thom.Stone@nasa.gov

Jarren Baldwin
USRA

NASA Ames Research Center
Jarren.Baldwin@gmail.com

Abstract—Space Plug-and-Play architecture (SPA) defined by
the Air Force Research Laboratory is proposed as a new
standard for spacecraft component interconnections (AIAA-S-
133-n-201x), resulting in new capability for managing
intelligent components. Wireless sensor networks (WSN) based
on the IEEE 802.15.4 Personal Area Network standard are
finding increasing use in the home automation and emerging
smart energy markets. The network protocol and application
layers can be based on the Zigbee standard, defined by the
Zigbee Alliance, providing a framework for component-based
software that supports solutions from multiple vendors. Both
SPA and Zigbee provide the means for self-configuring ad-hoc
networks, but differ in their 1approach. SPA focuses on self-
configuring components using wired interconnects while
Zigbee forms self-configuring wireless networks. The proper
combination of SPA with WSN technology can bring the
advantages of both methods to next-generation spacecraft
providing self-configuring wireless networks for data and
components compliant with the higher-level SPA standard.
The Intelligent Systems Division at NASA Ames Research
Center has been developing WSN technology for use aboard
spacecraft for Integrated System Health (ISHM) monitoring of
structures sponsored by the NASA Engineering and Safety
Center and Exploration Technology Development and
Demonstration Program. Mesh-enabled WSNs provide
inherent fault tolerance and SPA provides dynamic fault
management leading to low-power, low-cost ancillary sensing
solutions for spacecraft.

Self-configuring architectures are the key for supporting a
large number of sensors in dynamic configurations, providing
intelligent response for fault tolerant networks. Plug-and-Play
for sensor networks could be defined as the capability of
forming dynamic sensor networks that software can configure
at run-time to identify any sensor connected to the network
without the use of any configuration database defining the
sensor’s characteristics. The embedding of sensor information
into each Wireless Sensor Module (WSM) allows identifying
each sensor unambiguously and accurately in terms of function
and status. The IEEE 1451 Smart Transducer Interface
Standard defines Transducer Electronic Datasheets (TEDS)
containing key information regarding sensor characteristics
such as name, description, serial number and calibration
information. SPA extends TEDS by defining an extensible
format called xTEDS extending the utility of XML embedded
meta-information for sensor management by enabling software
to identify the sensor and interpret the sensor data stream
without reference to any external information. The application
software is able to read the status of each sensor module,
responding in real-time to changes of WSN configuration,
providing the appropriate response for maintaining overall
sensor system function, even when sensor modules fail or the

U.S. Government work not protected by U.S. copyright

network is reconfigured. Temporal integrity of sensor data
delivery is ensured by the use of a global network clock and
embedding timestamps into each measurement result accurate
to one millisecond.

SPA provides high-level mechanisms for self-configuration and
integration with other spacecraft components and can
significantly improve integration and interoperability. The
architecture and technical feasibility of creating wireless fault-
tolerant sensor networks is based on our integration of Zigbee
and SPA technology together into a proposed SPA-Z
architecture. The IEEE 1451 standards provide recommended
templates for TEDS and for sensor network control messages.
Zigbee provides effective management of WSNs using its own
internal methods. The approach is to tailor these multiple
standards into a viable architecture. The result conforms to
multiple standards, enables deterministic response and
provides a capable publish/subscribe interface to application
software. The interim results of WSN development including
our proposed software architecture for intelligent sensor
management using the SPA standard will be discussed in the
context of the specific tradeoffs required for effective use. Two
examples are presented, the first highlights SPA-Z advantages
for reconfigurable payloads and the second describes the
development of a SPA compliant WSN.

TABLE OF CONTENTS

1. INTRODUCTION ... 2	
2. IEEE 802.15.4 AND ZIGBEE OVERVIEW 3	
3. SPA OVERVIEW .. 3	

SPA Components .. 4	
4. SPA MESSAGING .. 4	

SPA Topology Discovery 4	
Component Registration 5	
Subscription Processing 5	

SPA-Z DEFINITION .. 5	
ZigBee to CAS Addressing 6	
Generating xTEDS ... 6	
Data distribution system (DDS) 7	
ZigBee Service Interface 7	

5. SPA-Z FOR SPACECRAFT 8	
6. DEVELOPMENTAL AND FLIGHT
INSTRUMENTATION SYSTEM 9	

Proposed DFI architecture 9	
Network Discovery Implementation 10	
xTEDS Aggregation 10	
Middleware Implementation 10	

 2

Redundancy and Fault Tolerance. 10	
7. CONCLUSIONS ... 11	
ACKNOWLEDGEMENTS 12	
REFERENCES .. 17	
BIOGRAPHY .. 17	

1. INTRODUCTION
The primary objective of SPA-Z development is to craft a
standard reference architecture that will allow rapid
development of spacecraft avionics where components can
be added or changed without major physical or software
redesign. This architecture will include the recognized
advantages of wireless systems: mass reduction, ease of
installation, instrumentation of areas that are difficult to
wire, electrical isolation of subsystems and high-level
protocols for redundant operations and automatic data
retransmission. The architecture will employ the new
generation of smart sensors, actuators and other components
that declare their relevant attributes when they dynamically
join the wireless network. What we propose is using the best
of existing standards by modifying and extending
commercial hardware and software.

The Discovery and Systems Health Group at NASA Ames
Research Center has been developing Wireless Sensor
Network (WSN) technology for use aboard spacecraft for
monitoring aerospace vehicles using funding from the
NASA Engineering and Safety Center and Exploration
Technology Development and Demonstration Program. This
technology can be readily applied to small reconfigurable
spacecraft and to Developmental and Flight Instrumentation
(DFI) enabling advanced Integrated System Health (ISHM)
monitoring capabilities. Mesh-enabled WSNs provide
inherent fault tolerance and the Space Plug-and-Play
Avionics (SPA) standards provide dynamic configuration
and fault management leading to low-power, low-cost
robust sensing solutions for spacecraft. The Wireless
Connections in Space Project funded development of a
prototype ZigBee-based sensor network for spacecraft,
upgrading components to the latest Personal Area Network
(PAN) radio technology, incorporating firmware
enhancements such as module identity and timestamps,
supporting new types of sensors and identifying
shortcomings of the current implementation approaches. A
miniature Wireless Sensor Module (WSM) was developed
using System on a Chip (SoC) technology, resulting in an
exceptionally small form-factor prototype for future flight
tests. An earlier paper characterized the Radio Frequency
(RF) properties of this wireless prototype system, which
combined ZigBee-based frameworks with IEEE 1451 Smart
Transducer Interface Standards.1

We propose to integrate different computer standards
creating a new wireless sensor network technology that
offers self-configuration supporting a significant scale-up of
the number and type of sensors supported as well as
simplifying the software required to manage and use such a

network. The combination of the Air Force Research Lab
(AFRL) Space Plug-and-Play Avionics (SPA) standards for
next-generation spacecraft together with the IEEE 1451
Smart Transducer Interface standards and the use of the
Consultative Committee for Space Data Standards (CCSDS)
Spacercraft Onboard Information Services (SOIS)
framework can lead to intelligent adaptable sensor networks
applicable to a wide range of applications. The key
innovation is the use of wireless interconnections for
implementing the SPA subnet, in this case based on the
IEEE 802.15.4 Personal Area Network (PAN) standard and
the ZigBee Alliance wireless network framework. Currently
SPA is supported on wired I2C, CAN, serial and Ethernet
interfaces. This paper attempts to define the architecture and
implementation approach using the appropriate elements of
these complementary standards.

The paper describes wireless sensor networks applied to
aerospace vehicles for two distinct applications:
reconfigurable payloads and flight test instrumentation.
Implementing reconfigurable payloads for spacecraft built
from standard components using SPA-enabled wireless
networks for payload data communication can result in
rapid customization for a given mission requiring little
additional software development and system integration.
This application requires the development of wireless
modules able to control subsystems through the wireless
network. This is precisely the vision for SPA, which can be
greatly improved through the use of wireless networks, by
eliminating wired interconnects for data and providing
flexibility for mounting within spacecraft. The Payload
modules have fully SPA-compliant interfaces with meta-
data based functional descriptions enabling self-
configuration. The other application Developmental and
Flight Instrumentation (DFI) adds sensors for specific flight
validation tests that can be left in place for ISHM and life-
cycle cost optimization. The specific system and software
architecture for the DFI application is presented based on
our prototype implementations.

This paper is intended to further define SPA-Z
implementation, which was conceptually outlined in a prior
paper that mapped specific ZigBee functions into IEEE
1451 and SPA Standards.2 The current paper develops two
different SPA-compliant architectures one supporting a
reconfigurable satellite payload and the other a wireless DFI
system. The payload subsystem is viewed as a collection of
SPA-compliant components and the DFI system uses the
Applique Sensor Interface Module (ASIM) approach, which
hosts SPA functions only at its interface to the spacecraft.
We define the functions hosted in specific components of
these example SPA-Z systems and consider both hardware
and software for the proposed architecture. Sample xTEDS
meta-tags describing a sensor module and core SPA
messages compliant with SOIS are provided to help
understand the technical approach. The objective of this
work is to provide a good working definition of SPA-Z
while providing guidance for implementing an early
prototype.

 3

2. IEEE 802.15.4 AND ZIGBEE OVERVIEW
ZigBee is a network protocol and application support layer
working over the IEEE 802.14.5 PAN standard for the
Physical (PHY) and Media Access Control (MAC) layers.
The ZigBee Alliance defines the software Framework and
specific Profiles for standard functions. There are four main
types of ZigBee nodes, the Coordinator that forms and
manages the PAN, the Router which directs data traffic
through the mesh network, the Gateway spanning ZigBee to
other networks and the Endpoint, which hosts sensors and
provides data to the wireless network. While most devices
are on continuously, the endpoints can function with a very
low duty cycle conserving power. The PAN can support raw
data rates of up to 250 Kbps.3 The ZigBee protocol is
supported by numerous software frameworks, which
implement the details of the mesh routing and dynamic
addressing protocol but allow a developer to significantly
customize the network and node behavior for a specific
application. ZigBee supports profiles, such as Smart Energy
or Home Automation, which help standardize node
definitions and network behavior. A ZigBee profile could be
setup for Aerospace sensing applications, which could
potentially be SPA-compliant.

ZigBee operates in the 900 MHz and 2.4 GHz
Instrumentation, Scientific and Measurement (ISM) bands,
which use unlicensed low-power transmitters supporting
many concurrent users. The 802.14.5 standard specifies the
use of frequency hopping spread spectrum (FHSS)
modulation to limit interference, defining 16 channels for
use by ZigBee within the full ISM band. Certain
applications, such as Smart Meters, shift the frequency to
licensed bands to allow wide geographic coverage. Power
output ranges from milliwatts typically to about 1 W for
long-range installations. The PAN uses Carrier Sense Multi-
Access (CSMA) for network access, and ZigBee extends the
PAN by defining a dynamic address scheme that embeds the
ad-hoc on-demand distance vector (AODV) mesh algorithm,
allowing ad-hoc formation of PANs with dynamic routing.
In case of repeater or router failure, the network
reconfigures itself after detecting the loss of the existing
route. This failover occurs within a few seconds, and
provides fault tolerance.

ZigBee was designed around the idea that multiple vendors
could interact based on application profiles. Unfortunately
much of this interoperability has yet to materialize as
vendors provide their own implementations utilizing
different power management schemes and message handling
on top of the underlying 802.15.4 standard. The ZigBee
Alliance is responsible for developing and maintaining the
ZigBee protocol and standard.

ZigBee!
Coordinator A! ZigBee!

Router!

Sensors!Sensors!

ZigBee
node!

Sensors!Sensors!

ZigBee
Router!

ZigBee
node!

Sensors!Sensors ! Sensors!Sensors!

ZigBee!
Coordinator B!

WSN!
Application  
Program!

Sensor Data!

Figure 1. Redundant ZigBee Architecture

The proposed wireless system architecture consists of a
network of sensors in a hierarchical and redundant
configuration, able to be deterministically configured at run-
time and able to respond to sensor module and network
faults automatically. This is illustrated in the Figure above.
The network would self-configure using the basic
mechanisms of the PAN and ZigBee layers. The Endpoints
(EP) would be Reduced Function Devices within the ZigBee
framework, sleeping most of the time, awakening in time to
take the next sensor reading and provide it to the network.
The EPs are designed to maximize their battery life by
greatly reducing their duty cycle. The main data paths are
shown in green, with the failover paths shown in red. The
Application Program interacts with the wireless sensor
modules using dual-redundant Coordinators. The ZigBee
protocol supports automatic retransmission of critical data
and automatic re-routing of network paths as well.

3. SPA OVERVIEW
The general vision for intelligent spacecraft is that a SPA-
enabled spacecraft Command and Data Handling (C&DH)
software program can interact with SPA-compatible
components forming a complete spacecraft by configuring
the data network using the SPA framework at runtime. The
spacecraft components are simply provided power, while
the SPA-enabled network provides the data paths. The data
paths are defined using SPA at system startup using the
interactions specified by interconnect-specific subnet
manager software. The C&DH software can then be written
to conform to the Spacecraft Data Model (SDM) part of the
SPA standard. The ability to re-use large parts of the
spacecraft software is one of the chief advantages of this
approach, greatly reducing the cost of software
development. The vision could go as far as auto-generation
of both the spacecraft hardware and software design from a
set of high-level spacecraft specifications derived from
mission objectives.

There are a number of already existing SPA subnet manager
implementations, designated as SPA-S (SpaceWire), SPA-U
(USB), SPA-1 (I2C) or SPA-E (Ethernet). SPA already
supports the most common networking interfaces for
satellite manufacture, which should help it gain traction in
the field. The AFRL is working with the AIAA to define
formal SPA standards, which have been published.4
Example missions such as PnPSat have been implemented
with SPA as demonstrations.5

 4

SPA Components

SPA incorporates a number of functions to support Plug-
and-Play. The core components in the SPA network are the
Component Addressing Service (CAS), the SPA Lookup
Service (LUS), the Local Subnet Protocol Manager (SM-L),
and the interconnect-specific Subnet Manager (SM-x). The
SPA Processing Node (SPN) hosts various functions: The
CAS is the directory of modules and their functions. The
SM-L implements the SPA protocol consisting of messages
passed between various compliant modules. The SM-x
subnet manager handles all the interfaces involved with the
logical interconnect. The LUS allows access to xTEDs and
sensor data streams. The Figure below diagrams these
interactions.

SPA Subnet!
SM-L Protocol!

!
!
!
!
!
!
!
!
!

SPA Services!
SPA Devices!

CAS!
Routing!

Lookup!
Service!

!
!
!
!

Dev2!
!
!SM-x!

Dev1!
!
!SM-x!Application!

Software!

 Register xTEDS!

Sensor Data!

 Request xTEDS!

Send xTEDS!

 Request subscription!

Config/Commands!

xTEDS1!

xTEDS2!

xTEDS1!
xTEDS2!

Figure 2. SPA Logical Architecture
Component Addressing Service—The Component
Addressing Service or CAS is responsible for assigning
unique addresses to all SPA components in the SPA
network. In the case of a specific subnetwork such as
SpaceWire or ZigBee, this is done through the local Subnet
Manager which receives an address block from the CAS.
Only one CAS may be operating on the SPA network at a
time. The CAS will need to maintain a routing table
containing all of the Subnet Managers in the SPA network,
storing the object type, its UUID, its assigned address block,
and the logical address of each manager. This ensures that
all subnetworks with an assigned address block will be
routable. It needs to work across hybrid SPA subnets, where
one portion uses SpaceWire and the other may use ZigBee.

SPA Lookup Service—The primary purpose of the Lookup
Service or LUS is to maintain a directory of all of the
components in the system and the services that they provide.
It does this by requesting that components register their
xTEDS information with the LUS after they have been
assigned addresses on the SPA network. The LUS then
receives a reply from each component and stores the xTEDS
information along with the associated SPA component
address so that other applications may query for available
services. The LUS must therefore maintain a routing table
of services to component addresses in order to respond to
such queries.

SPA Subnet Manager–The SM-L implements the messages
that implement the SPA protocol. There is a basic
requirement that the SPA Subnet Manager be hosted in a
computer with significant performance, such as the C&DH
processor, as the protocol requires actions to be taken to
complete the configuration and management of the SPA
devices in the network.

Subnet Manager–this interconnect-specific manager (SM-x,
where x is the interconnect type) is the program that
manages the interaction between the SM-L protocol
manager and the subnet itself.

4. SPA MESSAGING
The core concept of SPA revolves around three main ideas:

• Components register themselves with a Lookup
Service

• Software applications can perform searches on the
registered components in the system

• Components or applications can access the services of
other registered components by querying the Lookup
Service

Because SPA is primarily a networked data exchange
model, the standard also specifies a number of message
types that are required for network discovery and transfer of
information. The SPA standards are developed to provide a
framework by requiring that the request and response
message structures needed for this communication is
supported by any SPA-compliant components as defined
below.

SPA Topology Discovery

Topology discovery is the method by which components
join the network at boot time and retrieve the information
necessary to begin the registration process. During topology
discovery, the SM-x subnet manager must record the route
to all SPA core components, including the CAS, the SM-L
and the LUS. It will also discover and record the routes to
other Subnet Managers on the SPA network. The following
over-the-network data structures must be implemented in
order to implement this function.

SPARqstAddrBlock—This message must be sent to the CAS
to request an address block from the CAS and assign SPA
addresses to the components on its local subnet,. In response
the CAS will reply with the SPAAssign-AddrBlock
message containing a block of addresses to use.

SPARqstCasRoute—If a component on the subnetwork
needs to send a message to a node on another subnet and
does not have the route information, the subnet manager
uses this message type to request the route from the CAS.
The subnet manager must then be able to handle either a
SPADistributeRoute or SPAReplyCasRouteUnknown
message response from the CAS.

 5

The SPA-Z Subnet Manager must also respond to requests
from other Subnet Managers for routing information after
topology discovery. In this way all attached subnets will
eventually retrieve the routing and addressing information
needed to register components.

Component Registration

In order for components or applications to discover services
that are available on the network and connect to them, the
available services must first be registered with a central
registration authority. Components are required to register
the services that they offer with the LUS using Extensible
Transducer Electronic Datasheets (xTEDS), an XML
version of the TEDS definition found in the IEEE 1451
series of standards.6 These services might include the ability
to publish sensor data at a specified rate or allow the
commanding of actuators or setting operating parameters.
By publishing these service APIs in XML form to a
registration authority, other applications or services can
query the registration authority to determine what services
and components are available across the network.

The registration process occurs after topology discovery is
completed and the core components of the network have
been added to the subnet manager routing tables. The local
Subnet Manager provides the LUS with the component
addresses, after which the LUS will query the component
directly. Finally, the SPA device must be able to read the
request and respond to the LUS with its xTEDS
information. The following message structures must be
implementated to complete this process:

• SPAProbeRequest—The LUS sends this request to the
component node. The component should reply with a
SPA-ProbeReply containing information used to
determine network health and status.

• SPAxTEDSRequest—Once the LUS has an entry for
the node recorded, it will use the information to send
this message back to the component in order to fetch
the xTEDS. Finally, the component will respond with
a SPAxTEDS-Reply message containing the xTEDS
information.

At the completion of this phase, the Lookup Manager
should have a record of all components that are currently
on-line and also have a copy of the xTEDS for those
components.

Subscription Processing

Once the node services advertised through xTEDS are
stored in the LUS, those services may be queried by other
components. Services may be queried according to name or
qualifiers. In addition, a component may request the
metadata for a certain variable or request the entire xTEDS
for a component. This functionality requires that another set
of request and replies be added to the command set. This is
potentially the area of most development for meeting the

SPA requirements, since code must be written to parse the
individual xTEDS in order to satisfy the search requests.

Because the information requests can also be stored as
future subscription requests when other nodes join the
network, code must also be written to continually monitor
these subscriptions in concert with the state of the network:

• SPARegistrationInfoRequest—This is used to query the
list of providers and can be set to receive information
when future providers join the SPA network. In
response, the SPA LUS will send a
SPARegistrationInfoReply message for each match.

• SPAVariableInfoRequest—This command requests
additional information about a particular variable
stored by the LUS. Similar to the registration info
request, the LUS will respond with one or more
matches, this time using the SPAVariableInfoReply
message type.

• SPASubscriptionRequest—Requests a notification
from the service provider. If the provider is able to
fulfill the request, it will send a SPA-
SubscriptionReply message to indicate that the
subscription was accepted.

After a component has located the information that it is
interested in, the LUS may broker a connection between the
two components. In this case the SPA LUS will forward the
request to the service provider, at which point the two
components will begin to negotiate the subscription between
themselves. There are a number of options available for the
subscription request, including the ability to define lease
period, periodic subscriptions, and priority settings.

The remaining message types are primarily for nominal
functioning of the network such as data passing and
commanding. It is important to reiterate that any commands
or data would need to be advertised in the xTEDS for use
with any SPACommand or SPAData request:

• SPAData—This message is sent to the component
making a data request and the payload contains the
data requested as referenced by the xTEDS
identification.

• SPACommand—Sent in order to request that another
component execute a command, as referenced by the
xTEDS identification.

• SPAServiceRequest—The message sent to another
component to request execution of a service, as
referenced by the xTEDS identification.

SPA-Z DEFINITION
Wireless sensors have been proposed for spacecraft use with
only limited success, as a widely accepted standards-based
solution has not been fully developed. While wireless

 6

802.15.4 and ZigBee are not currently being used in
spaceflight, we believe that their built-in redundancy and
scalability make these standards ideal for certain space
applications such as payload subsystems or developmental
and flight instrumentation. Integration with a standard such
as SPA builds on ZigBee’s existing plug-and-play
functionality and makes it a logical extension for spacecraft
avionics. We are proposing a new standard called SPA-Z for
this purpose, and the next several sections will address some
of the work that must go into defining this specification for
near-term development and eventual adoption as a SPA
subnet standard.

The advantages of using the ZigBee standard to implement
the key SPA functions of network discovery and
management are the ability to build upon the various ZigBee
protocol implementations provided by a number of
commercial vendors.7 These ZigBee protocol stacks are
complex, but must run on low-performance
microcontrollers.8 Therefore, the key simplification is to use
the underlying ZigBee network management functions for
the interconnect-specific subnet manager (SM-Z) while
providing the appropriate interface functions to the SPA
local protocol manager (SM-L) hosted on the SPA
Processing Node.

The SPA-compliant software components would reside on
the Full-Function Devices (FFD) such as Routers,
Coordinators and Gateways defined within the ZigBee
Framework. These FFDs are on continuously and have
sufficient computational power for providing key SPA
services to other components. It is also likely that the
ZigBee Subnet Manager will be the local ZigBee PAN
coordinator to facilitate direct interaction between the two
functions. The wireless sensor modules (WSMs), acting as
EPs, would advertise their services and characteristics via
the xTEDs during PAN formation. The SPA services
provide the framework for application software interaction
with the lower layers. The application software utilizes the
SPA framework for interacting with the sensors, sensor
modules and network, and can be written in a generic way
compliant with the SPA standard. Each WSM, Router,
Coordinator and Gateway of the SPA-Z network would
have to be SPA-compatible.

The other approach is to adapt a subsystem to SPA using the
Applique Sensor Interface Module (ASIM) architecture,
where the details of the ZigBee network are obscured by the
ZigBee Coordinator/Gateway acting as the interface
between SPA and ZigBee. In this case, which best supports
highly scalable and low-power ZigBee endpoints, all SPA
functions are resident in the Coordinator/Gateway node,
which has the processing power to host the SPN and fully
implement the appropriate ZigBee to SPA interface
translations. In this implementation, the
Coordinator/Gateway collects the xTEDS from all ZigBee
sensors within the subnet, providing them to the SPA
protocol en-masse. It effectively make a large wireless
network look like a single SPA device with hundreds of

sensors. The approach has the advantage of scalability to a
large number of ZigBee nodes and also minimizes the
software changes to the ZigBee endpoints.

The proposed SPA-Z implementation of these core
components requires that a ZigBee Subnet Manager be
instantiated as a full-function device. This should be the
only piece of new software requiring development. The
other SPA services would have to be hosted on suitable
processors and the appropriate source for the software
found. It is likely that the Subnet Manager will be hosted on
the local ZigBee PAN coordinator. One can either
implement the SPA-Z Subnet Manager on all nodes of the
wireless network or more simply on a single node.

In our SPA-Z prototype implementation we will use the
Network Capable Application Processor (NCAP) device,
(an IEEE 1451 legacy) which also serves as the PAN
coordinator for the ZigBee network, to host most of the new
SPA functionality rather than distributing these functions
across the ZigBee network. This approach can considerably
simplify the amount of new software that needs to be
written and conforms to the ASIM architectural approach.
Note that once a suitable SPA-Z Subnet Manager has been
implemented, it could be duplicated on all the ZigBee
nodes, resulting in a fully SPA-compliant architecture.
Therefore, the ASIM approach allows early prototypes to be
extensible to the more capable architectures.

ZigBee to CAS Addressing

One of the first interface problems between ZigBee and
SPA that needs to be addressed is the translation between
ZigBee Addresses and CAS Addresses. There are two
specific approaches for solving this problem: the first would
be to translate the ZigBee node addresses directly to CAS
addresses. However, since the ZigBee addressing scheme is
not constant (node addresses can change during network
reconfiguration) this approach has significant drawbacks.
Our team actually embedded absolute addresses into the
ZigBee modules to solve this problem in the past, and a
similar approach would work well. A block of SPA-
compliant addresses would be written into the non-volatile
memory of the ZigBee devices and used for SPA CAS
registration. These addresses would be accessed using the
appropriate SPA addressing messages.

Note that while ZigBee addresses are actually used by the
ZigBee protocol for routing, the CAS addresses are the
actual module addresses used for SPA functions. The CAS
addresses become Application Support Layer attributes of
the ZigBee Framework, and therefore remain consistent.
Because the CAS addresses are represented as higher-level
ZigBee node identifiers, they remain the same despite
wireless network reconfiguration occuring at the PAN and
ZigBee levels.

Generating xTEDS

The SPA standard specifies that extensible Transducer
Electronic Datasheets (xTEDS) be used to register

 7

application services at the end-nodes. The xTEDS contains
the key meta-information required for both SPA network
management and for application interaction with the SPA
device’s functions such as sensor data output or control
actuator inputs.

The xTEDS is an extension of the TEDS defined in the
IEEE 1451.0 standard and relates to earlier project work.
We had generated TEDS datasheets as part of our project
last year, so converting those to XML format for xTEDS
was relatively straightforward. The capability of embedding
control commands and network management features into
the xTEDS is a major improvement over TEDS. However,
the format for xTEDS is much less restrictive and
subsequently poses some additional challenges. While the
xTEDS XML schema defines the attributes and elements
that are allowed in the xTEDS, it does not specify the set of
values to be used for those attributes or elements. An
example of the problem this might cause can be seen in the
type field – one vendor might generate an xTEDS datasheet
that specifies the measurement type as “temperature”, while
a second vendor uses the keyword “Temp” for a similar
sensor. If a third-party application were to query the SPA
LUS for temperature sensors it might get an incomplete set
of results. A related problem might arise from the attribute
type for this sensor. If engineering units are returned, one
vendor may record the temperature in degrees Fahrenheit
while another uses Celsius.

The solution to this problem is the maintenance of a
Common Data Dictionary (CDD) for storing and managing
these terms. The Consultative Committee for Space Data
Standards (CCSDS) recommends the use of an
information architecture to manage these terms locally
and to allow for domain-specific meta-models to be
created and shared across working groups. This would
allow disparate groups within the same domain to better
exchange and compare datasets, and also presumably to
build up a suite of tools to better examine these datasets.
To this end, the CCSDS has created an abstract reference
architecture for creating and defining information objects
in the context of a larger domain model.9 Some examples
of domain models that have already been created include
the Earth Observing System Data and Information System
(EOSDIS) and the Space Physics Archive Search and
Exchange (SPASE).

For our project, we use the CCSDS Spacecraft Onboard
Information Systems (SOIS) Device Virtualization Service
(DVS) standard in the creation of a common dictionary. The
CCSDS SOIS is recommended for internal spacecraft
communications by the SPA Standards Development
Guidebook, simplifying our decision to use this related
standard. In reality, the SOIS standard provides a full array
of specifications for ZigBee’s Application Support Layer
Services. We build on top of the existing SOIS DVS
definition in order to add the ZigBee-specific management
tools. For the purposes of our testbed an xTEDS file was
generated for a simple thermistor. For more on the

generated xTEDS and constructing a CDD of terms for the
xTEDS, see Appendix A.

One thing to note in the example above is that one xTEDS
may represent multiple sensors located on a single end-
point. The ability to add many different services to one node
is especially suited to ZigBee using the concept of
application profiles. ZigBee allows up to 240 application
profiles to exist on a single wireless node. Creating a
ZigBee device profile by adding one or more ZigBee cluster
libraries around the concept of spacecraft management
could potentially enable these components to connect and
communicate with each other with very little outside
integration. According to the ZigBee Cluster Library
specification, a ZigBee cluster is defined as a related
collection of attributes and commands, which together
define a communications interface between two devices.
The devices implement server and client sides of the
interface respectively. Examples of cluster commands
might include operating actuators, firing thrusters or
publishing sensor values across the system. Further work in
using these high-level ZigBee functions to simplify SPA
adaption will be initiated in the future.

Data distribution system (DDS)

The LUS software responsible for xTEDS registration and
Subscription Processing could be combined with a Data
Distribution System (DDS) in order to take advantage of the
benefits that DDS has to offer. DDS is a publish/subscribe
architecture that has been specified by the Object
Management Group specifically for data dissemination in
real-time and embedded systems.10 The publishers and
subscribers in the network share information by using an
application-defined name or Topic and a key associated
with that Topic. Because these shared names are
application-defined, they could easily be specified in the
xTEDS associated with a given sensor. The subscription
process would then be more robust and with several built-in
controls. Among these, the ability to add Quality of Service
(QoS) parameters to improve network response time or
provide content-based subscriptions is extremely useful and
potentially necessary for any level of hardware-in-the-loop
flight-control. Other benefits that DDS offers include built-
in control over data persistence and data queuing, which is
of particular importance in mesh networking where a node
could drop out of communication and rejoin some time
later. Finally, the use of DDS may actually reduce the lines
of code needed for a working SPA implementation since
much of the functionality for subscription processing would
be implemented in the DDS software. Others have used
DDS as the foundation for SPA implementations.

ZigBee Service Interface

In addition to the interface specification added for each
sensor on a ZigBee node, there is information associated
with the wireless interface itself that must be managed This
proposed ZigBee service interface was derived from the
Spacecraft On-Board Interface Services—Device

 8

Virtualization Service Draft Recommended Standard
CCSDS 871.2. The ZigBee service interface provides
ZigBee class-specific service primitives to access functions
common to all ZigBee wireless nodes. The
DVS_GET_ZB_STATUS.request message is used to
request the status of a ZigBee node and returns parameters
such as: Device_ID identifies the ZigBee node; RSSI is the
current link quality measurement; Battery_Status is the
current state of the ZigBee battery, in estimated percentage
remaining; Architecture is the current ZigBee network
hardware architecture and TIM_Type is the type of ZigBee
node with possible values being coordinator, router or end-
device.

5. SPA-Z FOR SPACECRAFT
A simple example of a SPA-based spacecraft will illustrate
the utility of wireless networks combined in a hybrid
configuration with SpaceWire. Consider the need for
providing flexible payload accomodations provided by
wireless SPA-enabled subsystems. Figure 3 depicts a simple
spacecraft bus with its major components connected by
SpaceWire. The SpaceWire segment connects the Command
and Data Handling (C&DH) control computer to the
Electrical Power Subsystem (EPS) and Attitude Control
Subsystem (ACS), which together provide basic flight
functions. This segment could be SPA-compliant or not, as
we are only interested in the payload functions at this time.
The adoption of SPA for various Aerospace functions such
as CubeSats is evident by product support from Companies
such as AAC Microtec.11

This example illustrates a spacecraft where all Payload
functions are wireless SPA compliant, with only physical
mounting and power connection required for spacecraft
payload configuration. Examples of missions where this
might be favorable would be constellations of earth
observation satellites (A-train) or multi-point physics
science missions. We consider the Payload to be an
instrument together with an optional GPS unit and the
appropriate Communications Processor for downlink. The
spacecraft may have separate command and telemetry
(C&T) links, but for this example we use a dedicated
downlink for payload data to better demonstrate modular
Plug and Play technology. The objective is to support
multiple modular functions that complement each other and
have to interact intimately using SPA as the physical and
logical interconnection.

C&DH!

C&T!
SpW!

Router!

Downlink!

ACS!

EPS!

 Comms!

SpaceWire!

 Instrument!

Reconfigurable Payload!

ZigBee !
802.15.4!

 GPS!SM-L!

SM-z!

CAS!

LUS!

Core Spacecraft!

SM-z!

SM-z!

SM-z!

PAS!

FSW!

Figure 3. Wireless SPA Spacecraft
In this example, the core spacecraft functions (C&DH, EPS,
C&T and ACS) connect using SpaceWire. The C&DH runs
the Flight Software (FSW) and can provide an interface to
SPA. The SPA Services are hosted in the C&DH computer,
and provide the interface to the SPA-compliant components.
Therefore, the C&DH has to host the LUS, CAS and SM-L
protocol functions. The C&DH also has to host the SM-Z
subnet manager together with the ZigBee physical interface.
However, these are the only spacecraft modifications
needed for supporting a SPA-enabled payload.

The payload Instrument, GPS and Comms Processor
(Comms) components are all SPA-compliant devices which
interact with the C&DH hosted SPA services using the
standard SPA messages over the ZigBee link. Each
component has a rather large xTEDS describing the
software interface functions for the entire subsystem. Each
SPA Device (in this case a spacecraft subsystem) would
register its xTEDS with the LUS, setting the stage for
payload operation by the Payload Application Software
(PAS). The PAS is the only custom component needed to
implement a custom payload function and is hosted within
the C&DH as an application-layer program. The PAS is
SPA-aware and must use the SPA protocols to interact with
the payload components.

The PAS polls the LUS until the SPA-components are
registered, then parses the xTEDS to identify the specific
devices to be used and the software interface (cmds, sensor
data) to operate the component. For example, the PAS
would recognize the GPS and subscribe to its coordinate
updates. The PAS would use the coordinates to initiate a
downlink to a specific ground station using the Comms
Processor xTEDS to understand the methods available. The
PAS would obtain the data for downlink from the payload
Instrument using the xTEDS describing the instrument’s
command set and status indications. The embedded software
interface represented by the meta-information in the xTEDS
is the core of SPA function, providing a method for
implementing a general software API for reconfigurable
payloads.

Therefore, a spacecraft could be rapidly configured for a
given mission by physically loading the Payload Devices,
connecting power and running the PAS program in the
C&DH. The SPA Services provide the interaction between
the core spacecraft and the PAS program but do not have to

 9

be changed to reconfigure the spacecraft. It is anticipated
that a “generic” PAS, supporting multiple configurations,
could be written, thereby eliminating the need to change
even the Payload software, leading to effective software
reuse and the resultant cost savings. This is of particular
benefit when constructing multiple similar spacecraft
requiring different payloads.

In this example, the ZigBee subnet does not have many
nodes, may or may not support redundancy and is therefore
considered a simple wireless network configuration. The
major benefit of using wireless for this purpose is to
eliminate the data cables required to run the payload and
downlink components, a very modest gain. However, for
CubeSats, this cabling may be a rather large percentage of
available spacecraft resources. Therefore, the real benefit
may be supporting more complex functions on smaller
spacecraft.

To implement such a flexible payload system, the
reconfigurable payload components would all have to be
SPA-compliant. This would require the development of a
SM-Z subnet manager for ZigBee. It would require
implementing the SPA protocol (SM-L) in the ZigBee
interface software, enabling the xTEDS registration process
and middleware-mediated data exchange. The best approach
for this example would be to implement the SPA protocol
using ZigBee DVS messages in the wireless module’s
firmware. Note that each ZigBee module has to host the
SPA-Z Subnet Manager, the SPA Local Protocol (SM-L)
and the xTEDS specific to its function.

6. DEVELOPMENTAL AND FLIGHT
INSTRUMENTATION SYSTEM

Developmental and Flight Instrumentation (DFI) using
wireless sensor networks (WSN) can lead to a signficantly
lower cost per sensor than conventional wired approaches
while providing the benefits of reduced cable mass and
flexibility of placement, both important attributes for flight
vehicle instrumentation. Less obvious are the developmental
and operational cost savings possible through the use of
Plug-and-Play standards-based technology, which enables
multiple vendors to produce compatible products and even
generic application software able to support a wide-range of
configurations addressing a broad range of aerospace needs.
Lastly, since wireless data communication is immune to
cabling and connector faults, it also provides a diverse
method for DFI system fault tolerance.

Earlier prototype work by the team for DFI used ZigBee
wireless components within an architecture compliant with
IEEE 1451, which defines the Network Capable Application
Processor (NCAP) as the primary computing platform with
the Telemetry Interface Modules (TIM) hosting the sensors.
During earlier evaluation of standards and prototype ZigBee
products for DFI, certain deficiencies were noted in current
technology and standards. ZigBee node addressing is route
dependent and can change during network reconfiguration
or initialization. Therefore, a unique identifier is needed to

support deterministic sensor networks to resolve this
ambiguity. Embedding SPA addresses in each ZigBee
module can address this need. The TEDS templates needed
far more flexibility, hence the move to xTEDS. Time
stamps can be incorporated in the network data flow using
ZigBee Global time as its reference source. Finally, no
module or component should limit overall throughput, so
routers and gateways need to be designed to support the full
data rate.

There is no clear consensus on application software access
to streaming data values and network parameters for WSNs.
Current implementations use SNMP servers or Python-
based APIs for application software interfaces, and each
method suffers from throughput limitations or implement a
proprietary API.12 The IEEE 1451 has been used for
defining sensor parameters using its Transducer Electronic
Data Sheets (TEDS) which were the precursor to the XML-
based TEDS (xTEDS) used by SPA. As described below,
the xTEDS for a given sensor will specify the type of data
that it can publish or receive via the SPA LUS. The project
also determined that the use of standard publish/subscribe
middleware techniques might be the best fit for the
application software interface implementation, and
identified DDS as the best approach. The team recognized
that its approach to improving WSN system design was very
similar to the methods identified by SPA, resulting in this
paper, which is both a guide for developing wireless SPA
standards as well as SPA-compliant WSN implementations.

Ethernet!

SPA-Z
Subnet!

SPA Services!

SM-L!

SPA Processing Node!

ZigBee
Coordinators!

CAS!

Lookup!
Service!

DFI Application
Processing Node!

C2!
!
!SM-x!

C1!
!
!SM-x!

DFI !
Software!

FW!

FW!

ASIM!
Software!

GUI/Logging!
Software!

Figure 4. DFI ASIM Block Diagram
Proposed DFI architecture
We propose modifying the basic IEEE 1451 architecture by
using the NCAP processor to create the SPA Processing
Node (SPN) because the NCAP contains sufficient
processing power and is the primary bridge between
application software and the wireless sensor modules
(WSM), acting as TIMs. The proposed architecture for our
DFI prototype implementation is to use the NCAP gateway
as the host for SPA functions using the ASIM approach.
Beyond the NCAP, the rest of the WSN functions can use
the native ZigBee and 802.15.4 protocols. The major reason
for this approach is to utilize the built-in network discovery,
addressing and routing functions of the ZigBee protocol,
which were developed specificially for wireless and which
function very well. Note that one cannot use both SPA-
based network discovery and management methods
simultaneously with ZigBee, as the two functions will
conflict. One must choose one approach or another and the

 10

use of the ZigBee network formation and management
processes is the correct approach in this case.

This architecture does not require complete modification of
the ZigBee endpoint or router firmware, its chief advantage.
All SPA functions are embedded in the ASIM adapter
hosted in the SPN, which functions as the root of the sensor
network and the gateway to the rest of the spacecraft
systems. The key endpoint modification is to insure that
each WSM contains the appropriate xTEDS describing its
functions along with the methods for reading the xTEDs
upon initialization or reconfiguration, functions provided by
SPA-Z. The SPN aggregates all xTEDs into the resident
LUS and presents the complete set to the application
software through the DDS-based LUS. Therefore, the entire
WSN becomes a single SPA device hosting many xTEDs
respresenting the entire WSN sensor complement.

Starting from an interesting combination of ZigBee and
IEEE 1451, the team mapped these functions to SPA,
resulting in a roadmap for further definition. The next steps
were definition of sensor and network descriptions in
xTEDS, the modification of existing software to support
variable-field XML descriptions, and the definition of SPA
messages to help control the network and sensor modules.
The source and version of DDS software and other SPA
support services were then identified to help define the
implementation plan.

Network Discovery Implementation
The use of the underlying ZigBee network management
function means that the only new software needed is the
interface between the SPA discovery functions and the
embedded ZigBee network functions. Many of these
functions are simply translations of ZigBee Application
Support Layer identifiers and status messages to the SPA
standard, which should be rather simple.

The ZigBee coordinator(s) resides in the SPN, which hosts
the SPA services and also performs the data gateway
functions. At run-time, the coordinator will create the PAN,
dynamically assigning ZigBee addresses to each WSM in
the wireless network. It also creates all the routing tables
needed to initiate data transfer. The coordinator then passes
this network configuration information to the host processor
for translation to SPA CAS addresses and network status
messages. Dynamic reconfiguration requires that these
processes remain active to support any changes to WSM
status or network configuration occuring after initiation.

xTEDS Aggregation
Each WSM contains a specific xTEDS describing its sensor
complement. The SPN should aggregate all xTEDS for
every WSM in the DFI network. It does this by transfering
the xTEDS from the WSM to the SPN using the underlying
ZigBee data transfer functions called from SPA-Z. The SPN
therefore ends up with the full set of xTEDS representing
every sensor in the network. Note that xTEDS registration

and de-registration is dynamic and driven by SPA network
discovery and management functions. A method of
connecting these SPA functions to the ZigBee network
functions would have to be implemented in SPA-Z.

Middleware Implementation
The Data Distribution Service (DDS) as specified by the
OMG is the chosen publish/subscribe standard. DDS uses
topics to partition the data being sent across the middleware,
so that an end user might specify a group of nodes by
selecting that specific topic to subscribe to. In effect, DDS
middleware abstracts the source and details of data and
status delivery, making them software objects conforming to
certain defined categories, and providing topic query
functions. Therefore, the use of DDS provides many
required SPA LUS functions, requiring just a modest
amount of new software to reconcile the functions.

The mechanism for delivering ZigBee sensor data to a
requestor could easily be satisfied through the use of topics
using the xTEDS-defined sensor type as a topic name. The
commands defined for a specific ZigBee node/interface may
also be sent through DDS in order to change the data rates
or to command actuators. Finally, the network management
commands needed for SPA configuration could also be
encapsulated in a DDS topic. Therefore, the DDS-based
LUS would provide xTEDS access, create sensor data topics
containing the real-time sensor data and create network and
module status topics for WSN management.

One example of an attempt to create a more general
approach outside of the ZigBee framework is TinyDDS,
which provides protocol and programming language
interoperability across the ZigBee gateway.13 TinyDDS is
one of the few implementations that is designed for low-
power, low-memory devices and can sit on top of the
ZigBee stack, but is only available for Mica-Z and
SunSPOT platforms as of the time of this paper. Still, the
use of DDS was identified as the best approach for this
middleware function because of its near real time delivery
and cross-compatibility between vendors. We also
experimented with OpenSplice DDS Community Edition,
and RTI Connext DDS, both open-source community-
supported implementations.

Redundancy and Fault Tolerance.
The example DFI system provides fault tolerance through
redundancy of sensors, modules and wireless network
interconnects. The ZigBee protocol provides dynamic
network management, reconfiguration and retransmission.
Using this approach, the SPN would contain at least two
ZigBee coordinators to provide single-fault tolerance.
Managing the redundant coordinators has to be done in the
host processor, which could use various schemes common
to aerospace. For example, one coordinator could be used as
a hot backup, enabled after detection of primary coordinator
failure. A more complex scheme would be the use of both
coordinators to load-balance the network by running in

 11

parallel. In the event of failure, the remaining coordinator
would have to handle the full network load.

This redundancy would be managed by the SPN and the
details obscured to the SPA interface, perhaps just providing
an additional status parameter to the Application Layer
indicating when redundancy has been lost.

7. CONCLUSIONS
Our work is a preliminary trade study that can be validated
upon implementation and evaluation of a reference design.
The objective is to define an extension to SPA Standards for
wireless ZigBee networks by defining the functions of the
SPA-Z Subnet Manager software. Therefore ZigBee would
be another SPA supported interconnect able to interact with
other SPA compliant components. This allows the full range
of benefits provided by wireless networks to be realized
within the SPA ecosystem.

Several standards are involved in the technical approach to
this problem. In additional to SPA and ZigBee, the IEEE
802.14.5 PAN standard and IEEE 1451 Smart Transducer
standards are relevant and foundational. Further work by
CCSDS on the SOIS DVS standards can improve overall
applicability by creating a common ontology for device
identity and description. The IEEE 1451 standard provides
good background for construction of xTEDS descriptions
from defined TEDS templates taking advantage of IEEE
1451 command sets and architectures. Finally, emerging
SOIS DVS standards help define effective methods for
managing wireless networks and modules, as well as work
defining a Common Data Dictionary for specific application
domains.

The approach is to use the appropriate elements of each
standard to create a reference design. This is similar to a
rapid prototyping approach, which often yields the best
implementation at the lowest cost, but at the expense of
fully complying with the selected standards. We did not
identify any basic problems integrating the various elements
of the chosen standards, but also saw that only certain
portions of the standards were truly relevant to the
integrated product. While definition of standards is often
approached from the academic perspective of identifying
requirements and functions, the experimental approach of
creating a reference design using available building blocks
often produces the most optimal implementation in the
shortest time frame.

Prior work identified shortfalls of current WSN technology
that can be addressed by using SPA features to significantly
increase utility: The use of xTEDS allows flexible sensor
and actuator definitions and the incorporation of multiple
network and module parameters for WSN management; The
use of DDS middleware to publish real-time data streams to
multiple applications provides a flexible standard for
modern software architecture; The use of SPA messaging
allows interoperability with other SPA components,

increasing the breadth of applicability and enabling
interoperatiblity between vendor products.

Two basic approaches to SPA-Z architecture were
identified: the use of SPA messages embedded in the
ZigBee protocol layer and implemented in the module
firmware; or the use of the ASIM Adapter approach. For
spacecraft subsystems, it may be better to fully embed SPA
within the entire wireless networks. This allows each
wireless module to stand-alone within a SPA system. For
DFI applications, consisting of many simple wireless
components, the use of ZigBee routing ensures scalability
and moves the complicated functions to the ASIM Adapter,
greatly reducing resource demands on each WSM. This
reduces the resources needed at the sensor modules,
lowering size, power and cost. However, only the ASIM
Adapter hosted in the SPN can interact with other SPA
components. This architecture is similar to the NCAP and
conforms to IEEE 1451.

The main issue for SPA-Z consists of understanding the best
approach for using the underlying PAN and ZigBee protocol
functions effectively to implement the reference design. It
appears that using the ZigBee Application Support Layer to
implement the CAS addressing and SPA messaging
functions may be the most effective integration path. This
and the addition of the xTEDS to each module implements
the key SPA functionality needed in each wireless module.
The other issue is hosting the SPA services within the
overall system architecture.

It is desirable to create a standard implementation for the
entire ecosystem of devices that are used on a spacecraft or
satellite. The CCSDS SOIS standards could help establish
this by creating common definitions and messages. There
are several common components that are expected to be
present for navigation, orientation and power management
tasks. Creating true Plug-and-Play interfaces for these
devices where common requests and attributes are specified
in the architecture would further simplify integration
between multiple vendors and enhance testability.

It is very important to reduce the cost and complexity of
Aerospace vehicle integration, as this tends to be a major
cost driver. The capability of using standard software
interfaces allows much of the application software to be
reused for multiple purposes, reducing cost, but also making
a larger range of application software available for
spacecraft. The trend for modern hardware and software is
toward ad-hoc dynamically configured network systems,
which by their nature, change the approach used for
application software implementation. The team has found
that such dynamic systems must incorporate the
mechanisms supporting reconfiguration at every level of the
system from the physical interconnect to the application
sofware. SPA standards lead the way to achieving such
adaptable intelligent systems and integration with wireless
ZigBee networks appears to be possible and desirable.

 12

ACKNOWLEDGEMENTS
The authors wish to thank Daniel Winterhalter, Nans Kunz,
Fernando Figueroa and Ann Patterson-Hine of NASA for
their support of this work. Also technical contributions from
Mobitrum Corporation working under a NASA SBIR grant

were used for the initial WSN prototype evaluation work.
Finally, Pete Wilson provided much support for ZigBee
hardware and software implementation.

 13

Appendix	 A:	 xTEDS	 example	 Thermistor	

<xTEDS xmlns=http://www.interfacecontrol.com/SPA/xTEDS xmlns:xsi="http://www.we.org/2001/XMLSchema-instance"
 xsi:schemaLocation="../Schema/xTEDS02.xsd" name="thermistor.xTEDS.xml"
 version="2.5">
 <Device componentKey="" name="Thermistor-1" kind="Thermistor" description="Thermistor"
manufacturerId="U.S.Sensor Thermistor"
 modelId="200" versionLetter="A" serialNumber="2001" calibrationDate="1970-01-01"
sensitivityAtReference="32650"
 referenceFrequency="" referenceTemperature="0" measurementRange="-40-75" electricalOutput="1480-
100000" />
 <Interface id="1" name="Generic" description="generic device service interface">
 <Request>
 <CommandMsg id="1" name="DVS_GET_DEVICE_CLASS.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT16" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT16" units="none"/>
 </CommandMsg>
 <DataReplyMsg id="1" name="DVS_GET_DEVICE_CLASS.indication">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT16" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT16" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Device_Class" kind="ID" dataType="UINT16" units="none"/>
 </DataReplyMsg>
 </Request>
 <Request>
 <CommandMsg id="2" name="DVS_GET_DEVICE_TYPE.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT16" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT16" units="none"/>
 </CommandMsg>
 <DataReplyMsg id="2" name="DVS_GET_DEVICE_TYPE.indication">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT16" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT16" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Device_Type" kind="ID" dataType="UINT16" units="none"/>
 </DataReplyMsg>
 </Request>
 <Request>
 <CommandMsg id="3" name="DVS_POWER_DEVICE.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT32" units="none"/>
 <Variable name="On_Off_Flag" kind="powerStateRequest" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="Off" value="1" description="No power is applied to the device."/>
 <Option name="On" value="2" description="Power is applied to the device."/>
 </Enumeration>
 </Variable>
 </CommandMsg>
 <DataReplyMsg id="3" name="DVS_POWER_DEVICE.indication">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Device_Status" kind="powerStateIndication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="Off" value="1" description="No power is applied to the device."/>

 14

 <Option name="Initializing" value="2" description="Initialization is in progress."/>
 <Option name="Initialized" value="3" description="Device is in operational or standby mode."/>
 <Option name="Failed" value="4" description="An internal check during power switch on has not
passed."/>
 </Enumeration>
 </Variable>
 </DataReplyMsg>
 </Request>
 <Request>
 <CommandMsg id="4" name="DVS_RESET_DEVICE.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT32" units="none"/>
 </CommandMsg>
 <DataReplyMsg id="4" name="DVS_RESET_DEVICE.indication">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Device_Status" kind="resetStateIndication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="Not_Supported" value="1" description="The device does not implement this
function."/>
 <Option name="Initializing" value="2" description="Initialization is in progress."/>
 <Option name="Initialized" value="3" description="Device is in operational or standby mode."/>
 <Option name="Failed" value="4" description="An internal check during power switch on has not
passed."/>
 </Enumeration>
 </Variable>
 </DataReplyMsg>
 </Request>
 <Request>
 <CommandMsg id="5" name="DVS_ARM_DEVICE.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT32" units="none"/>
 <Variable name="Arm_Disarm_Flag" kind="armingStateRequest" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="Arm" value="1" description="Arm the device."/>
 <Option name="Disarm" value="2" description="Disarm the device."/>
 </Enumeration>
 </Variable>
 </CommandMsg>
 <DataReplyMsg id="5" name="DVS_ARM_DEVICE.indication">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Device_Arming_Status" kind="armingStateIndication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="Not_Supported" value="1" description="The device does not implement this
function."/>
 <Option name="Not_Armed" value="2" description="The device is not armed."/>
 <Option name="Armed" value="3" description="The device is armed."/>
 </Enumeration>
 </Variable>
 </DataReplyMsg>
 </Request>
 </Interface>

 <Interface id="2" name="ZigBee" description="ZigBee wireless service interface">
 <Request>
 <CommandMsg id="1" name="DVS_GET_ZB_STATUS.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT16" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT16" units="none"/>
 </CommandMsg>
 <DataReplyMsg id="1" name="DVS_GET_ZB_STATUS.indication">

 15

 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT16" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT16" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Device_ID" kind="ID" dataType="UINT16" units="none"/>
 <Variable name="RSSI" kind="signalStrength" dataType="UINT16" units="none"/>
 <Variable name="Battery_Status" kind="batteryLife" dataType="UINT16" units="none"/>
 <Variable name="Architecture" kind="hardwareArchitecture" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="cc2430" value="1" description="The device is a TI cc2430 board"/>
 <Option name="cc2530" value="2" description="The device is a TI cc2530 board"/>
 </Enumeration>
 </Variable>
 <Variable name="TIM_Type" kind="nodeType" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="coordinator" value="1" description="The node is acting as a ZigBee coordinator."/>
 <Option name="router" value="2" description="The node is acting as a ZigBee router."/>
 <Option name="end-device" value="3" description="The node is acting as a ZigBee end-
device."/>
 </Enumeration>
 </Variable>
 </DataReplyMsg>
 </Request>
 </Interface>

 <Interface id="3" name="Thermistor" description="Thermistor service interface">
 <Request>
 <CommandMsg id="1" name="DVS_GET_TEMPERATURE.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT32" units="none"/>
 </CommandMsg>
 <DataReplyMsg id="1" name="DVS_GET_TEMPERATURE.indication">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Temperature" kind="temperature" dataType="FLOAT64" units="F" rangeMin="0"
rangeMax="100" accuracy="0.10" />
 <Variable name="Thermistor_Status" kind="thermistorStateIndication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="The device has detected no errors."/>
 <Option name="Error" value="2" description="The device has detected an error."/>
 </Enumeration>
 </Variable>
 </DataReplyMsg>
 </Request>
 <Request>
 <CommandMsg id="2" name="DVS_GET_SENSOR_RATE.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT32" units="none"/>
 </CommandMsg>
 <DataReplyMsg id="2" name="DVS_GET_SENSOR_RATE.indication">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Sensor_Publish_Rate" kind="duration" dataType="FLOAT64" units="s"/>
 </DataReplyMsg>
 </Request>
 <Request>

 16

 <CommandMsg id="3" name="DVS_SET_SENSOR_RATE.request">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Device_ID" kind="ID" dataType="UINT32" units="none"/>
 <Variable name="Sensor_Publish_Rate" kind="rateChangeRequest" dataType="FLOAT64" units="s"/>
 </CommandMsg>
 <DataReplyMsg id="3" name="DVS_SET_SENSOR_RATE.indication">
 <Variable name="Request_ID" kind="linkToIndication" dataType="UINT32" units="none"/>
 <Variable name="Result" kind="indication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="Request was successful. Variables returned are
valid."/>
 <Option name="Failure" value="2" description="Request could not be fulfilled. Variables returned
are invalid."/>
 </Enumeration>
 </Variable>
 <Variable name="Sensor_Publish_Rate" kind="duration" dataType="FLOAT64" units="s"/>
 <Variable name="Sensor_Publish_Rate_Status" kind="PublishRateStateIndication" dataType="UINT08"
units="none">
 <Enumeration>
 <Option name="Not_Supported" value="1" description="The sensor device does not implement this
rate."/>
 <Option name="Rate_Changed" value="2" description="The sensor device has updated its publish
rate."/>
 </Enumeration>
 </Variable>
 </DataReplyMsg>
 </Request>
 <Notification>
 <DataMsg id="1" msgRate="1" msgArrival="PERIODIC" name="DVS_GET_TEMPERATURE_PERIODIC.indication">
 <Variable name="Temperature" kind="temperature" dataType="FLOAT64" units="F" rangeMin="0"
rangeMax="100" accuracy="0.10" />
 <Variable name="Thermistor_Status" kind="thermistorStateIndication" dataType="UINT08" units="none">
 <Enumeration>
 <Option name="No_Error" value="1" description="The device has detected no errors."/>
 <Option name="Error" value="2" description="The device has detected an error."/>
 </Enumeration>
 </Variable>
 </DataMsg>
 </Notification>
 </Interface>
</xTEDS>

 17

REFERENCES
 [1] Alena, R., Gilstrap, R., Baldwin, J., Stone, T., Wilson,

P.,“Fault Tolerance in ZigBee Wireless Sensor
Networks,” IEEE Aerospace, 2010 P1480-5

[2] Alena, R. Figueroa F., Ossenfort J., “Intelligent Wireless
Sensor Networks for Spacecraft Health Monitoring,”
AIAA Infotech Conference 2012

[3] Complete standard documents and white papers are
available at the Zigbee.org web page:
http://zigbee.org/Standards/ZigBeeNetworkDevices/Over
view.aspx

[4] AIAA G-133-1-2013, Space Plug-and-Play Architecture
Standards Development Guidebook, Published 2013

[5] Plug-and-Play (PnP) Structures for Satellite Applications,
http://www.afsbirsttr.com/Publications/Documents/Innov
ation-042309-SpaceWorks-AF06-273.pdf

[6] IEEE 1451 URL:
http://www.nist.gov/el/isd/ieee/ieee1451.cfm

[7] Z-stack reference URL:
http://vast.uccs.edu/projects/traumagps_files/docs/chipcon
/Z-Stack.pdf

[8] CC2530 Reference URL:
www.ti.com/lit/ds/symlink/cc2430.pdf

[9] Reference Architecture for Space Information
Management, CCSDS 312.0-G-0 Green Book, March
2013.

[10] DDS reference URL: portals.omg.org/dds/

[11] AAC Microtec reference URL:
http://pnp.aacmicrotec.com/index.php/introduction-to-
plug-and-play.html

[12] Digi reference URL:
http://www.digi.com/products/zigbee/

[13] P. Boonma and J. Suzuki, "Toward Interoperable
Publish/Subscribe Communication between Wireless
Sensor Networks and Access Networks," In Proc. of
IEEE International Workshop on Information Retrieval in
Sensor Networks (IRSN), Las Vegas, NV, January 2009.

BIOGRAPHY
Richard L. Alena is a Computer
Engineer in the Intelligent Systems
Division at NASA Ames. Mr.
Alena worked on the Ground Data
System and performed
Communications Analysis during
operations for the LCROSS Lunar

Mission and on avionics and software architectures for
Lunar Surface Systems for human missions. He was the co-
lead for the Advanced Diagnostic Systems for International
Space Station (ISS) Project, developing model-based
diagnostic tools for space operations. He was the chief
architect of a flight experiment conducted aboard Shuttle
and Mir using laptop computers, personal digital assistants
and servers in a wireless network for the ISS. He was also
the technical lead for the Databus Analysis Tool for
International Space Station on-orbit diagnosis. He was
group lead for Intelligent Mobile Technologies, developing
planetary exploration systems for field simulations. Mr.
Alena holds an M.S. in Electrical Engineering and
Computer Science from the University of California,
Berkeley. He is the winner of the NASA Silver Snoopy
Award in 2002, a NASA Group Achievement Award in
1998 for his work on the ISS Phase 1 Program Team and a
Space Flight Awareness Award in 1997.

John Ossenfort is a Computer
Scientist and employee of SGT, Inc.
at NASA Ames Research
Center. He is currently working in
the Discovery and Systems Health
research area, integrating fault
management technologies with
advanced testing and demonstration

of the Orion Multi-purpose Crew Vehicle. In the past he
has worked in networking and systems administration on
several exploration projects and participated in various field
simulations, assisting in all aspects of wired and wireless
network design, deployment, troubleshooting and
maintenance. John has a dual BA degree in Anthropology
and East Asian Studies from Washington University in St.
Louis.

Thom Stone is a Senior
Computer Scientist with
Computer Sciences Corp. He is
attached to the NASA Research
and Engineering Network
project at Ames Research Center
(ARC). Mr. Stone has been at
NASA ARC employed by
various contractors since 1989.
He was an engineer with the

NASA Science Internet project office where he led the
project that brought reliable Internet connections to remote
locations including U.S. bases in Antarctica including
McMurdo Station and Amundson Scott South Pole Station.
He was principal engineer for communications for the
NASA Search for Extraterrestrial Intelligence (SETI)
project and was a senior engineer for the Space Station
Biological Research Project. Before his involvement with
NASA, Stone was employed in the computer and
communications industry and taught telecommunications at
the undergraduate level.

 18

Jarren A. Baldwin is a
Chicago native and currently
serves as the lead Electrical
Engineer at Bay Area startup,
Oculeve Inc. He graduated
from the University of
Illinois with a B.S. in 2009
and received an M.S. in
Electrical Engineering from

Stanford University in 2012. Jarren developed hardware and
software systems for a wide range of fields, including space
science systems and medical devices as a NASA Ames
intern in the Intelligent Systems Division.

1
2
3
4
5
6
7
8
9
10
11
12

13

