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omABSTRACTA variety of rule-based, model-based anddata-driven te
hniques have been proposedfor dete
tion and isolation of faults in phys-i
al systems. However, there have been veryfew e�orts to 
omparatively analyze the per-forman
e of these approa
hes on the samesystem under identi
al 
onditions. One rea-son for this was the la
k of a standard frame-work to perform this 
omparison. A suitableframework should provide a 
ommon lan-guage to represent the system des
ription,sensor data and the fault diagnosis results; arun-time ar
hite
ture to exe
ute the diagno-sis algorithms under identi
al 
onditions and
olle
t the diagnosis results; and an evalu-ation 
omponent that 
an 
ompute perfor-man
e metri
s from the diagnosis results to
ompare the algorithms. In this paper, wepresent su
h a framework. We performed anempiri
al evaluation of this framework on ahardware testbed (ADAPT) at NASA AmesResear
h Center and a set of syntheti
 
ir-
uits typi
ally used as ben
hmarks in themodel-based diagnosis 
ommunity. About adozen diagnosis algorithms were used in thisevaluation. We present and dis
uss the re-sults from di�erent perspe
tives in the latterhalf of the paper.1 INTRODUCTIONFault Diagnosis in physi
al systems involves thedete
tion of anomalous system behavior and theThis is an open-a

ess arti
le distributed under theterms of the Creative Commons Attribution 3.0United States Li
ense, whi
h permits unrestri
ted use,distribution, and reprodu
tion in any medium, pro-vided the original author and sour
e are 
redited.

identi�
ation of its 
ause. Key steps in diagnosti
inferen
e are fault dete
tion (is the output of thesystem in
orre
t?), fault isolation (what is bro-ken in the system?), fault identi�
ation (what isthe magnitude of the failure?), and fault re
overy(how 
an the system 
ontinue to operate in thepresen
e of the faults?). Expert knowledge andprior know-how about the system, models des
rib-ing the behavior of the system, and operationalsensor data are used to develop diagnosti
 infer-en
e algorithms. This problem is non-trivial for avariety of reasons in
luding:
• in
orre
t and/or insu�
ient knowledge aboutsystem behavior
• limited observability
• presen
e of many di�erent types of faults (sys-tem/supervisor/a
tuator/sensor faults, ad-ditive/multipli
ative faults, abrupt/in
ipientfaults, persistent/intermittent faults)
• non-lo
al and delayed e�e
t of faults due todynami
 nature of system behavior
• presen
e of other phenomena that in�u-en
e/mask the symptoms of faults (unknowninputs a
ting on system, noise that a�e
ts theoutput of sensors, et
.)Several 
ommunities have attempted to solvethe diagnosti
 inferen
e problem using variousmethods. Some approa
hes have been:
• Expert Systems - These approa
hes en
odeknowledge about system behavior into a formthat 
an be used for inferen
e. Some ex-amples are rule-based systems (Russell andNorvig, 2003) and fault trees (Kav£i£ and Ju-ri£i¢, 1997).
• Model-Based Methods - These approa
hes usean expli
it model of the system 
on�gura-1



tion and behavior to guide the diagnosti
 in-feren
e. Some examples are Fault Dete
tionand Isolation (FDI) methods (Gertler, 1998),statisti
al methods (Basseville and Nikiforov,1993), and �AI� methods (Reiter, 1987).
• Data-Driven Methods - These approa
hes usethe data from representative runs to learn pa-rameters that 
an then be used for anomalydete
tion or diagnosti
 inferen
e for futureruns. Some examples are Indu
tive Moni-toring Systems (IMS) (Iverson, 2004), NeuralNetworks (Sorsa and Koivo, 1998).
• Sto
hasti
 Methods - These approa
hes treatthe diagnosis problem as a belief state estima-tion problem. Some examples are BayesianNetworks (Lerner et al., 2000), and Parti
leFilters (de Freitas, 2002).Despite the development of su
h a variety ofnotations, te
hniques, and algorithms, e�orts toevaluate and 
ompare the di�erent diagnosis al-gorithms (DAs) have been minimal. One of themajor deterrents is the la
k of a 
ommon frame-work for evaluating and 
omparing diagnosti
 al-gorithms. The establishment of su
h a frameworkwould a

omplish the following obje
tives:
• A

elerate resear
h in theories, prin
iples,modeling and 
omputational te
hniques fordiagnosis of physi
al systems.
• En
ourage the development of software plat-forms that promise more rapid, a

essible,and e�e
tive maturation of diagnosti
 te
h-nologies.
• Provide a forum for algorithm developers totest and validate their te
hnologies.
• Systemati
ally evaluate diagnosti
 te
hnolo-gies by produ
ing 
omparable performan
eassessments.Su
h a framework would require the following:
• De�ne a standard representation format forthe system des
ription, sensor data, and di-agnosis result.
• Develop a software run-time ar
hite
ture that
an run spe
i�
 s
enarios from a
tual sys-tem, simulation, or other data sour
es su
has �les (individually or as a bat
h), exe
uteDAs, send s
enario data to the DA at appro-priate time steps, and ar
hive the diagnosti
results from the DA.
• De�ne a set of metri
s to be 
omputed basedon the 
omparison of the a
tual s
enario anddiagnosis results from the DA.In this paper, we present a framework that at-tempts to address ea
h of the above issues. Theframework ar
hite
ture employed for evaluatingthe performan
e of DAs is shown in Fig. 1 andis 
alled DXF. Major elements are systems underdiagnosis, DAs, s
enario-based experiments, andmetri
s. System 
atalogs spe
ify topology, 
om-ponents, and high-level mode behavior des
rip-tions, in
luding failure modes. DXF provides a

program for quantitatively evaluating the DA out-put against known fault inje
tions using prede-�ned metri
s.
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Figure 1: Framework ar
hite
ture1.1 ContributionsThe 
ontributions of this paper are as follows:
• It introdu
es a ben
hmarking framework tobe used for systemati
 empiri
al evaluation ofdiagnosti
 algorithm performan
e. Moreover,it de�nes and des
ribes the main elements ofthe framework so that the ben
hmarking re-sults 
an be applied to any arbitrary physi
alor syntheti
 system by using the ar
hite
turedes
ribed in the paper.
• It provides a 
omprehensive set of empiri
alevaluation results in order to validate the pro-posed framework and to fa
ilitate the under-standing and 
omparative analysis of di�erentdiagnosti
 te
hnologies.1.2 Organization of the PaperThe rest of this paper is organized as follows. Se
-tion 2 
ontains related work. Se
tion 3 presentsDXF in detail in
luding the representation lan-guages used, the run-time ar
hite
ture developedfor experimentation, and the diagnosti
 perfor-man
e metri
s de�ned. Se
tion 4 des
ribes howthe ben
hmarking was performed in
luding a de-s
ription of the two systems used, the faults in-je
ted, the DAs tested, and the results. Se
tion 5presents major assumptions made and issues ob-served. Finally, Se
tion 6 presents the 
on
lusions.2 RELATED WORKThe development of monitoring and diagnosti
te
hnologies is of great interest to many appli
a-tions. As these algorithms be
ome more readilyavailable, the ne
essity for assessing the perfor-man
e of alternative diagnosti
 tools be
omes im-portant. As a result, there is an in
reasing need todevelop a framework that will allow performan
eevaluation of 
ompeting diagnosti
 te
hnologies.2



To address this need, several resear
hers haveattempted to demonstrate ben
hmarking 
apabil-ity (Orsagh et al., 2002; Roemer et al., 2005;Barty± et al., 2006). Among these, Bartys etal. (2006) presented a ben
hmarking study fora
tuator fault dete
tion and identi�
ation (FDI).This study, developed by the DAMADICS Re-sear
h Training Network, introdu
ed a set of 18performan
e indi
es used for ben
hmarking FDIalgorithms on an industrial valve-a
tuator system.The indi
es measure the temporal performan
e ofdete
tion and isolation de
isions, as well as trueand false dete
tion and isolation rates, sensitivity,and diagnosti
 a

ura
y. This ben
hmark studyuses real pro
ess data, and demonstrates how theperforman
e indi
es 
an be 
al
ulated for 19 a
tu-ator faults using a single fault assumption.Izadi-Zamanabadi and Blanke (1999) presenteda ship propulsion system as a ben
hmark for au-tonomous fault 
ontrol. This ben
hmark has twomain elements. One is the development of an FDIalgorithm, and the other is the analysis and imple-mentation of autonomous fault a

ommodation.Relevant to aerospa
e industry, (Simon et al.,2008) introdu
ed a ben
hmarking te
hnique forgas path diagnosis methods to assess the perfor-man
e of engine health management te
hnologies.Finally, Orsagh et al. (2002) provided a methodto measure the performan
e and e�e
tiveness ofprognosti
s and health management algorithmsfor US Navy appli
ations (Roemer et al., 2005).In this work, the performan
e metri
s are de�nedseparately for dete
tion, isolation, and prognosis.In addition, this work also 
ombined individualmetri
s into a 
omposite s
ore by implementing aweighted average sum. Moreover, it de�ned e�e
-tiveness metri
s as a separate 
ategory that 
an beused to in
orporate non-te
hni
al aspe
ts su
h asoperation, maintenan
e and implementation 
osts,
omputer resour
e requirements, and algorithm
omplexity into the analysis. Using these metri
s,one 
an assess the overall e�e
tiveness and bene�tof diagnosti
 health management systems.Other resear
hers have also proposed similar
ost-bene�t formulations for diagnosti
 systems(Williams, 2006; Kurien and Moreno, 2008; Hoyleet al., 2007). These approa
hes, however, are pri-marily 
on
erned with higher-level trade-o�s in in-tegrating diagnosti
 solutions to provide healthmanagement fun
tionality and fo
us on perfor-man
e indi
es su
h as operational 
ost, s
alability,and maintainability.The DXF framework presented in this paperadopts some of its metri
s from (Kurtoglu et al.,2009) and extends prior work in this area by de�n-ing a number of novel diagnosti
 performan
e met-ri
s, by providing a generi
, appli
ation indepen-dent ar
hite
ture that 
an be used for evaluatingdi�erent monitoring and diagnosti
 algorithms,and by fa
ilitating the use of real pro
ess data ona large-s
ale, 
omplex engineering system.

3 FRAMEWORKWe have developed a framework 
alled DXF thatallows systemati
 
omparison and evaluation of di-agnosti
 algorithms under identi
al experimental
onditions. The key 
omponents of this frameworkin
lude representation languages for the physi
alsystem des
ription, sensor data and diagnosis re-sults, a runtime ar
hite
ture for exe
uting diag-nosis algorithms and diagnosti
 s
enarios, and anevaluation 
omponent that 
omputes performan
emetri
s based on the results from diagnosti
 algo-rithm exe
ution.The pro
ess to set up the framework in order toperform 
omparison/evaluation of a sele
ted set ofdiagnosti
 algorithms on spe
i�
 physi
al systemis as follows:1. The system is formally spe
i�ed in an XML�le 
alled the System Catalog. The 
ata-log in
ludes the system's 
omponents, 
on-ne
tions, 
omponents' operating modes, anda textual des
ription of 
omponent behaviorin ea
h mode.2. The set of sensor points is 
hosen and sam-ple data for nominal and fault s
enarios aregenerated.3. DA developers use the system 
atalog andsample data to 
reate their algorithms usinga prede�ned API (des
ribed later in this se
-tion) in order to re
eive sensor data and sendthe diagnosis results.4. A set of test s
enarios (nominal and faulty) issele
ted to evaluate the DAs.5. The run-time ar
hite
ture is used to run theDAs on the sele
ted test s
enarios in a 
on-trolled experiment setting, and the diagnosisresults are ar
hived.6. Sele
ted metri
s are 
omputed by 
omparinga
tual s
enarios and diagnosis results fromDAs. The metri
s 
an then be used to 
om-pute se
ondary metri
s.In the following subse
tions we des
ribe the 
on-stituent pie
es of our framework in more detail.The next subse
tion des
ribes the various repre-sentation languages de�ned for the framework. Wethen des
ribe the run-time ar
hite
ture in
ludingthe sequen
e of events and the messages ex
hangedamong the various 
omponents and �nally we de-s
ribe a set of representative metri
s that measurediagnosti
 performan
e.3.1 DXF Data Stru
turesIn what follows we des
ribe the syntax and seman-ti
s of the relevant DXF data stru
tures as well assome design rationale.3.1.1 System Des
riptionWe realize that it is impossible to avoid bias to-wards 
ertain diagnosti
 algorithms and method-ologies when providing system des
riptions. De-spite attempts to 
reate a general modeling lan-guage (for examples 
f. (Feldman et al., 2007)and the referen
es therein), there is no widely3



agreed way to represent models and systems. Onthe other hand, designing a diagnosti
 frameworkwhi
h is fully agnosti
 towards the system des
rip-tion is impossible as there would be no way to
ommuni
ate 
omponents or system parts and to
ompute diagnosti
 metri
s. As a 
ompromise,we have 
hosen a minimalisti
 approa
h, provid-ing formal des
riptions of the system topology and
omponent modes only.The formal part of the DXF system des
rip-tion does not provide all information for buildinga model. The user may be provided with non-formalized external information, e.g., nominal andfaulty fun
tionality of 
omponents. This informa-tion may be provided in textual, programmati
 orany other well-understood format. In the futurewe may try to extend our XML s
hema in yet an-other attempt of providing a 
omplete modelinglanguage beyond inter
onne
tion topology.The XML system des
ription is primarily in-tended to provide a 
ommon set of identi�ers for
omponents and their modes of operation withina given system. This is ne
essary to 
ommuni-
ate sensor data and diagnoses. Additionally, ba-si
 stru
tural information is provided in the formof 
omponent 
onne
tions. Behavioral informa-tion is limited to a brief textual des
ription of ea
h
omponent and its modes, leaving DA developersto dedu
e behavior from the system's sample data.This is done to avoid bias towards any diagnosti
approa
h.System Topology: DXF uses a graph-like repre-sentation to spe
ify the physi
al 
onne
tivityof the system where nodes represent 
ompo-nents of a system and ar
s 
apture the 
on-ne
tivity between 
omponents.Component Types: Ea
h 
omponent in a sys-tem des
ription refers to a 
omponent type.Note that in DXF, sensors do not imply spe-
ial assumptions, i.e., sensors fail in the sameway as �ordinary� 
omponents. A sensor, of
ourse, should spe
ify the data type it returnsin order for DXF to send sensor readings tothe DA under evaluation. A 
omponent type
ontains at least the following information:
• a name (identi�er)
• an optional (textual) des
ription
• a �ag whi
h spe
i�es if this 
omponenttype is a sensor
• a referen
e to a data stru
ture des
rib-ing the modes for the 
omponents of thistype (both nominal and faulty)
• (sensors only) a data type of the sensor
• (sensors only) a range of the sensorComponent Mode Groups: Component oper-ating modes are organized in mode groups.More than one 
omponent 
an refer to thesame spe
i�
 group. Ea
h 
omponent typespe
i�es a mode group. Ea
h mode in a modegroup 
ontains:
• a name (identi�er)
• an optional (textual) des
ription

• a �ag spe
ifying if the mode is nominalor faultyThe details of the system des
ription formatsare provided in Appendix B.3.1.2 API Data TypesIn DXF, the run-time 
ommuni
ation is per-formed using a messaging framework. Messagesare ex
hanged as ASCII text over TCP/IP. API
alls for parsing, sending, and re
eiving messagesare provided with the framework, but developersmay 
hoose to send and re
eive messages dire
tlythrough the underlying TCP/IP interfa
e. Thisallows developers to use their programming lan-guage of 
hoi
e, rather than being for
ed into thelanguages of the provided APIs.Every message 
ontains a millise
ond times-tamp indi
ating the time at whi
h the message wassent. Though there are additional message types,the most important messages for the purpose ofperforman
e evaluation are the sensor data mes-sage, 
ommand message, and diagnosis message,des
ribed below (the details of the messaging for-mats are provided in Appendix C):Sensor/Command Data: Sensor data are de-�ned broadly as a map of sensor IDs to sensorvalues (observations). Sensor values 
an be ofany type; 
urrently the framework allows forinteger, real, Boolean, and string values. Thetype of ea
h observation is indi
ated by thesystem's XML 
atalog.Commandable 
omponents 
ontain an addi-tional entry in the system 
atalog spe
ify-ing a 
ommand ID and 
ommand value type(analogous to sensor value type). The 
om-mand message represents the issuan
e of a
ommand to the system. In the ADAPT sys-tem, for example, the message (EY144CL,true) signi�es that relay EY144 is being 
om-manded to 
lose. EY144CL is the 
ommandID, and true is the 
ommand value (in this
ase, a Boolean value).Candidates: The diagnosti
 algorithm's output(i.e., estimate of the physi
al status of the sys-tem) is standardized to fa
ilitate the genera-tion of 
ommon data sets and the 
al
ulationof the performan
e metri
s. The diagnosti
message 
ontains:
• a timestamp value indi
ating when thediagnosis has been issued by the algo-rithm
• a list of diagnosti
 
andidates (a 
andi-date fault set may in
lude a single 
andi-date with a single or multiple faults; ormultiple 
andidates ea
h with a single ormultiple faults)
• a dete
tion �ag (Boolean) as to whetherthe diagnosis system has dete
ted a fault
• an isolation �ag (Boolean) as to whetherthe diagnosis system has isolated a 
an-didate or a set of 
andidates 4



In addition, ea
h 
andidate in the 
andi-date set has an asso
iated weight. Candi-date weights are normalized by DXF su
hthat their sum for any given diagnosis is 1.3.2 Run-Time Ar
hite
tureFigure 2 shows an overview of the DXF run-timear
hite
ture, its software 
omponents and data�ows.
data source

scenario
loader

scenario diagnosis
algorithm

scenario
recorder

scenario

results
evaluator

sends fault injection
and sensor data

sends diagnoses

sends commands
and sensor values

spawns all processes

processed
byFigure 2: DXF run-time ar
hite
tureWe next provide a brief des
ription of ea
h of theDXF's software 
omponents.S
enario Loader (SL): SL is the main entrypoint for running the diagnosti
 s
enarios.SL exe
utes the S
enario Data Sour
e, theS
enario Re
order, and all Diagnosti
 Al-gorithms. SL ensures system stability and
lean-up upon s
enario 
ompletion and is theonly long-living pro
ess. The S
enario DataSour
e, S
enario Re
order and all Diagnos-ti
 Algorithms are spawned for ea
h s
enarioand a Diagnosti
 Algorithm is for
ibly killedif it does not terminate after a predeterminedtime-out.S
enario Data Sour
e (SDS): SDS providess
enario data from previously re
ordeddatasets. The provenan
e of the data(whether hardware or simulation) dependson the system in question. A s
enariodataset 
ontains sensor readings, 
ommands(note that the majority of 
lassi
al MBDliterature does not dis
ern 
ommands fromobservations), and fault inje
tion information(to be sent ex
lusively to SR). SDS publishesdata following a wall-
lo
k s
hedule spe
i�edby timestamps in the s
enario �les.S
enario Re
order (SR): SR re
eives fault in-je
tion data and diagnosis data into a results�le. The results �le 
ontains a number oftime-series whi
h are des
ribed below. Thesetime-series are used by the evaluation mod-ule for the 
omputation of metri
s. SR isthe main timing authority, i.e., it timestampsea
h message upon arrival before re
ording itto the results �le.Diagnosti
 Algorithm (DA): A DA re
eivessensor and 
ommand data, performs diagno-sis, and sends the diagnosis results ba
k. As

long as the DAs 
omply to the provided API,there are no restri
tions on a DA; for exam-ple a DA may read pre
ompiled data, or useexternal (user supplied) libraries, et
.Evaluator: The evaluator 
omputes a number ofprede�ned metri
s (
f. Se
. 3.3).Consider the progression of a single diagnosti
 s
e-nario. A typi
al one is shown in Fig. 3, wherethe fault inje
tions, dete
tion, and isolation areall treated as signals. These signals de�ne a num-ber of time points and intervals, as is seen below.
· · ·· · ·
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· · ·
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· · ·

titfirtffi n
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t
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· · ·

1 2

fault 1

signal

fault 2

signal

detection

signal (D)

isolation

signal (I)

shutdown

tdt⋆

1 , t⋆

2Figure 3: Typi
al diagnosti
 s
enarioIn the beginning of ea
h s
enario, a DA is givensome startup time to initialize, read data, et
.Even though sensor observations 
ould be avail-able during startup, fault inje
tions are not al-lowed during this interval. Fault inje
tion and di-agnosis take pla
e during the diagnosis interval.Finally, a DA is given some shutdown time to ter-minate before being killed.Table 1 summarizes the data 
olle
ted by the SRfor ea
h s
enario. These data are used for 
omput-ing the various metri
s dis
ussed in Se
. 3.3. Thetime of �rst dete
tion td is derived from the dete
-tion signal D while the time of the last isolationis 
omputed from the isolation signal I.Var. Type Des
ription Origin
td time-stamp �rst dete
tion DA
ti time-stamp last isolation DA
Cs real startup CPU 
y
les SL
C time-series CPU 
y
les per step SL
M time-series memory in use SL
ω⋆ set inje
ted fault SDS
t⋆i time-stamp inje
tion of fault i SDS
Ω set of sets 
andidate diagnoses DA
W set of reals 
andidate weights DATable 1: S
enario exe
ution summary dataThe set Ω = {ω1, ω2, . . . , ωn} 
ontains all diag-noses 
omputed by the DA at time ti. If a DAnever asserts the isolation signal I (i.e., ti =
∞), it is assumed that Ω = ∅. Ea
h 
andidate5



in Ω is a

ompanied by a weight W . We de-note the set of weights of all diagnoses in Ω as
W = {W (ω1), W (ω2), . . . , W (ωn)}. The SR en-sures that

∑

ω∈Ω

W (ω) = 1 (1)by dividing ea
h weight W (ω) with the sum of allweights. If a DA fails to provide W , it is assumedthat all diagnoses are of the same weight.In addition to the time-points de�ned in Ta-ble 1, the isolation signal in Fig. 3 shows the time
tffi the DA has isolated a fault for the �rst time,and the time tfir the DA has retra
ted its isolationassumption (for example be
ause more faults areexpe
ted). Note that tffi and tfir are not 
urrentlyused by the evaluator for 
omputing the metri
s.3.3 Diagnosti
 Performan
e Metri
sThe metri
s for evaluating diagnosti
 algorithmperforman
e depend on the parti
ular use of thediagnosti
 system, the users involved, and theirobje
tives.Several institutions and organizations have pro-posed metri
s that measure diagnosti
 perfor-man
e (Committee E-32, 2008; DePold et al.,2004; 2006; Metz, 1978; Orsagh et al., 2002;Roemer et al., 2005; Barty± et al., 2006). Amongthose, the SAE's �Health and Usage MonitoringMetri
s� (Committee E-32, 2008) de�nes proba-bility of dete
tion and probability of false alarmsas key indi
es for evaluating diagnosti
 algorithmperforman
e.DePold et al. (2004; 2006) introdu
ed metri
sto evaluate the a

ura
y and 
ost e�e
tiveness ofdiagnosti
 systems. This approa
h is based on there
eiving operating 
hara
teristi
s (ROC) analysis(Metz, 1978), whi
h illustrates the trade-o� spa
ebetween the probability of false alarm and theprobability of dete
tion for di�erent signal to noiseratio (SNR) levels. The method is used to test therelative a

ura
y of diagnosti
 systems based ondi�erent threshold settings.In Orsagh et al. (2002), the performan
e met-ri
s are de�ned separately for dete
tion, and iso-lation. For dete
tion, the metri
s in
lude thresh-olds, a

ura
y, reliability, sensitivity to load,speed, or noise, and stability. The isolation met-ri
s in
lude the dete
tion metri
s, but also in
ludemeasures for dis
rimination and repeatability.In this paper, our goal has been to de�ne anumber of metri
s and to give guidelines for theiruse. For DXF, we make a distin
tion between de-te
tion, isolation, and 
omputational performan
eand highlight metri
s for ea
h 
ategory. In gen-eral several other 
lasses of metri
s are possible,in
luding 
ost/utility metri
s, e�ort (in buildingsystems for example) metri
s and also other 
at-egories su
h as fault identi�
ation and fault re-
overy metri
s. The expe
tation is that as theDXF evolves a 
omprehensive list of desired met-ri
 
lasses and 
ategories will be developed to aidframework users in 
hoosing the performan
e 
ri-teria they want to measure.

Metri
 Name Class
Mfd fault dete
tion time dete
tion
Mfn false negative s
enario dete
tion
Mfp false positive s
enario dete
tion
Mda s
enario dete
tion a

u-ra
y dete
tion
Mfi fault isolation time isolation
Merr 
lassi�
ation errors isolation
Mutl utility isolation
Msat 
onsisten
y isolation
Mcpu CPU load 
omputational
Mmem memory load 
omputationalTable 2: Metri
s summaryFor the �rst implementation of the DXF frame-work, we de�ned 10 metri
s whi
h are summarizedin Table 2. These metri
s are based on extensivesurvey of literature and talking to experts fromvarious �elds (Kurtoglu et al., 2008). These met-ri
s are de�ned next.3.3.1 Dete
tion Metri
sThe di�eren
e between dete
tion and isolationmakes pra
ti
al sense. A DA may announ
e a faultdete
tion before it knows the root 
ause of failure(for example, a dete
tion announ
ement 
an bebased solely on surpassing sensor threshold val-ues). A dete
tion signal 
annot be retra
ted bya DA while it is legal to retra
t an isolation an-noun
ement when more faults are expe
ted. Thedete
tion metri
s in
lude:Fault Dete
tion Time The fault dete
tiontime (the rea
tion time for a diagnosti
 engine todete
t an anomaly) is dire
tly measured as:

Mfd = td (2)The fault dete
tion time is reported in millise
-onds and is 
omputed only for non-nominal s
e-narios for whi
h a DA asserts the time dete
tionsignal at least on
e.False Negative S
enario The false negatives
enario metri
 measures whether a fault is missedby a diagnosti
 algorithm and is de�ned as:
Mfn =

{

1, if td =∞
0, otherwise (3)False Positive S
enario The false positive s
e-nario metri
 penalizes DAs whi
h announ
e spu-rious faults and is de�ned as:

Mfp =

{

1, if td < t⋆

0, otherwise (4)where t⋆ =∞ for nominal s
enarios (i.e., s
enariosduring whi
h no fault is inje
ted).Note that the above two metri
s (Mfn and Mfp)are 
omputed for ea
h s
enario and their 
ompu-tation is based on the times of inje
ting and an-noun
ing the fault. We also have false negative6



and false positive 
omponents in the 
ontext ofindividual diagnosti
 
andidates (re
all that a DAsends a set of diagnosti
 
andidates at isolationtime) whi
h we will dis
uss later in this paper.S
enario Dete
tion A

ura
y The s
enariodete
tion a

ura
y metri
 is 
omputed from Mfnand Mfp:
Mda = 1−max(Mfn, Mfp) (5)

Mda is 1 if the s
enario is true positive or truenegative and 0 otherwise (equivalently, Mda = 0if Mfn = 1 or Mfp = 1, and Mda = 1 otherwise).
Mda splits all s
enarios into �true� and �false�. In-
orre
t s
enarios are further 
lassi�ed into falsepositive (Mfp) and false negative (Mfn). Corre
ts
enarios are true positive if there are inje
tedfaults and true negative otherwise (the latter sep-aration into true positives and true negatives israrely of pra
ti
al importan
e).3.3.2 Isolation Metri
sComputation of isolation metri
s is more involveddue to the fa
t that an isolation 
an be retra
ted.Furthermore, an isolation event 
ontains a set ofdiagnosti
 
andidates and we need metri
s that
ompare this set of 
andidates to the inje
tedfault. A

ordingly, we have de�ned several met-ri
s whi
h are 
omputed from the set of diagnosti

andidates Ω and the inje
ted fault ω∗ (
lassi�
a-tion errors, and utility metri
s). Consider a singlediagnosti
 
andidate ω ∈ Ω. Both the 
andidate ωand the inje
ted fault ω⋆ are sets of 
omponents.The interse
tion of those two sets are the properlydiagnosed 
omponents. The false positives are the
omponents that have been 
onsidered faulty butare not a
tually faulty. The false negatives are the
omponents that have been 
onsidered healthy butare a
tually faulty. Figure 4 shows how ω and ω⋆partition all 
omponents into four sets.

positives

ω ∩ ω
⋆

true

negatives

COMPS \ {ω ∪ ω
⋆}

true

COMPSω
⋆ (injected fault)

ω
(c

a
n
d
id

a
te

)

ω
⋆ \ ω

false
negatives

ω \ ω
⋆

false
positives

Figure 4: The diagnosti
 
andidate ω and the in-je
ted fault ω⋆ partition COMPS in four setsFalse positives and false negatives in this 
on-text relate to individual 
andidates, i.e., mis
lassi-�ed 
omponents in a single diagnosti
 
andidate.There are also s
enario-based false negative andfalse positive metri
s (de�ned earlier in this se
-tion), whi
h summarize whole s
enarios and arenot to be 
onfused with the false positives andfalse negatives in the 
ontext of isolation metri
s.

For brevity we use the notation in Table 3 forthe Fig. 4 sets.Var. Set Des
ription
f |COMPS| all 
omponents
n |ω⋆ \ ω| false negatives
N |COMPS \ ω| the set of healthy 
ompo-nents from the viewpointof the DA
n̄ |ω \ ω⋆| false positives
N̄ |ω| the set of faulty 
ompo-nents from the viewpointof the DATable 3: Notation for sizes of some frequently usedsetsThe isolation metri
s in
lude (for a detailed dis-
ussion and derivation of the isolation metri
s, 
f.Appendix A):Fault Isolation Time Consider an inje
tedfault ω⋆ = {c1, c2, . . ., cn} with the individ-ual 
omponent faults inje
ted at times T ⋆ =

〈t⋆1, t
⋆
2, . . . , t

⋆
n〉. Next, from the isolation signal,we 
onstru
t a sequen
e of isolation times forea
h 
omponent. This sequen
e 
ontaining time-stamps of positive fronts of the isolation signal isdenoted as Ti (Ti = 〈t1, t2, . . . , tn〉). Note that

t⋆k < ti for 1 ≤ k ≤ n. The fault isolation time isthen 
omputed as:
Mfi =

1

n

n
∑

k=1

ik − t⋆k (6)If there is no isolation for spe
i�
 fault (i.e., afault is missed) then there is no di�eren
e ik − t⋆k
omputed for that fault. E.g., if in a fault ω⋆ =
〈c1, c2, c3〉, c1 is isolated, c2 is not, and c3 is; theisolation time i2−t⋆2 is unde�ned and not in
ludedin the average (n = 2).The fault isolation time is reported in millise
-onds and is 
omputed only for non-nominal s
e-narios for whi
h a DA asserts the time isolationsignal at least on
e.Classi�
ation Error The 
lassi�
ation errormetri
 is de�ned as:

Merr =
∑

ω∈Ω

W (ω)(|ω ⊖ ω⋆|) (7)In Eq. (7), ω⊖ω⋆ denotes the symmetri
 di�eren
eof the ω and ω⋆ sets, i.e., the number of mis
lassi-�ed 
omponents. Note that |ω ⊖ ω⋆| = n + n̄ and
f = N + N̄ .Utility The utility metri
 measures the work for
orre
tly identifying all false negatives and falsepositives in a diagnosti
 
andidate. Alternatively,the utility metri
 measures the expe
ted number7



of 
alls to a testing ora
le that always determines
orre
tly the health state of a 
omponent. Notethat this metri
s assumes an equal 
ost for �xing afalse negative and a false positive. The derivationof the utility metri
 is given in Appendix A. Theutility metri
 (per 
andidate) is:
mutl = 1−

n(N + 1)

f(n + 1)
−

n̄(N̄ + 1)

f(n̄ + 1)
(8)Computing a weighted average of mutl gives us the�per s
enario� utility metri
:

Mutl =
∑

ω∈Ω

W (ω)mutl(ω
⋆, ω) (9)The utility metri
 is, in fa
t, a 
ombination of two�half-utilities��the system repair utility and the di-agnosis repair utility. The latter are de�ned asse
ondary metri
s in Se
. 3.3.4 and dis
ussed indetail in Appendix A.Note that for Ω = ∅, the framework automati-
ally assumes a single �all-healthy� diagnosti
 
an-didate with weight 1 at the time of isolation.This a�e
ts the Merr and Mutl metri
s. For ex-ample, in a non-nominal false-negative s
enario,

Merr = |ω⋆|.Consisten
y The next metri
 
omes from MBD(de Kleer et al., 1992). It only applies to systemsfor whi
h (1) there is a formally de�ned systemdes
ription (model), (2) one 
an derive a formallyde�ned observation from the sensor data, and (3)the notion of 
onsisten
y is formally de�ned. We
ompute the 
onsisten
y metri
 for the syntheti
models and s
enarios.Consider a model SD and an observation α (αis derived from the sensor data at time t∗). If SDand α are senten
es in propositional logi
 (as isthe 
ase with the syntheti
 models and s
enarios)then the set of 
onsistent diagnoses is de�ned as:
Ω⊤ = {ω ∈ Ω : SD ∧ α ∧ ω 6|=⊥} (10)The set Ω⊤ 
an be 
omputed from SD, α, and Ωby using a DPLL-solver (Davis et al., 1962). The
onsisten
y metri
 
an be 
omputed from Ω⊤, Wand the inje
ted fault ω⋆:

Msat =
∑

ω∈Ω⊤ 6|=⊥

W (ω)
|ω∗|

|ω|
(11)If ω∗ is a minimum 
ardinality (MC) fault, thenit follows that |ω| ≥ |ω∗| and 0 ≤ Msat ≤ 1. Msat
redits DAs for the 
onsistent 
andidates only andea
h 
andidate is (additionally) weighted with its(inverse) 
ardinality (hen
e diagnosti
 
andidatesof smaller 
ardinality 
ontribute more).3.3.3 Computational Metri
sCPU Load The CPU load during an experi-ment is 
omputed as:

Mcpu = Cs +
∑

c∈C

c (12)

where Cs is the amount of CPU time spent bya DA during startup and C is a ve
tor with thea
tual CPU time spent by the DA at ea
h timestep. The CPU load is reported in millise
onds.Memory Load The memory load is de�ned as:
Mmem = max

m∈M
m (13)where M is a ve
tor with the maximum memorysize allo
ated at ea
h step of the diagnosti
 session.The memory load is reported in Kb.3.3.4 Se
ondary Metri
sThe 
on
ept of 
lassi�
ation errors 
an be 
om-puted using di�erent metri
s. For example, a di-agnosti
ian may 
ompute the isolation a

ura
yusing:

Mia =
∑

ω∈Ω

W (ω)(f − |ω ⊖ ω⋆|) (14)In general a diagnosti
ian has to perform extrawork to �verify� all misdiagnosed 
omponents in
ω. Suppose that the diagnosti
ian has a

ess to atest ora
le that states if a 
omponent c is healthyor faulty. The system repair utility is then de�nedas normalized average number of ora
le 
alls foridentifying all false negative 
omponents and isde�ned as:

msru = 1−
n(N + 1)

f(n + 1)
(15)The �per s
enario� system repair utility is the de-�ned as:

Msru =
∑

ω∈Ω

W (ω)msru(ω⋆, ω) (16)Similarly, a diagnosti
ian has to eliminate all falsepositive 
omponents in a 
andidate. This is re-�e
ted in the diagnosis repair utility:
mdru = 1−

n̄(N̄ + 1)

f(n̄ + 1)
(17)The diagnosis repair utility for a set of diagnosti

andidates is de�ned as:

Mdru =
∑

ω∈Ω

W (ω)mdru(ω⋆, ω) (18)
Mutl, Msru, and Mdru are dis
ussed in detail inAppendix A.The 
hoi
e of whi
h utility metri
 is best fora parti
ular use depends on the relative 
osts ofthe available repair a
tions. For example, if 
om-ponents are nearly free, but the a
t of repla
ingthem is expensive then it makes no sense to iden-tify whi
h erroneously repla
ed 
omponents werea
tually 
orre
t (thus msru is preferred). 8



3.3.5 System Metri
sThe metri
s (Mfn, Mfp, Mda,Mfd, Mfi, Merr, Mutl,
Msat, Mcpu, Mmem, Msru, and Mdru) are based ona single s
enario. To re
eive �per system� resultswe 
ombine the metri
s of ea
h s
enario using un-weighted average. For example, if a system SDis tested with s
enarios S = {S1, S2, . . . , Sn}, the�per system� utility of SD is 
omputed as:

M̄utl =
∑

S∈S

1

|S|
Mutl(SD, S) (19)where Mutl(SD, S) is the �per s
enario� utility ofsystem SD and s
enario S.The rest of the �per system� metri
s (M̄fd, M̄fi,

M̄err, M̄sat, M̄cpu, M̄mem, M̄sru, and M̄dru) arede�ned in a way analogous to M̄utl.Note that Mfn, Mfp, and Mda are 
alled falsenegative s
enario, false positive s
enario and s
e-nario dete
tion a

ura
y, respe
tively. The analo-gous �per system� metri
s M̄fn, M̄fp, and M̄da are
alled false negative rate, false positive rate, anddete
tion a

ura
y. M̄da, for example, representsthe ratio of the number of 
orre
tly 
lassi�ed 
asesto the total number of 
ases. The latter �per sys-tem� metri
s (M̄fn, M̄fp, and M̄da) are equivalentto the ones in Kurtoglu et al. (2009). In this paperwe �rst de�ne ea
h metri
 �per s
enario� and then�per system�.4 EMPIRICAL EVALUATIONIn order to empiri
ally evaluate the frameworkpresented in the previous se
tion we sele
ted 2
ase studies. The �rst 
ase study was performedon an Ele
tri
al Power System testbed (EPS) lo-
ated in the ADAPT Lab of NASA Ames Resear
hCenter (Poll et al., 2007). This system mimi
s
omponents and 
on�gurations in a power sys-tem that might be found on an aerospa
e vehi
le.The se
ond 
ase study was performed on a set of14 syntheti
 systems 
alled the 74XXX/ISCAS85
ir
uits (Brglez and Fujiwara, 1985), whi
h arepurely 
ombinational, i.e., they 
ontain no �ip-�ops or other memory elements, represent well-known ben
hmark models of ISCAS85 
ir
uits.The empiri
al evaluation as part of the abovetwo 
ase studies employed 13 diagnosti
 algo-rithms (DAs) (Kurtoglu et al., 2009). The resultsfrom the DAs were used to 
ompute metri
s that
an are used to evaluate the DAs performan
e onthe aforementioned systems. We �rst present theDAs used in the evaluation and then present thetwo 
ase studies.4.1 Diagnosti
 AlgorithmsWe have experimented with a total of 13 DAs (
f.Table 4 for an overview). In what follows we pro-vide a brief des
ription of ea
h DA.FACT: FACT (Roy
houdhury et al., 2009) is amodel-based diagnosis system that uses hy-brid bond graphs, and models derived fromthem, at all levels of diagnosis, in
luding

DA Systems Algorithm TypeFACT AL model-basedFault Buster A,AL statisti
alGoalArt A �ow-modelsHyDE A,AL model-basedHyDE-S AL model-basedLydia S,A,AL model-basedNGDE S,AL model-basedProADAPT A,AL probabilisti
Ra
erX AL 
hange dete
tionRODON S,A,AL model-basedRulesRule AL rule-basedStanfordDA A optimizationWizards of Oz A,AL model-basedTable 4: Diagnosti
 Algorithms (S = syntheti
, A= ADAPT, AL = ADAPT-Lite)fault dete
tion, isolation, and identi�
ation.Faults are dete
ted using an observer-basedapproa
h with statisti
al te
hniques for ro-bust dete
tion. Faults are isolated by mat
h-ing qualitative deviations 
aused by faulttransients to those predi
ted by the model.For systems with few operating 
on�gura-tions, fault isolation is implemented in a 
om-piled form to improve performan
e.Fault Buster: Fault Buster is based on a 
ombi-nation of multivariate statisti
al methods, forthe generation of residuals. On
e the dete
-tion has been done a neural network performs
lassi�
ation for 
omputing isolation.GoalArt: GoalArt Diagnosti
 System (Larsson,1996) is based on multilevel �ow models,whi
h are 
risp des
riptions of �ows of mass,energy, and information. It is a fast root 
auseanalysis with linear 
omputational 
omplex-ity. The main advantage is a very e�
ientknowledge engineering. The algorithm hasbeen proven in several 
ommer
ial appli
a-tions.HyDE: HyDE (Hybrid Diagnosis Engine) (Na-rasimhan and Brownston, 2007) is a model-based diagnosis engine that uses 
onsisten
ybetween model predi
tions and observationsto generate 
on�i
ts whi
h in turn drive thesear
h for new fault 
andidates. HyDE usesdis
rete models of the system and a dis
retiza-tion of the sensor observations for diagnosis.HyDE-S: HyDE-S uses the HyDE system butruns it on interval values hybrid models andthe raw sensor data.Lydia: Lydia is a de
larative modeling languagespe
i�
ally developed for Model-Based Diag-nosis (MBD). The language 
ore is proposi-tional logi
, enhan
ed with a number of syn-ta
ti
 extensions for ease of modeling. Thea

ompanying toolset 
urrently 
omprises anumber of diagnosti
 engines and a simulatortool (Feldman et al., 2009). 9



NGDE: An Allegro Common Lisp implementa-tion of the 
lassi
 GDE. NGDE (de Kleer,2009) uses a minimum-
ardinality 
andi-date generator to 
onstru
t diagnoses. ForADAPT-Lite it uses interval 
onstraints. Nomodel of dynami
s.ProADAPT: ProADAPT (Mengshoel, 2007)pro
esses all in
oming environment data (ob-servations from a system being diagnosed),and a
ts as a gateway to a probabilisti
 in-feren
e engine. The inferen
e engine uses anArithmeti
 Cir
uit evaluator whi
h is 
om-piled from Bayesian network models. The pri-mary advantage of using arithmeti
 
ir
uits isspeed, whi
h is key in resour
e bounded envi-ronments.Ra
erX: Ra
erX is a dete
tion-only algorithmwhi
h dete
ts a per
entage 
hange in indi-vidual �ltered sensor values to raise a faultdete
tion �ag.RODON: RODON (Karin et al., 2006) is basedon the prin
iples of the General Diagnosti
Engine (GDE) as des
ribed by de Kleer andWilliams (1987) and the G+DE (Heller andStruss, 2001). RODON uses 
ontradi
tions(
on�i
ts) between the simulated and the ob-served behavior to generate hypotheses aboutpossible 
auses for the observed behavior. Ifthe model 
ontains failure modes besides thenominal behavior, these 
an be used to verifythe hypotheses, whi
h speeds up the diagnos-ti
 pro
ess and improve the results.RulesRule: RulesRule is a rule-based isolation-only algorithm. The rule base was developedby analyzing the sample data and determin-ing 
hara
teristi
 features of fault. There isno expli
it fault dete
tion though isolationimpli
itly means that a fault has been de-te
ted.StanfordDA: StanfordDA is an optimization-based approa
h to estimating fault states inDC power systems. The model in
ludes faults
hanging the system topology along with sen-sor faults. The approa
h 
an be 
onsidered asa relaxation of the mixed estimation problem.The authors have developed a linear model ofthe 
ir
uit and pose a 
onvex problem for es-timating the faults and other hidden states.A sparse fault ve
tor solution is 
omputed byusing L1 regularization (Zymnis et al., 2009).Wizards of Oz: Wizards of Oz (Grastien andKan-John, 2009) is a 
onsisten
y-based algo-rithm. The model of the system 
ompletelyde�nes the stable (stati
) output of the sys-tem in 
ase of normal and faulty behavior.Given a new 
ommand or new observations,the algorithm waits for a stable state and
omputes the minimum diagnoses 
onsistentwith the observations and the previous diag-noses.

4.2 Case Study I: ADAPT EPSWe next des
ribe the ADAPT EPS system, thediagnosti
 s
enarios and the experimental results.4.2.1 System Des
riptionThe ADAPT EPS testbed provides a means forevaluating DAs through the 
ontrolled insertionof faults in repeatable failure s
enarios. The EPStestbed in
orporates low-
ost 
ommer
ial o�-the-shelf (COTS) 
omponents 
onne
ted in a systemtopology that provides the fun
tions typi
al ofaerospa
e vehi
le ele
tri
al power systems: en-ergy 
onversion/generation (battery 
hargers), en-ergy storage (three sets of lead-a
id batteries),power distribution (two inverters, several relays,
ir
uit breakers, and loads) and power manage-ment (
ommand, 
ontrol, and data a
quisition).The EPS delivers Alternating Current (AC) andDire
t Current (DC) power to loads, whi
h in anaerospa
e vehi
le 
ould in
lude subsystems su
h asthe avioni
s, propulsion, life support, environmen-tal 
ontrols, and s
ien
e payloads. A data a
qui-sition and 
ontrol system 
ommands the testbedinto di�erent 
on�gurations and re
ords data fromsensors that measure system variables su
h as volt-ages, 
urrents, temperatures, and swit
h positions.Data are presently a
quired at a 2 Hz rate.The s
ope of the ADAPT EPS testbed used inthis 
ase study is shown Fig. 5. Power storageand distribution elements from the batteries to theloads are within s
ope; there are no power gener-ation elements de�ned in the system 
atalog. Wehave 
reated two systems from the same physi
altestbed, ADAPT-Lite and ADAPT, whi
h are de-s
ribed next.ADAPT-Lite ADAPT-Lite in
ludes a singlebattery and a single load as indi
ated by thedashed lines in the s
hemati
 (Fig. 5). The ini-tial 
on�guration for ADAPT-Lite data has all re-lays and 
ir
uit breakers 
losed and no nominalmode 
hanges are 
ommanded during the s
enar-ios. Hen
e, any noti
eable 
hanges in sensor val-ues may be 
orre
tly attributed to faults inje
tedinto the s
enarios. Furthermore, ADAPT-Lite isrestri
ted to single faults.ADAPT ADAPT in
ludes all batteries andloads in the EPS. The initial 
on�guration forADAPT has all relays open and nominal mode
hanges are 
ommanded during the s
enarios. The
ommanded 
on�guration 
hanges result in ad-justments to sensor values as well as transientswhi
h are nominal and not indi
ative of inje
tedfaults, in 
ontrast to ADAPT-Lite. Finally, mul-tiple faults may be inje
ted in ADAPT. The dif-feren
es between ADAPT-Lite and ADAPT aresummarized in Table 5.4.2.2 Diagnosti
 ChallengesThe ADAPT EPS testbed o�ers a number of 
hal-lenges to DAs. It is a hybrid system with multiplemodes of operation due to swit
hing elements su
h10
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Figure 5: ADAPT EPSAspe
t ADAPT-Lite ADAPT
|COMPS| 37 173# of modes 93 430relays initially 
losed open
ir
uit-breakers ini-tially 
losed 
losednominal mode 
hanges no yesmultiple faults no yesTable 5: ADAPT and ADAPT-Lite di�eren
esas relays and 
ir
uit breakers. There are 
ontin-uous dynami
s within the operating modes and
omponents from multiple physi
al domains, in-
luding ele
tri
al, me
hani
al, and hydrauli
. It ispossible to inje
t multiple faults into the system.Furthermore, timing 
onsiderations and transientbehavior must be taken into a

ount when design-ing DAs. For example, when power is input to

the inverter there is a delay of a few se
onds be-fore power is available at the output. For someloads, there is a large 
urrent transient when thedevi
e is turned on. System voltages and 
urrentsdepend on the loads atta
hed, and noise in sensordata in
reases as more loads are a
tivated. Mea-surement noise o

asionally exhibits spikes and isnon-Gaussian. The 2 Hz sample rate limits thetypes of features that may be extra
ted from mea-surements. Finally, there may be insu�
ient in-formation and data to estimate parameters of dy-nami
 models in 
ertain modeling paradigms.4.2.3 Fault Inje
tion and S
enariosADAPT supports the repeatable inje
tion of faultsinto the system in three ways:Hardware-Indu
ed Faults: These faults arephysi
ally inje
ted at the testbed hardware.A simple example is tripping a 
ir
uit breakerusing the manual throw bars. Another is us-11



ing the power toggle swit
h to turn o� aninverter. Faults may also be introdu
ed inthe loads atta
hed to the EPS. For example,the valve 
an be 
losed slightly to vary theba
k pressure on the pump and redu
e the�ow rate.Software-Indu
ed Faults: In addition to faultinje
tion through hardware, faults may be in-trodu
ed via software. Software fault inje
-tion in
ludes one or more of the following: (1)sending 
ommands to the testbed that are notintended for nominal operations; (2) blo
king
ommands sent to the testbed; and (3) alter-ing the testbed sensor data.Real Faults: In addition the aforementioned twomethods, real faults may be inje
ted into thesystem by using a
tual faulty 
omponents. Asimple example in
ludes a burned out lightbulb. This method of fault inje
tion was notused in this study.For results presented in this 
ase study, onlyabrupt dis
rete (
hange in operating mode of 
om-ponent) and parametri
 (step 
hange in parametervalue) faults are 
onsidered. Nominal and failures
enarios are 
reated using hardware and software-indu
ed fault inje
tion methods. The diagnosti
algorithms are tested against a number of s
enar-ios, ea
h approximately four minutes in length.The ADAPT-Lite experiments in
lude 36 nom-inal and 56 single-fault s
enarios. Table 6 sum-marizes the type of faults used for ADAPT-Lite.Type Subtype Fault #battery - degraded 3
ir
. breaker - failed-open 5inverter - failed-o� 2load fan failed-o� 2over-speed 2under-speed 2relay - stu
k-open 6sensor position stu
k 11
urrent, phase o�set 12angle, speed, stu
k 11temp., voltage Total: 56Table 6: ADAPT-Lite faultsThe ADAPT experiments have 48 nominal and
111 fault s
enarios, whi
h in
lude single-fault,double-fault, and triple-faults. Figure 6 shows thefault-
ardinality distribution of the ADAPT s
e-narios. Table 7 summarizes the type of faults usedfor ADAPT. The majority of faults involve sensors(102) and loads (30).4.2.4 Experimental ResultsWe next 
ompute the metri
s des
ribed in Se
. 3.3for the ADAPT-Lite and ADAPT s
enarios.

41 double-fault

scenarios (26%)

51 single-fault

scenarios (32%)

19 triple-fault scenarios (12%)

48 nominal

scenarios

(30%)Figure 6: Fault-
ardinality distribution of theADAPT s
enariosType Subtype Fault #battery - degraded 1
ir
uitbreaker - failed-open 18inverter - failed-o� 10load basi
 failed-o� 1fan failed-o� 5over-speed 2under-speed 3light bulb failed-o� 14pump failed-o� 3blo
ked 2relay stu
k-
losed 3stu
k-open 26sensor position stu
k 26
urrent, �ow,light, o�set 35phase angle,speed, stu
k 41temp., voltage Total: 190Table 7: ADAPT faultsADAPT-Lite The DA ben
hmarking resultsfor ADAPT-Lite are shown in Table 8, with graph-i
al depi
tions of some of the tabular data pre-sented in Fig. 7. Figure 7 shows (1) Merr by DA(top-left), (2) Msru and Mdru by DA (top-right),(3) Mfd and Mfi by DA (bottom-left), and (4) Mfnand Mfp (bottom-right). No DA dominates overall metri
s used in ben
hmarking; nine of elevenDAs tested are best or se
ond best with respe
t toat least one of the metri
s.The bottom-right plot of Fig. 7 shows the falsepositive and false negative rates. The 
orrespond-ing dete
tion a

ura
y 
an be seen in Table 8.As is evident from the de�nition of the metri
sin Se
. 3.3, a DA that has low false positive andnegative rates has high dete
tion a

ura
y. Falsepositives are 
ounted in the following two situa-12



Dete
tion Isolation ComputationDA M̄fd M̄fn M̄fp M̄da M̄fi M̄err M̄utl M̄cpu M̄memFACT 1 785 0 0.11 0.89 10 798 11 0.975 15 815 4 271Fault Buster 155 0.5 0.01 0.68 − 56 0.685 1 951 2 569HyDE 13 355 0.46 0 0.72 13 841 45 0.79 23 418 5 511HyDE-S 121 0.04 0.38 0.6 683 66 0.791 573 5 366Lydia 232 0.18 0.01 0.88 232 100.3 0.785 1 410 1 861NGDE 194 0.13 0.03 0.89 14 922 44.5 0.833 21 937 73 031ProADAPT 4 732 0.05 0.01 0.96 7 104 10 0.955 1 905 1 226Ra
erX 77 0.2 0.03 0.85 − 56 0.685 146 3 619RODON 4 204 0.04 0.01 0.97 12 364 4 0.983 12 050 28 870RulesRule 949 0.09 0.33 0.62 949 63 0.818 167 3 784Wizards of Oz 12 202 0.5 0 0.7 12 327 43 0.769 1 153 1 682Table 8: ADAPT-Lite metri
stions: for nominal s
enarios where the DA de
laresa fault; and for faulty s
enarios where the DA de-
lares a fault before any fault is inje
ted. Noise inthe data and in
orre
t models are the main 
ausesof false positives. For example, the leftmost plotof Fig. 8 shows a nominal run with spike in sensorIT240 (battery 2 
urrent); most of the DAs de-
lare a false positive for this s
enario. Many falsenegatives are 
aused by s
enarios in whi
h a sen-sor reading is stu
k within the nominal range ofthe sensor. The middle plot of Fig. 8 shows an ex-ample of a sensor-stu
k failure for voltage sensorE261, the downstream voltage of relay EY260.The 
lassi�
ation error metri
 for ea
h DA isshown in the top-left plot of Fig. 7, where theerror 
ontributions of s
enarios labeled false neg-ative, false positive, and true positive are noted.Many DAs have di�
ulties distinguishing betweensensor-stu
k and sensor-o�set faults. The distin
-tion in the fault behavior is that stu
k has zeronoise while o�set has the noise of the original sig-nal; the rightmost plot in Fig. 8 shows the fanspeed sensor ST516 with sensor-o�set and sensor-stu
k faults. In many s
enarios, the sensor-stu
kfaults are set to the minimum or maximum valueof the sensor or held at its last reading. The latter
ase presents the most di�
ulties to DAs.
Mfd and Mfi are shown in the bottom-left plot ofFig. 7. Ra
erX does not have an isolation time asit is a dete
tion-only DA (and its dete
tion timeis very low). Note that Mfd ≤ Mfi, hen
e thebottom-left plot of Fig. 7 shows the isolation timesta
ked on the dete
tion time (assume that partof the time goes into dete
tion �rst and then intoisolation).The top-right plot of Fig. 7 shows the system re-pair utilty, Msru, and the diagnosis repair utility,

Mdru. The diagnosis repair utility is very 
lose to 1for all DAs, whi
h re�e
ts the small fault 
ardinal-ity and diagnosis ambiguity groups for the system.The number of 
omponents that a DA 
onsidersfaulty, N̄ , in any given s
enario is typi
ally 
loseto the number of faults inje
ted in the s
enario.Sin
e N̄ is mu
h less than the number of 
ompo-nents, f , it is evident from equation (17) that Mdruapproa
hes 1. Furthermore, sin
e the number of

healthy 
omponents, N , as determined by the DAis larger than the number of faulty 
omponents,
N̄ , whereas n is typi
ally not mu
h di�erent from
n̄, the system repair utility is smaller than the di-agnosis repair utility.Note that HyDE has been used by two di�er-ent modelers of ADAPT-Lite. HyDE was mod-eled primarily with the larger and more 
omplexADAPT in mind and had a poli
y of waiting fortransients to settle before requesting a diagnosis.The same poli
y was applied to ADAPT-Lite aswell, even though transients in ADAPT-Lite 
or-responded stri
tly to fault events; this preventedfalse positives in ADAPT but negatively impa
tedthe timing metri
 in ADAPT-Lite. On the otherhand, HyDE-S was modeled only for ADAPT-Lite and did not in
lude a lengthy time-out pe-riod for transients to settle. HyDE-S had dramat-i
ally smaller mean dete
tion and isolation times(
f. the bottom-left plot of Fig. 7) with roughlythe same Merr (
f. Table 8) as HyDE. This illus-trates the impa
t that modeling and implemen-tation de
isions have on DA performan
e. Whilethis gives some insight into trade-o�s present inbuilding models, in this work we did not de�nemetri
s that dire
tly address the ease or di�
ultyof building models of su�
ient �delity for the di-agnosis task at hand.As it is visible from Table 8, there exist sig-ni�
ant di�eren
es in Mcpu and Mmem. Part ofthese di�eren
es 
an be attributed to the operat-ing system (Linux or WindowsTM). RODON wasthe only Java DA that was run on WindowsTM,whi
h adversely a�e
ted its memory usage metri
.ADAPT The empiri
al DA ben
hmarking re-sults for ADAPT are shown in Table 9. Fig-ure 9 shows (1) Merr by DA (top-left), (2) Msruand Mdru by DA (top-right), (3) Mfd and Mfi byDA (bottom-left), and (4) Mfn and Mfp (bottom-right). Five of eight DAs tested were best or se
-ond best with respe
t to at least one of the metri
sfor ADAPT.The 
omments in the ADAPT-Lite dis
ussionabout noise and sensor stu
k apply here as well.13
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Figure 7: ADAPT-Lite metri
sAdditionally, false positives also result from nom-inal 
ommanded mode 
hanges in whi
h the relayfeedba
k did not 
hange status as of the next datasample after the 
ommand. Here is an extra
tfrom one of the input s
enario �les that illustratesthis situation:
ommand �120950 EY275_CL = false;sensors �121001 {..., ESH275 = true, ... };sensors �121501 {..., ESH275 = false, ... };A 
ommand is given at 120.95 se
onds to open re-lay EY275. The asso
iated relay position sensordoes not indi
ate open as of the next sensor dataupdate 51 millise
onds later. This is nominal be-havior for the system. A DA that does not a

ountfor this delay will indi
ate a false positive in this
ase.The dete
tion and isolation times are generallywithin the same order of magnitude for the di�er-ent DAs (
f. the bottom-left plot of Fig. 9). SomeDAs have isolation times that are similar to itsdete
tion times while others show isolation timesthat are mu
h greater than the dete
tion times.This 
ould re�e
t di�eren
es in reasoning strate-gies or di�eren
es in poli
ies for when to de
larean isolation based on a

umulated eviden
e.The CPU and memory usage are shown in Ta-ble 9. The same 
omment for RODON mentioned

previously in regards to memory usage applieshere. The 
onvex optimization approa
h appliedin the StanfordDA and the 
ompiled arithmeti

ir
uit in ProADAPT lead to very low CPU us-ages.4.2.5 Fault Type and CardinalityAnalysisThe plots on the left-hand side of Fig. 10 showdete
tion a

ura
y for all DAs by fault type forADAPT-Lite and ADAPT. In general, Mda is notvery sensitive to the 
omponent type, ex
ept inthe 
ase of load and sensor faults where it is lower.The data on the battery dete
tion a

ura
y is notrepresentative due to the limited number of faults
enarios 
ontaining battery faults (
f. Table 6and Table 7).The plots on the right-hand side of Fig. 10 show
lassi�
ation errors for all DAs by fault type forADAPT-Lite and ADAPT. While the overall per-forman
e (averaged for all DAs) indi
ates thatmost fault 
ategories result in roughly the samenumber of errors per s
enario, it 
an be seen thata given DA may do better on some faults 
om-pared to others; furthermore, several DAs have thefewest 
lassi�
ation errors for the di�erent faulttypes. We should also note that in this ben
h-marking study, no partial 
redit was given for14
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Figure 8: Examples of sensor readingsDete
tion Isolation ComputationDA M̄fd M̄fn M̄fp M̄da M̄fi M̄err M̄utl M̄cpu M̄memFault Buster 21 255 0.39 0.03 0.70 100 292 193 0.587 10 051 7 119GoalArt 3 268 0.05 0.03 0.93 7 805 154 0.776 149 6 784HyDE 15 612 0.31 0 0.79 20 114 174.3 0.668 28 807 19 135Lydia 16 135 0.2 0.25 0.62 16 135 234.9 0.653 5 715 3 412ProADAPT 1 743 0.02 0.09 0.90 23 544 57 0.915 4 260 778RODON 5 543 0.03 0 0.98 35 792 75.6 0.853 85 331 31 459StanfordDA 3 826 0.05 0.17 0.79 16 816 176.6 0.706 1 012 2 213Wizards of Oz 25 695 0.09 0.16 0.77 50 980 209.2 0.76 17 111 3 390Table 9: ADAPT metri
s results
orre
tly naming the failed 
omponent but in
or-re
tly isolating the failure mode. We realize how-ever, that isolating to a failed 
omponent or line-repla
eable-unit (LRU) in maintenan
e operationsis sometimes all that is required. We plan to re-visit this metri
 in future work.Figure 11 shows the breakdown of 
lassi�
ationerrors by the number of faults in the s
enario. Ingeneral, the number of errors in
reased approxi-mately linearly with the number of faults inje
tedin the s
enario.The errors in the multiple faults
enarios were evenly divided among the faults;for example, if there were four 
lassi�
ation er-rors in a s
enario where two faults were inje
ted,ea
h fault was assigned two errors. We also dida more thorough assessment in whi
h ea
h diag-nosis 
andidate was examined and 
lassi�
ationerorrs were assigned to fault 
ategories based onan understanding of whi
h sensors are a�e
ted bythe faults. The results are similar to evenly divid-ing the errors among the faults and are not shownhere.4.2.6 Metri
 CorrelationsThe 
orrelation matrix shown in Fig. 12 
on-tains the Pearson's linear 
orrelation 
oe�
ientsbetween ea
h metri
 for the industrial systemsADAPT and ADAPT-Lite.Ideally, metri
s should measure di�erent aspe
tsof DAs, i.e., the 
orrelation matrix should 
ontainsmall values only. Alternatively, users may usethe 
orrelation matrix from Fig. 12 to sele
t met-ri
s and adjust metri
 weights in 
omputing the
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Figure 11: Merr per fault 
ardinality for all DAs(ADAPT)parameters of their DAs. Unexpe
ted high 
orre-lations (or anti-
orrelations) between metri
s indi-
ate (1) bias due to the system or the sensor data,or (2) hidden metri
 dependen
ies.All 
orrelation 
oe�
ients in Fig. 12, ex
eptthose shown in red, are signi�
ant�the p-values a
-
ording to the Student's t distribution are smallerthan 0.03.Figure 13 is a 
olor map of the 
orrelation ma-trix from Fig. 12. Correlations or anti-
orrelations
lose to 1 are 
olored in red, while values 
loser to15
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Figure 9: ADAPT metri
s
0 are shown in blue 
olors.
M ia

Merr

M
sru

M
dru

Mutl

M fd

Mfi

M fn

M fp

Mda

Mcpu

Mmem

M
ia

M
er
r

M
sr
u

M
dr
u

M
ut
l

M
fd

M
fi

M
fn

M
fp

M
da

M
cp
u

M
m
em

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 13: ADAPT & ADAPT-Lite metri
s 
or-relationsThe anti-
orrelation between Mia and Merr istrivial (
f. (22)) and the only reason for in
ludingit is to show the 
orre
tness of our implementation.The utility metri
 shows high 
orrelation with

the isolation a

ura
y/
lassi�
ation errors (ρ =
0.75). This is expe
ted as both metri
s measuresimilar properties of the DAs' results. Less triv-ial is the high 
orrelation between M−

utl and M+
utl(ρ = 0.84). This indi
ates that DAs do not showpreferen
es towards diagnosing false negatives orfalse positives.The time for fault isolationMia 
orrelates highlywith the three utility metri
s, for whi
h we haveno explanation. The Mfn metri
 
orrelates highwith Mda whi
h 
omes from the metri
 design andindi
ates that, in general, DAs are tuned to avoidfalse positives at the pri
e of more false negatives.4.3 Case Study II: Syntheti
 SystemsWe 
ontinue our dis
ussion with an overview of thesyntheti
 systems. As we will see, the major dif-feren
e between this 
ase study and the previousare the sizes of the systems and the 
ardinalities ofthe inje
ted faults. Furthermore, all system vari-ables in this 
ase study are of Boolean type. This
ase study aims to 
ompare the robustness, CPUperforman
e, and memory 
onsumption of variousDAs under stress 
onditions (large systems, faultsof multiple-
ardinality, et
.). 16
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Mia Merr Msru Mdru Mutl Mfd Mfi Mfn Mfp Mda Mcpu Mmem

Mia 1 −1 0.79 0.7 0.8 −0.18 −0.25 −0.04 −0.18 0.15 0.04 0.03
Merr −1 1 −0.79 −0.7 −0.8 0.18 0.25 0.04 0.18 −0.15 −0.04 −0.03
Msru 0.79 −0.79 1 0.21 1 −0.37 −0.5 −0.31 −0.11 0.33 0.1 −0.01
Mdru 0.7 −0.7 0.21 1 0.24 0.07 0.14 0.23 −0.16 −0.09 −0.04 0.06
Mutl 0.8 −0.8 1 0.24 1 −0.36 −0.49 −0.3 −0.12 0.33 0.1 0
Mfd −0.18 0.18 −0.37 0.07 −0.36 1 0.7 0.75 0.54 −0.98 −0.17 −0.12
Mfi −0.25 0.25 −0.5 0.14 −0.49 0.7 1 0.65 0.19 −0.67 −0.07 0.02
Mfn −0.04 0.04 −0.31 0.23 −0.3 0.75 0.65 1 −0.12 −0.76 −0.14 −0.06
Mfp −0.18 0.18 −0.11 −0.16 −0.12 0.54 0.19 −0.12 1 −0.55 −0.13 −0.1
Mda 0.15 −0.15 0.33 −0.09 0.33 −0.98 −0.67 −0.76 −0.55 1 0.2 0.12
Mcpu 0.04 −0.04 0.1 −0.04 0.1 −0.17 −0.07 −0.14 −0.13 0.2 1 0.54
Mmem 0.03 −0.03 −0.01 0.06 0 −0.12 0.02 −0.06 −0.1 0.12 0.54 1Figure 12: ADAPT metri
s 
orrelation matrix4.3.1 Des
ription of SystemsThe original 74XXX/ISCAS85 netlists 
an be me-
hani
ally translated into propositional Wffs. Wehave translated the propositional Wffs into logi-
ally equivalent Conjun
tive Normal Form (CNF)formulae (Forbus and de Kleer, 1993). These CNFformulae are des
ribed in Table 10.Name |IN| |OUT| |COMPS| |V | |C|74182 9 5 19 47 7574L85 11 3 33 77 11874283 9 5 36 81 12274181 14 8 65 144 228
432 36 7 160 356 1 028
499 41 32 202 445 1 428
880 60 26 383 826 2 224
1355 41 32 546 1 133 3 220
1908 33 25 880 1 793 4 756
2670 233 140 1 193 2 695 6 538
3540 50 22 1 669 3 388 9 216
5315 178 123 2 307 4 792 13 386
6288 32 32 2 416 4 864 14 432
7552 207 108 3 512 7 232 19 312Table 10: 74XXX/ISCAS85 
ir
uitsFor ea
h 74XXX/ISCAS85 CNF formula, Ta-ble 10 gives the number of inputs |IN|, the num-ber of outputs |OUT|, the size of the 
ompo-nents sets |COMPS|, the number of variables |V |,and the number of 
lauses |C|. The size of the

74XXX/ISCAS85 
ir
uits 
an be redu
ed by using
ones for 
omputing single-
omponent ambiguitygroups (Siddiqi and Huang, 2007).The syntheti
 
ir
uits are 
ombinational, i.e.,they 
ontain no �ip-�ops or other memory ele-ments. The high-level stru
ture of these 
ir
uits,whi
h 
an be bene�
ial to DAs, has been �attenedout as well. A reverse engineering e�ort had re-sulted in high-level VerilogTMmodels (Hansen etal., 1999) and DA developers are en
ouraged touse those high-level stru
tural models in pla
e ofthe original �at ones.

4.3.2 Syntheti
 Model S
enariosWe have noti
ed that the performan
e of manyDAs depends on the minimum 
ardinality of thediagnoses. Hen
e, we have performed our experi-mentation with a number of di�erent observationsleading to diagnoses of di�erent MCs. Algorithm 1generates observations leading to diagnoses of dif-ferent MC, varying from 1 to nearly the maximumfor the respe
tive 
ir
uits (for the 74XXX modelsit is the maximum). The experiments omit nom-inal s
enarios as they are trivial with syntheti
systems.The syntheti
 s
enarios disregard the temporalaspe
ts of diagnosis. They are 
reated in the fol-lowing way. In the beginning of a s
enario, a DAis sent a nominal observation. After 5 s a fault ω⋆is inje
ted. An observation α 
onsistent with ω⋆ issent 6 s after the s
enario start. We next dis
ussthe generation of the �faulty� observations.Algorithm 1 is an approximate algorithm thatreturns a set of observations A. Ea
h observation
α ∈ A leads to a diagnosis of di�erent MC andis used in a di�erent s
enario. We have exe
utedAlg. 1 multiple times, �ltering out identi
al obser-vations, until we have 
olle
ted observations for asu�
ient number of s
enarios.Algorithm 1 uses a number of auxiliary fun
-tions. RandomInputs (line 3) assigns uniformlydistributed random values to ea
h input in IN(note that for the generation of observation ve
-tors we partition the observable variables OBSinto inputs IN and outputs OUT and use theinput/output information whi
h 
omes with theoriginal 74XXX/ISCAS85 
ir
uits for simulation).Given the �all healthy� health assignment andthe diagnosti
 system, NominalOutputs (line 4)performs simulation by propagating the input as-signment α. The result is an assignment β whi
h
ontains values for ea
h output variable in OUT.The loop in lines 7 � 14 in
reases the 
ardinal-ity by greedily �ipping the values of the outputvariables. For ea
h new 
andidate observation
αn, Alg. 1 uses the diagnosti
 algorithm Safarito 
ompute a minimal diagnosis of 
ardinality c(Feldman et al., 2008a). As Safari returns morethan one diagnosis (up to N), we use MinCard-18



Algorithm 1 Algorithm for generation of obser-vation ve
tors1: fun
tion MakeAlphas(DS, N, K) returnsa set of observationsinputs: DS = 〈SD, COMPS, OBS〉
OBS = IN ∪OUT, IN ∩OUT = ∅
N , integer, number of tries
K, integer, maximal number ofdiagnoses per 
ardinalitylo
al variables: α, β, αn, ω, terms

c, integer, best 
ard. so far
Ω, set of terms, diagnoses
A, set of terms, result2: for k ← 1, 2, . . . , K do3: α← RandomInputs(IN)4: β ← NominalOutputs(DS, α)5: c← 06: for all v ∈ OUT do7: αn ← α ∧ Flip(β, v)8: Ω← Safari(SD, αn, |COMPS|, N)9: ω ←MinCardDiag(Ω)10: if |ω| > c then11: c← |ω|12: A← A ∪ αn13: end if14: end for15: end for16: return A17: end fun
tionDiag to 
hoose the one of smallest 
ardinality. Ifthe 
ardinality c of this diagnosis in
reases in 
om-parison to the previous iteration, the observationis added to the list.By running Alg. 1 we get up to K observationsleading to faults of 
ardinality 1, 2, . . . , m, where

m is the 
ardinality of the MFMC diagnosis (Feld-man et al., 2008b) for the respe
tive 
ir
uit. Alg. 1
learly shows a bootstrapping problem. In orderto 
reate potentially �di�
ult� observations for aDA we require a DA to solve those �di�
ult� obser-vations. In our 
ase we have used the anytime Sa-fari. As Safari is a sto
hasti
 algorithm, some-times it returns a minimal diagnosis when we needa minimal-
ardinality one. This leads to s
enariosresulting in lower 
ardinalities than intended butthis seemingly 
auses no problems ex
ept minordi�
ulties in the analysis of the DAs' performan
e.4.3.3 Experimental ResultsWe start this se
tion by 
omputing the relevantmetri
s for this 
ase study: M̄utl, M̄cpu, and
M̄mem. The results are shown in Table 11.It 
an be seen that Safari has a
hieved signif-i
antly better M̄cpu and M̄mem than NGDE andRODON. Mutl of Lydia is slightly worse due tosmaller number of diagnosti
 
andidates 
omputedby this DA. Lydia and RODON showed similarresults in the utility metri
s.The size of the 
ir
uits in Table 10 
an be re-du
ed by using 
ones (Siddiqi and Huang, 2007)for 
omputing single-
omponent ambiguity groups(Kurtoglu et al., 2009).

We have 
omputed M̄sat and the results areshown in Table 13. The SAT and UNSAT 
olumnsshow the number of 
onsistent and in
onsistent
andidates, respe
tively. Interestingly, generat-ing more 
onsistent diagnosti
 
andidates does notne
essarily result in optimal M̄sat results. NGDE,for example, has generated approximately two or-ders of magnitude more satis�able 
andidates thanLydia, but due to the weight distribution hass
ored a lower M̄sat. The poli
y of Lydia has beento 
ompute a small number of 
andidates, mini-mizing M̄mem and M̄cpu. Furthermore, in orderto improve M̄utl, Lydia maps multiple-
ardinality
andidates into single-
omponent failure probabil-ities. Hen
e, only single-fault s
enarios 
ontributeto the M̄sat s
ore for Lydia.5 DISCUSSIONThe primary goal of the empiri
al evaluation pre-sented in this paper was to demonstrate an end-to-end implementation of DXF and 
reate a foun-dation for future usage of the framework. As a re-sult we made several simplifying assumptions. Wealso ran into several issues during the 
ourse ofthis implementation that 
ould not be addressed.In this se
tion, we present those assumptions andissues, whi
h we hope 
an be addressed in futureimplementations.5.1 DXF Data Stru
turesThe system 
atalog has been intentionally de�nedas a general XML format to avoid 
ommittingto spe
i�
 modeling or knowledge representations(e.g., equations). It is expe
ted that the sampletraining data and pointers to additional do
umen-tation would be su�
ient for DA developers tolearn the behavior of the system. We will 
on-tinue to look for ways to extend the system 
ata-log representation to provide as mu
h general in-formation about the system as possible. The di-agnosis result format is de�ned to be a set of 
an-didates with a weight asso
iated with ea
h 
an-didate. Ea
h 
andidate reports faulty modes of0 (all nominal) or more 
omponents. Obviouslythis is a simplisti
 representation sin
e it does notallow reporting of intermittent faults, parametri
faults, among others. Also, in some 
ases it maybe desirable to report a belief state (a probabilitydistribution over 
omponent states) as opposed toa set of 
andidates.5.2 Run-Time Ar
hite
tureFor the ADAPT system, the fault signatures werelimited to abrupt parametri
 and dis
rete types.We plan to introdu
e other fault types (in
ipi-ent, intermittent, and noise) in the future. Theruntime ar
hite
ture was de�ned su
h that no as-sumptions were made regarding the a
tual opera-tional environments in whi
h the diagnosti
 algo-rithms may be run. We understand that a truetest would simulate operating 
onditions of thereal system, i.e. the system operates nominally forlong periods of time and failures o

ur periodi
ally19



Lydia NGDE RODONName M̄utl M̄cpu M̄mem M̄utl M̄cpu M̄mem M̄utl M̄cpu M̄mem74182 0.365 62 17 0.466 230 10 716 0.262 1 293 18 20574L85 0.455 53 18 0.575 341 11 838 0.372 5 233 22 53374283 0.419 57 17 0.479 206 10 654 0.353 4 863 20 71474181 0.374 73 21 0.486 213 10 879 0.405 14 222 26 962
432 0.529 91 24 0.664 319 12 058 0.492 19 129 36 772
499 0.29 80 33 0.414 1 719 17 063 0.258 20 649 36 436
880 0.262 1 842 37 0.296 1 516 21 437 0.275 18 404 34 843
1355 0.335 387 34 0.37 4 734 23 967 0.373 22 133 33 653
1908 0.208 745 29 0.232 8 994 33 995 0.19 24 361 36 102
2670 0.603 327 119 0.921 571 14 828 0.886 17 178 34 069
3540 0.355 833 33 0.374 9 223 31 954 0.307 49 397 48 162
5315 0.243 811 94 0.531 6 477 22 406 0.238 87 720 50 526
6288 0.316 2 162 32 0.32 11 784 65 086 0.316 89 130 51 268
7552 0.3 2 001 97 0.436 8 638 39 592 0.364 172 558 65 846Averaged 0.361 680 43 0.469 3 926 23 320 0.364 39 019 36 864Table 11: Syntheti
 systems metri
s resultsfollowing the prior probability of failure distribu-tion. In this work, faults were inserted assumingequal probabilities. In the future, we will providethe failure rates of 
omponents and use these toevaluate the performan
e of DAs. It was also as-sumed that all sensor data was available to theDAs at all time steps. In the future, we would liketo relax this assumption and provide only a sub-set of the sensor data. Additional ideas for futureresear
h in
lude giving DAs redu
ed sensor sets,introdu
ing multi-rate sensor data, inje
ting tran-sient faults, allowing for autonomous transitions,adding variable loads, and extending the s
ope and
omplexity of the physi
al system.For the syntheti
 systems, all the systems havebeen known in advan
e. This means resear
hers
ould optimize for these 
ir
uits. In addition, onlyone observation time was sampled. In the future,we will provide multiple observations. This willevaluate a DA's ability to merge information frommultiple times. An important 
omponent of trou-bleshooting is introdu
ing probe points. In the fu-ture, we 
an evaluate the number of probes neededto isolate the fault.5.3 Diagnosti
 Metri
sThe set of metri
s we have 
hosen as primary isbased on literature survey and expert opinion onwhat measures are important to assess the e�e
-tiveness of DAs. However, we realize that thisset is by no means exhaustive. Di�erent sets ofmetri
s may be appli
able depending on what thediagnosis results are supporting (abort de
isions,ground support, fault-adaptive 
ontrol, et
.). Inaddition there might be a set of weights asso
i-ated with the metri
s depending on their impor-tan
e (for abort de
isions the fault dete
tion timeis of utmost importan
e). We expe
t to add moremetri
s to the list in the future (with support toolsto 
ompute those metri
s). In addition sin
e wewere dealing with abrupt, persistent, and dis
rete

faults, metri
s asso
iated with in
ipient, intermit-tent, and/or 
ontinuous faults were not 
onsid-ered.Finally, the metri
s listed in this paper do not
apture the amount of e�ort ne
essary to buildmodels of su�
ient �delity for the diagnosis taskat hand. Furthermore, we have not investigatedthe ease or di�
ulty of updating models with newor 
hanged system information. The art of build-ing models is an important pra
ti
al 
onsiderationwhi
h is not addressed in the 
urrent work.In future work, we would like to determine aset of appli
ation-spe
i�
 use 
ases (maintenan
e,autonomous operation, abort de
ision et
.) thatthe DA is supporting and sele
t metri
s that wouldbe relevant to that use 
ase.5.4 Empiri
al EvaluationSome pra
ti
al issues arose in the exe
ution ofexperiments. Mu
h e�ort was put into ensuringstable, uniform 
onditions on the host ma
hines;however, during the implementation, it was ne
es-sary to take measures that may have 
aused slightvariability. One example was the manual exam-ination of ongoing experiment results for qualityassuran
e. Future releases of the DXF 
an addressthis by being more robust to unexpe
ted DA be-havior, and sending noti�
ations in the event ofsu
h. Additionally, for Java DAs, signi�
ant dif-feren
es were evident in the peak memory usagemetri
 when run on Linux versus Windows. Theproblem was bypassed by running all Java DAs onLinux.6 CONCLUSIONWe presented a framework for evaluating and 
om-paring DAs under identi
al 
onditions. The frame-work is general enough to be applied to any sys-tem and any kind of DA. The run-time ar
hite
-ture was designed to be as platform independent as20



Lydia NGDE RODON
M̄sru M̄dru M̄err M̄sru M̄dru M̄err M̄sru M̄dru M̄err74182 0.381 0.984 69 0.574 0.892 78 0.262 1 8074L85 0.458 0.996 30 0.617 0.958 39 0.46 0.913 7874283 0.437 0.982 46 0.523 0.957 51 0.423 0.93 8274181 0.378 0.995 48 0.517 0.969 55 0.456 0.949 87
432 0.53 0.999 29 0.671 0.993 35 0.505 0.987 64
499 0.293 0.997 71 0.428 0.986 78 0.268 0.99 107
880 0.263 0.999 89 0.306 0.99 127 0.281 0.994 113
1355 0.336 0.999 73 0.375 0.995 94 0.375 0.999 71
1908 0.208 0.999 69 0.239 0.993 113 0.191 1 70
2670 0.603 1 24 0.921 1 6 0.886 1 10
3540 0.355 1 58 0.376 0.999 88 0.308 0.999 82
5315 0.243 1 73 0.532 0.999 58 0.239 0.999 114
6288 0.317 1 16 0.32 1 15 0.317 0.999 18
7552 0.3 1 60 0.437 0.999 69 0.364 0.999 70Averaged 0.364 0.996 54.02 0.488 0.981 64.75 0.381 0.983 74.71Table 12: Syntheti
 systems se
ondary metri
s resultspossible. We de�ned a set of metri
s that might beof interest when designing a diagnosti
 algorithmand the framework in
ludes tools to 
ompute themetri
s by 
omparing a
tual s
enarios and diag-nosti
 results.Using the framework, we have experimentedwith 13 diagnosti
 algorithms on 16 systems ofvarious size and syntheti
/real-world origin. Wehave, both manually and programati
ally, 
reated

1 651 observation s
enarios of various 
omplexity.We have designed 10 metri
s for measuring diag-nosti
 performan
e. This has resulted in the ex-e
ution of 6 484 s
enarios with a total durationof more than 169.7 hours and the 
omputation of
84 292 metri
s.We presented the results from our e�ort to eval-uate the performan
e of a set of diagnosti
 al-gorithms on the ADAPT ele
tri
al power systemtestbed, and a set of syntheti
 
ir
uits. We learnedvaluable lessons in trying to 
omplete this e�ort.One major take-away is that there is still a lot ofwork and dis
ussion needed to determine a 
om-mon 
omparison and evaluation framework for thediagnosis 
ommunity. The other key observationis that no DA was able to be best in a majority ofthe metri
s. This 
learly indi
ates that the sele
-tion of DAs would ne
essarily involve a trade-o�analysis between various performan
e metri
s.The framework presented is by no means a �n-ished produ
t and we expe
t it to evolve over theyears. In the paper, we have identi�ed some of thelimitations and expe
ted s
ope for future expan-sion. Our sin
ere hope is that the framework isadopted by growing number of people and appliedto a wide variety of physi
al systems in
luding di-agnosis algorithms from several di�erent resear
h
ommunities. The long-term goal is to 
reate adatabase of performan
e evaluation results whi
hwill allow system designers to 
hoose the appro-priate DA for their system given the 
onstraints

and metri
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omponents
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Lydia NGDE RODONName SAT UNSAT M̄sat SAT UNSAT M̄sat SAT UNSAT M̄sat74182 19 45 18.25 1240 0 28 0 0 074L85 1 27 1 178 0 20 445 414 2674283 34 57 34 561 0 20 1 194 722 8074181 12 43 12 691 0 20 1 079 2 132 44
432 10 29 10 1 109 0 20 128 1 985 20
499 2 118 2 707 0 20 176 686 15
880 27 86 27 12 663 0 20 1 259 42 61
1355 36 162 36 3 246 0 20 236 314 83
1908 13 35 13 3 593 4 7 114 117 40
2670 7 30 7 25 0 19 25 143 8
3540 38 77 38 231 10 10 129 1 030 49
5315 0 55 0 1 665 0 20 16 765 0
6288 8 30 8 126 0 2 51 372 28
7552 7 53 7 1 493 3 17 86 510 9Averaged 15.29 60.50 15.23 1966.29 1.21 17.36 352.71 659.43 33.51Table 13: Syntheti
 systems satis�ability results
C 
lauses
td �rst dete
tion
ti last isolation
Cs startup CPU 
y
les
C CPU 
y
les per step
M memory in use
ω⋆ inje
ted fault
t⋆i inje
tion of fault i
Ω 
andidate diagnoses
Ω⊤ satis�able 
andidate diagnoses
W 
andidate weights
f number of all 
omponents
n number of false negatives
N number of healthy 
omponents
n̄ number of false positives
N̄ number of faulty 
omponents
mia 
andidate isolation a

ura
y
msru 
andidate system repair utility
mdru 
andidate diagnosis repair utility
mutl 
andidate utility
Mfd s
enario fault dete
tion time
Mfn s
enario false negative s
enario
Mfp s
enario false positive s
enario
Mda s
enario dete
tion a

ura
y
Mfi s
enario fault isolation time
Mia s
enario isolation a

ura
y
Merr s
enario 
lassi�
ation errors
Mutl s
enario utility
Msru s
enario system repair utility
Mdru s
enario diagnosis repair utility
Msat s
enario 
onsisten
y
Mcpu s
enario CPU load
Mmem s
enario memory load
M̄fd system fault dete
tion time
M̄fn system false negative s
enario
M̄fp system false positive s
enario

M̄da system s
enario dete
tion a

ura
y
M̄fi system fault isolation time
M̄err system 
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ation errors
M̄utl system utility
M̄sru system system repair utility
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M̄sat system 
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M̄cpu system CPU load
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A DERIVATIONS OF METRICSThis appendix provides detailed derivation of theformulae for the te
hni
al a

ura
y metri
s. Inthis appendix we use notation of Se
. 3.3 (in par-ti
ular, re
all Fig. 4 and Table 3).A.1 Classi�
ation Errors and IsolationA

ura
yRe
all the de�nition of Merr and Mia:
Merr =

∑

ω∈Ω

W (ω)(|ω ⊖ ω⋆|) (20)
Mia =

∑

ω∈Ω

W (ω)(f − |ω ⊖ ω⋆|) (21)One 
an see that Mia and Merr are duals, i.e.:
Mia

f
+

Merr

f
= 1 (22)Consider the isolation a

ura
y (mia) of a singlediagnosti
 
andidate ω ∈ Ω:

mia = f − |ω ⊖ ω⋆| (23)Eq. 23 de�nes a plane in the (n, n̄, mia)-spa
e (
f.Fig 14).
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Figure 14: mia as a fun
tion of n and n̄

mia �penalizes� a DA for ea
h mis
lassi�ed 
om-ponent. As it is visible from Fig. 14, the penaltyis applied linearly.The isolation a

ura
y metri
 Mia originates inthe automotive industry (Committee E-32, 2008).The Aerospa
e Re
ommended Pra
ti
e (ARP)
omputes the 
losely related probability of 
orre
t
lassi�
ation in the following way. For ea
h 
om-ponent we 
omputed the square 
onfusion matrix.The probability of 
orre
t 
lassi�
ation is the sumof the main diagonal divided by the total numberof 
lassi�
ations (
f. the referen
ed ARP (Com-mittee E-32, 2008) for details and examples).It 
an be shown that the probability of 
or-re
t 
lassi�
ation, as de�ned in the above ARP,is equivalent to Mia, if both fault and nominal
omponent modes are used for the 
omputation

of the 
onfusion matri
es. The probability of 
or-re
t 
lassi�
ation is 
onditioned on the fault prob-ability while the probability measured by Mia isnot. The latter is purely a metri
 design 
onsid-eration. The fa
t that we use nominal modes for
omputing Mia leads to higher 
orrelation of Miawith the dete
tion a

ura
y metri
s de�ned laterin this se
tion.If more than one predi
ted mode ve
tor is re-ported by a DA, (meaning that the diagnosti
 out-put 
onsists of a set of 
andidate diagnoses), thenthe isolation a

ura
y and the 
lassi�
ation errorsare 
al
ulated for ea
h predi
ted 
omponent modeve
tor and weighted by the 
andidate probabilitiesreported by the DA as it is seen in Eq. (20) andEq. (14). Mia and Merr are very useful for singlediagnoses but with multiple 
andidates they areless intuitive. The metri
 that follows is looselybased on the 
on
ept of �repair e�ort� and partlyremedies this problem.A.2 UtilitiesIn what follows we show the derivations of thethree utility metri
s (system repair utility Msru,diagnosis repair utility Mdru, and utility Mutl).A.2.1 System Repair UtilityConsider an inje
ted fault ω⋆ (ω⋆ is a set of faulty
omponents) and a diagnosti
 
andidate ω (also aset of what the DA 
onsiders faulty 
omponents).The number of truly faulty 
omponents that areimproperly diagnosed by the diagnosti
 algorithmas healthy (false negatives) is n = |ω⋆ \ ω| (
f.Fig. 4). In general a diagnosti
ian has to per-form extra work to verify a diagnosti
 
andidate
ω, whi
h must be re�e
ted in the system repairutility. We assume that he or she has a

ess to atest ora
le that states if a 
omponent c is healthyor faulty.We �rst determine what the expe
ted numberof tests a diagnosti
ian has to perform to testall 
omponents in ω⋆ \ ω (the false negatives) ifthe diagnosti
ian 
hooses untested 
omponents atrandom with uniform probability. In the worst
ase, the diagnosti
ian has to test all the remain-ing COMPS \ ω 
omponents (the diagnosti
 al-gorithm has already determined the state of all
omponents in ω). Consider the average situation.We denote N = |COMPS\ω|. N is the size of the�population� of 
omponents to be tested.The probability of observing s − 1 su

esses(faulty 
omponents) in k + s− 1 trials (i.e., k ora-
le tests) is given by the dire
t appli
ation of thehypergeometri
 distribution:

p(k, s− 1) =

(

n
s−1

)(

N−n
k

)

(

N

k+s−1

) (24)The probability p(k, s) of then observing a faulty
omponent in the next ora
le test is simply thenumber of remaining false negatives n − (s − 1)divided by the size of the remaining population(N − (s + k − 1)):
p(k, s) =

n− s + 1

N − k − s + 1
(25)25



and the probability of having exa
tly k ora
lefaults up to the s-th test, is then the produ
t ofthese two probabilities:
p′(k, s, n, N) =

(

n
s−1

)(

N−n
k

)

(n− s + 1)
(

N

k+s−1

)

(N − k − s + 1)
(26)The formula above is the probability mass of theinverse hypergeometri
 distribution that, in our
ase, yields the probabilities for testing k healthy
omponents before we �nd s faulty 
omponentsout of the population (no repetitions). The ex-pe
ted value E′[k] of p′(k, s, n, N) (from the de�-nition of a �rst 
entral moment of a random vari-able) is:

E′[k] =
n

∑

x=0

xp′(x, s, n, N) (27)Repla
ing p′(k, s, n, N) in (27) and simplifyinggives us the mean of the inverse hypergeometri
distribution1:
E′[k] =

s(N − n)

n + 1
(28)As we are interested in �nding s = n faulty 
om-ponents, the expe
ted value E′(n, N) be
omes:

E′[k] =
n(N − n)

n + 1
(29)The expe
ted number of tests E[t] (as opposed tothe expe
ted number of faulty 
omponents E′[k])then be
omes:

E[t] =
n(N − n)

n + 1
+ n =

n(N + 1)

n + 1
(30)The expe
ted number of tests E[t] is then normal-ized by the number of 
omponents f and �ippedalongside the y axis to give the system repair util-ity:

msru = 1−
n(N + 1)

f(n + 1)
(31)Plotting the system repair utility msru againsta variable number of false negatives is shown inFig. 15. One 
an see that unlike merr whi
h
hanges linearly, msru �penalizes� improperly di-agnosed 
omponents exponentially.The system repair utility for a set of diagnosesis de�ned as:

Msru =
∑

ω∈Ω

W (ω)msru(ω⋆, ω) (32)where W (ω) is the weight of a diagnosis ω su
hthat:
∑

ω∈Ω

W (ω) = 1 (33)All weights W (ω), ω ∈ Ω, are 
omputed by thediagnosti
 algorithm.1For a detailed derivation of the negative hyperge-ometri
 mean, 
f. (S
huster and Sype, 1987).
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tion of nA.3 Diagnosis Repair UtilityUsing E[t] in a metri
 is not enough as it only
aptures the e�ort to �eliminate� (test) all falsenegatives. The size of the set of false positives is

n̄ = |ω \ω⋆| (
f. Fig. 4). To �nd all false positives,the diagnosti
ian has to test in the worst 
ase all
omponents in ω. Hen
e, the general populationis N̄ = |ω|. Repeating the argument for E[t] wedetermine the expe
ted number of tests for testingall false positives E[t̄]:
E[t̄] =

n̄(N̄ + 1)

n̄ + 1
(34)Similarly, the diagnosti
 repair utility mdru is thenormalized E[t̄]:

mdru = 1−
n̄(N̄ + 1)

f(n̄ + 1)
(35)The system repair utility for a set of diagnoses isde�ned as:

Mdru =
∑

ω∈Ω

W (ω)mdru(ω⋆, ω) (36)A.4 UtilityThe utility metri
 (per 
andidate) is a 
ombinationof msru and mdru:
mutl = 1−

E[t] + E[t̄]

f
= (37)

= 1−
n(N + 1)

f(n + 1)
−

n̄(N̄ + 1)

f(n̄ + 1)
(38)The utility metri
 (per s
enario) is

Mutl =
∑

ω∈Ω

W (ω)mutl(ω
⋆, ω) (39)Figure 16 plots mutl for varying numbers of falsenegatives and false positives in a (symmetri
) 
asewhere the 
ardinality of the diagnosis is half thenumber of 
omponents. Normally, the number ofinje
ted faulty 
omponents |ω⋆| and, hen
e, the26



number of false positives n are small 
ompared tothe total number of 
omponents f), whi
h leadsto an asymmetri
 mutl plot. In su
h 
ases the roleof the false positives is small. There is a globaloptimum mutl = 1 for n = 0 and n̄ = 0, i.e., all
omponents in ω are 
lassi�ed 
orre
tly.
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Figure 16: mutl as a fun
tion of n and n̄B SYSTEM DESCRIPTION FORMATConsider c17, the smallest ISCAS85 
ir
uit. Anexample system des
ription starts by de�ning anumber of 
omponents in the following manner(we have trun
ated the XML 
ode):<?xml version="1.0" en
oding="UTF-8"?><systemCatalog ...><systemInstan
es><systemInstan
e id="
17" system="
17" /></systemInstan
es><systems><system><systemName>
17</systemName><des
ription>The 
17 ISCAS85 
ombinational 
ir
uit.</des
ription><
omponents><
omponent><name>i1</name><
omponentType>port</
omponentType></
omponent><
omponent><name>gate11</name><
omponentType>nand2</
omponentType></
omponent><
omponent><name>gate11.o</name><
omponentType>wire</
omponentType></
omponent>...Part of the topology of c17 is des
ribed in the XMLex
erpt below:<
onne
tions><
onne
tion><
1>gate10.o</
1><
2>z1</
2>

</
onne
tion><
onne
tion><
1>gate10.i1</
1><
2>i1</
2></
onne
tion><
onne
tion><
1>gate10.i2</
1><
2>i3</
2></
onne
tion>...<
onne
tions>The 
omponent type spe
ifying a 
ir
uit breakerand shown next is part of ADAPT-Lite andADAPT (this 
omponent type is referen
ed, forexample, by a 
omponent with unique identi�erCB180):<
omponentType xsi:type="
ir
uitBreaker"><name>Cir
uitBreaker4Amp</name><des
ription>4 Amp Cir
uitBreaker</des
ription><modesRef>Cir
uitBreaker</modesRef><rating>4</rating></
omponentType>Another example of a 
omponent type is the ACvoltage sensor shown below.<
omponentType xsi:type="sensor"><name>ACVoltageSensor</name><des
ription>AC voltage sensor.</des
ription><modesRef>S
alarSensor</modesRef><sensorValue xsi:type="numberValue"><dataType>double</dataType><rangeMin>0</rangeMin><rangeMax>150</rangeMax></sensorValue><engUnits>VAC</engUnits></
omponentType>Below is shown a nand-gate, part of a digital 
ir-
uit.<
omponentType><name>nand2</name><des
ription>A 2-input logi
 NAND gate.</des
ription><modesRef>gate</modesRef></
omponentType>Finally, we have the modes of a 
ir
uit-breaker.<modeGroup><name>Cir
uitBreaker</name><mode xsi:type="mode"><name>Nominal</name><des
ription>Transmits 
urrent and voltage ...</des
ription></mode><mode xsi:type="mode"><name>Tripped</name><des
ription>Breaks the 
ir
uit and must be ...</des
ription></mode> 27



<mode xsi:type="faultMode"><name>FailedOpen</name><des
ription>Trips even though 
urrent is ...</des
ription><faultSour
e>Hardware</faultSour
e><parameters/></mode></modeGroup>C MESSAGE FORMATSThough there are additional message types, themost important messages for the purpose of ben
h-marking are the sensor data message, 
ommandmessage, and diagnosis message, des
ribed below.C.1 Sensor/Command DataSensor data are de�ned broadly as a map of sensorIDs to sensor values (observations). Sensor values
an be of any type; 
urrently the framework al-lows for integer, real, boolean, and string values.The type of ea
h observation is indi
ated by thesystem's XML 
atalog.SensorMessage+timestamp+sensorValues: Map<sensorIds→sensorValues>CommandMessage+timestamp+
ommandID: string+
ommand: 
ommandValueTable 14: Sensor and 
ommand message formatCommandable 
omponents 
ontain an additionalentry in the system 
atalog spe
ifying a 
ommandID and 
ommand value type (analogous to sen-sor value type). The 
ommand message repre-sents the issuan
e of a 
ommand to the system.In the ADAPT system, for example, the message(EY144_CL, true) signi�es that relay EY144 isbeing 
ommanded to 
lose. �EY144_CL� is the
ommand ID, and �true� is the 
ommand value(in this 
ase, a Boolean).C.2 Diagnosis Result FormatThe DA's output (i.e., estimate of the physi
al sta-tus of the system) is standardized to fa
ilitate thegeneration of 
ommon data sets and the 
al
ula-tion of the ben
hmarking metri
s, whi
h are intro-du
ed in Se
. 3.3. The resulting diagnosis messageis summarized in Table 15 and 
ontains:timestamp: a value indi
ating when the diagno-sis has been issued by the algorithm.
andidateSet: a 
andidate fault set is a list of
andidates an algorithm reports as a diagno-sis. A 
andidate fault set may in
lude a single
andidate with a single or multiple faults; or

multiple 
andidates ea
h with a single or mul-tiple faults. It is assumed that only one 
an-didate in a 
andidate fault set 
an representthe system at any given time.dete
tionSignal: a Boolean value as to whetherthe diagnosis system has dete
ted a fault.isolationSignal: a Boolean value as to whetherthe diagnosis system has isolated a 
andidateor a set of 
andidates.DiagnosisMessage+timestamp+
andidateSet: Set <Candidate>+dete
tionSignal: Boolean+isolationSignal: Boolean+notes: stringCandidate+faults: Map<
omponentIds→
omponentState>+weight: doubleTable 15: Diagnosis message formatIn addition, ea
h 
andidate in the 
andidate sethas an asso
iated weight. Candidate weights arenormalized by the framework su
h that their sumfor any given diagnosis is 1.
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