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identi�ation of its ause. Key steps in diagnostiinferene are fault detetion (is the output of thesystem inorret?), fault isolation (what is bro-ken in the system?), fault identi�ation (what isthe magnitude of the failure?), and fault reovery(how an the system ontinue to operate in thepresene of the faults?). Expert knowledge andprior know-how about the system, models desrib-ing the behavior of the system, and operationalsensor data are used to develop diagnosti infer-ene algorithms. This problem is non-trivial for avariety of reasons inluding:
• inorret and/or insu�ient knowledge aboutsystem behavior
• limited observability
• presene of many di�erent types of faults (sys-tem/supervisor/atuator/sensor faults, ad-ditive/multipliative faults, abrupt/inipientfaults, persistent/intermittent faults)
• non-loal and delayed e�et of faults due todynami nature of system behavior
• presene of other phenomena that in�u-ene/mask the symptoms of faults (unknowninputs ating on system, noise that a�ets theoutput of sensors, et.)Several ommunities have attempted to solvethe diagnosti inferene problem using variousmethods. Some approahes have been:
• Expert Systems - These approahes enodeknowledge about system behavior into a formthat an be used for inferene. Some ex-amples are rule-based systems (Russell andNorvig, 2003) and fault trees (Kav£i£ and Ju-ri£i¢, 1997).
• Model-Based Methods - These approahes usean expliit model of the system on�gura-1



tion and behavior to guide the diagnosti in-ferene. Some examples are Fault Detetionand Isolation (FDI) methods (Gertler, 1998),statistial methods (Basseville and Nikiforov,1993), and �AI� methods (Reiter, 1987).
• Data-Driven Methods - These approahes usethe data from representative runs to learn pa-rameters that an then be used for anomalydetetion or diagnosti inferene for futureruns. Some examples are Indutive Moni-toring Systems (IMS) (Iverson, 2004), NeuralNetworks (Sorsa and Koivo, 1998).
• Stohasti Methods - These approahes treatthe diagnosis problem as a belief state estima-tion problem. Some examples are BayesianNetworks (Lerner et al., 2000), and PartileFilters (de Freitas, 2002).Despite the development of suh a variety ofnotations, tehniques, and algorithms, e�orts toevaluate and ompare the di�erent diagnosis al-gorithms (DAs) have been minimal. One of themajor deterrents is the lak of a ommon frame-work for evaluating and omparing diagnosti al-gorithms. The establishment of suh a frameworkwould aomplish the following objetives:
• Aelerate researh in theories, priniples,modeling and omputational tehniques fordiagnosis of physial systems.
• Enourage the development of software plat-forms that promise more rapid, aessible,and e�etive maturation of diagnosti teh-nologies.
• Provide a forum for algorithm developers totest and validate their tehnologies.
• Systematially evaluate diagnosti tehnolo-gies by produing omparable performaneassessments.Suh a framework would require the following:
• De�ne a standard representation format forthe system desription, sensor data, and di-agnosis result.
• Develop a software run-time arhiteture thatan run spei� senarios from atual sys-tem, simulation, or other data soures suhas �les (individually or as a bath), exeuteDAs, send senario data to the DA at appro-priate time steps, and arhive the diagnostiresults from the DA.
• De�ne a set of metris to be omputed basedon the omparison of the atual senario anddiagnosis results from the DA.In this paper, we present a framework that at-tempts to address eah of the above issues. Theframework arhiteture employed for evaluatingthe performane of DAs is shown in Fig. 1 andis alled DXF. Major elements are systems underdiagnosis, DAs, senario-based experiments, andmetris. System atalogs speify topology, om-ponents, and high-level mode behavior desrip-tions, inluding failure modes. DXF provides a

program for quantitatively evaluating the DA out-put against known fault injetions using prede-�ned metris.
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Figure 1: Framework arhiteture1.1 ContributionsThe ontributions of this paper are as follows:
• It introdues a benhmarking framework tobe used for systemati empirial evaluation ofdiagnosti algorithm performane. Moreover,it de�nes and desribes the main elements ofthe framework so that the benhmarking re-sults an be applied to any arbitrary physialor syntheti system by using the arhiteturedesribed in the paper.
• It provides a omprehensive set of empirialevaluation results in order to validate the pro-posed framework and to failitate the under-standing and omparative analysis of di�erentdiagnosti tehnologies.1.2 Organization of the PaperThe rest of this paper is organized as follows. Se-tion 2 ontains related work. Setion 3 presentsDXF in detail inluding the representation lan-guages used, the run-time arhiteture developedfor experimentation, and the diagnosti perfor-mane metris de�ned. Setion 4 desribes howthe benhmarking was performed inluding a de-sription of the two systems used, the faults in-jeted, the DAs tested, and the results. Setion 5presents major assumptions made and issues ob-served. Finally, Setion 6 presents the onlusions.2 RELATED WORKThe development of monitoring and diagnostitehnologies is of great interest to many applia-tions. As these algorithms beome more readilyavailable, the neessity for assessing the perfor-mane of alternative diagnosti tools beomes im-portant. As a result, there is an inreasing need todevelop a framework that will allow performaneevaluation of ompeting diagnosti tehnologies.2



To address this need, several researhers haveattempted to demonstrate benhmarking apabil-ity (Orsagh et al., 2002; Roemer et al., 2005;Barty± et al., 2006). Among these, Bartys etal. (2006) presented a benhmarking study foratuator fault detetion and identi�ation (FDI).This study, developed by the DAMADICS Re-searh Training Network, introdued a set of 18performane indies used for benhmarking FDIalgorithms on an industrial valve-atuator system.The indies measure the temporal performane ofdetetion and isolation deisions, as well as trueand false detetion and isolation rates, sensitivity,and diagnosti auray. This benhmark studyuses real proess data, and demonstrates how theperformane indies an be alulated for 19 atu-ator faults using a single fault assumption.Izadi-Zamanabadi and Blanke (1999) presenteda ship propulsion system as a benhmark for au-tonomous fault ontrol. This benhmark has twomain elements. One is the development of an FDIalgorithm, and the other is the analysis and imple-mentation of autonomous fault aommodation.Relevant to aerospae industry, (Simon et al.,2008) introdued a benhmarking tehnique forgas path diagnosis methods to assess the perfor-mane of engine health management tehnologies.Finally, Orsagh et al. (2002) provided a methodto measure the performane and e�etiveness ofprognostis and health management algorithmsfor US Navy appliations (Roemer et al., 2005).In this work, the performane metris are de�nedseparately for detetion, isolation, and prognosis.In addition, this work also ombined individualmetris into a omposite sore by implementing aweighted average sum. Moreover, it de�ned e�e-tiveness metris as a separate ategory that an beused to inorporate non-tehnial aspets suh asoperation, maintenane and implementation osts,omputer resoure requirements, and algorithmomplexity into the analysis. Using these metris,one an assess the overall e�etiveness and bene�tof diagnosti health management systems.Other researhers have also proposed similarost-bene�t formulations for diagnosti systems(Williams, 2006; Kurien and Moreno, 2008; Hoyleet al., 2007). These approahes, however, are pri-marily onerned with higher-level trade-o�s in in-tegrating diagnosti solutions to provide healthmanagement funtionality and fous on perfor-mane indies suh as operational ost, salability,and maintainability.The DXF framework presented in this paperadopts some of its metris from (Kurtoglu et al.,2009) and extends prior work in this area by de�n-ing a number of novel diagnosti performane met-ris, by providing a generi, appliation indepen-dent arhiteture that an be used for evaluatingdi�erent monitoring and diagnosti algorithms,and by failitating the use of real proess data ona large-sale, omplex engineering system.

3 FRAMEWORKWe have developed a framework alled DXF thatallows systemati omparison and evaluation of di-agnosti algorithms under idential experimentalonditions. The key omponents of this frameworkinlude representation languages for the physialsystem desription, sensor data and diagnosis re-sults, a runtime arhiteture for exeuting diag-nosis algorithms and diagnosti senarios, and anevaluation omponent that omputes performanemetris based on the results from diagnosti algo-rithm exeution.The proess to set up the framework in order toperform omparison/evaluation of a seleted set ofdiagnosti algorithms on spei� physial systemis as follows:1. The system is formally spei�ed in an XML�le alled the System Catalog. The ata-log inludes the system's omponents, on-netions, omponents' operating modes, anda textual desription of omponent behaviorin eah mode.2. The set of sensor points is hosen and sam-ple data for nominal and fault senarios aregenerated.3. DA developers use the system atalog andsample data to reate their algorithms usinga prede�ned API (desribed later in this se-tion) in order to reeive sensor data and sendthe diagnosis results.4. A set of test senarios (nominal and faulty) isseleted to evaluate the DAs.5. The run-time arhiteture is used to run theDAs on the seleted test senarios in a on-trolled experiment setting, and the diagnosisresults are arhived.6. Seleted metris are omputed by omparingatual senarios and diagnosis results fromDAs. The metris an then be used to om-pute seondary metris.In the following subsetions we desribe the on-stituent piees of our framework in more detail.The next subsetion desribes the various repre-sentation languages de�ned for the framework. Wethen desribe the run-time arhiteture inludingthe sequene of events and the messages exhangedamong the various omponents and �nally we de-sribe a set of representative metris that measurediagnosti performane.3.1 DXF Data StruturesIn what follows we desribe the syntax and seman-tis of the relevant DXF data strutures as well assome design rationale.3.1.1 System DesriptionWe realize that it is impossible to avoid bias to-wards ertain diagnosti algorithms and method-ologies when providing system desriptions. De-spite attempts to reate a general modeling lan-guage (for examples f. (Feldman et al., 2007)and the referenes therein), there is no widely3



agreed way to represent models and systems. Onthe other hand, designing a diagnosti frameworkwhih is fully agnosti towards the system desrip-tion is impossible as there would be no way toommuniate omponents or system parts and toompute diagnosti metris. As a ompromise,we have hosen a minimalisti approah, provid-ing formal desriptions of the system topology andomponent modes only.The formal part of the DXF system desrip-tion does not provide all information for buildinga model. The user may be provided with non-formalized external information, e.g., nominal andfaulty funtionality of omponents. This informa-tion may be provided in textual, programmati orany other well-understood format. In the futurewe may try to extend our XML shema in yet an-other attempt of providing a omplete modelinglanguage beyond interonnetion topology.The XML system desription is primarily in-tended to provide a ommon set of identi�ers foromponents and their modes of operation withina given system. This is neessary to ommuni-ate sensor data and diagnoses. Additionally, ba-si strutural information is provided in the formof omponent onnetions. Behavioral informa-tion is limited to a brief textual desription of eahomponent and its modes, leaving DA developersto dedue behavior from the system's sample data.This is done to avoid bias towards any diagnostiapproah.System Topology: DXF uses a graph-like repre-sentation to speify the physial onnetivityof the system where nodes represent ompo-nents of a system and ars apture the on-netivity between omponents.Component Types: Eah omponent in a sys-tem desription refers to a omponent type.Note that in DXF, sensors do not imply spe-ial assumptions, i.e., sensors fail in the sameway as �ordinary� omponents. A sensor, ofourse, should speify the data type it returnsin order for DXF to send sensor readings tothe DA under evaluation. A omponent typeontains at least the following information:
• a name (identi�er)
• an optional (textual) desription
• a �ag whih spei�es if this omponenttype is a sensor
• a referene to a data struture desrib-ing the modes for the omponents of thistype (both nominal and faulty)
• (sensors only) a data type of the sensor
• (sensors only) a range of the sensorComponent Mode Groups: Component oper-ating modes are organized in mode groups.More than one omponent an refer to thesame spei� group. Eah omponent typespei�es a mode group. Eah mode in a modegroup ontains:
• a name (identi�er)
• an optional (textual) desription

• a �ag speifying if the mode is nominalor faultyThe details of the system desription formatsare provided in Appendix B.3.1.2 API Data TypesIn DXF, the run-time ommuniation is per-formed using a messaging framework. Messagesare exhanged as ASCII text over TCP/IP. APIalls for parsing, sending, and reeiving messagesare provided with the framework, but developersmay hoose to send and reeive messages diretlythrough the underlying TCP/IP interfae. Thisallows developers to use their programming lan-guage of hoie, rather than being fored into thelanguages of the provided APIs.Every message ontains a milliseond times-tamp indiating the time at whih the message wassent. Though there are additional message types,the most important messages for the purpose ofperformane evaluation are the sensor data mes-sage, ommand message, and diagnosis message,desribed below (the details of the messaging for-mats are provided in Appendix C):Sensor/Command Data: Sensor data are de-�ned broadly as a map of sensor IDs to sensorvalues (observations). Sensor values an be ofany type; urrently the framework allows forinteger, real, Boolean, and string values. Thetype of eah observation is indiated by thesystem's XML atalog.Commandable omponents ontain an addi-tional entry in the system atalog speify-ing a ommand ID and ommand value type(analogous to sensor value type). The om-mand message represents the issuane of aommand to the system. In the ADAPT sys-tem, for example, the message (EY144CL,true) signi�es that relay EY144 is being om-manded to lose. EY144CL is the ommandID, and true is the ommand value (in thisase, a Boolean value).Candidates: The diagnosti algorithm's output(i.e., estimate of the physial status of the sys-tem) is standardized to failitate the genera-tion of ommon data sets and the alulationof the performane metris. The diagnostimessage ontains:
• a timestamp value indiating when thediagnosis has been issued by the algo-rithm
• a list of diagnosti andidates (a andi-date fault set may inlude a single andi-date with a single or multiple faults; ormultiple andidates eah with a single ormultiple faults)
• a detetion �ag (Boolean) as to whetherthe diagnosis system has deteted a fault
• an isolation �ag (Boolean) as to whetherthe diagnosis system has isolated a an-didate or a set of andidates 4



In addition, eah andidate in the andi-date set has an assoiated weight. Candi-date weights are normalized by DXF suhthat their sum for any given diagnosis is 1.3.2 Run-Time ArhitetureFigure 2 shows an overview of the DXF run-timearhiteture, its software omponents and data�ows.
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long as the DAs omply to the provided API,there are no restritions on a DA; for exam-ple a DA may read preompiled data, or useexternal (user supplied) libraries, et.Evaluator: The evaluator omputes a number ofprede�ned metris (f. Se. 3.3).Consider the progression of a single diagnosti se-nario. A typial one is shown in Fig. 3, wherethe fault injetions, detetion, and isolation areall treated as signals. These signals de�ne a num-ber of time points and intervals, as is seen below.
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td time-stamp �rst detetion DA
ti time-stamp last isolation DA
Cs real startup CPU yles SL
C time-series CPU yles per step SL
M time-series memory in use SL
ω⋆ set injeted fault SDS
t⋆i time-stamp injetion of fault i SDS
Ω set of sets andidate diagnoses DA
W set of reals andidate weights DATable 1: Senario exeution summary dataThe set Ω = {ω1, ω2, . . . , ωn} ontains all diag-noses omputed by the DA at time ti. If a DAnever asserts the isolation signal I (i.e., ti =
∞), it is assumed that Ω = ∅. Eah andidate5



in Ω is aompanied by a weight W . We de-note the set of weights of all diagnoses in Ω as
W = {W (ω1), W (ω2), . . . , W (ωn)}. The SR en-sures that

∑

ω∈Ω

W (ω) = 1 (1)by dividing eah weight W (ω) with the sum of allweights. If a DA fails to provide W , it is assumedthat all diagnoses are of the same weight.In addition to the time-points de�ned in Ta-ble 1, the isolation signal in Fig. 3 shows the time
tffi the DA has isolated a fault for the �rst time,and the time tfir the DA has retrated its isolationassumption (for example beause more faults areexpeted). Note that tffi and tfir are not urrentlyused by the evaluator for omputing the metris.3.3 Diagnosti Performane MetrisThe metris for evaluating diagnosti algorithmperformane depend on the partiular use of thediagnosti system, the users involved, and theirobjetives.Several institutions and organizations have pro-posed metris that measure diagnosti perfor-mane (Committee E-32, 2008; DePold et al.,2004; 2006; Metz, 1978; Orsagh et al., 2002;Roemer et al., 2005; Barty± et al., 2006). Amongthose, the SAE's �Health and Usage MonitoringMetris� (Committee E-32, 2008) de�nes proba-bility of detetion and probability of false alarmsas key indies for evaluating diagnosti algorithmperformane.DePold et al. (2004; 2006) introdued metristo evaluate the auray and ost e�etiveness ofdiagnosti systems. This approah is based on thereeiving operating harateristis (ROC) analysis(Metz, 1978), whih illustrates the trade-o� spaebetween the probability of false alarm and theprobability of detetion for di�erent signal to noiseratio (SNR) levels. The method is used to test therelative auray of diagnosti systems based ondi�erent threshold settings.In Orsagh et al. (2002), the performane met-ris are de�ned separately for detetion, and iso-lation. For detetion, the metris inlude thresh-olds, auray, reliability, sensitivity to load,speed, or noise, and stability. The isolation met-ris inlude the detetion metris, but also inludemeasures for disrimination and repeatability.In this paper, our goal has been to de�ne anumber of metris and to give guidelines for theiruse. For DXF, we make a distintion between de-tetion, isolation, and omputational performaneand highlight metris for eah ategory. In gen-eral several other lasses of metris are possible,inluding ost/utility metris, e�ort (in buildingsystems for example) metris and also other at-egories suh as fault identi�ation and fault re-overy metris. The expetation is that as theDXF evolves a omprehensive list of desired met-ri lasses and ategories will be developed to aidframework users in hoosing the performane ri-teria they want to measure.

Metri Name Class
Mfd fault detetion time detetion
Mfn false negative senario detetion
Mfp false positive senario detetion
Mda senario detetion au-ray detetion
Mfi fault isolation time isolation
Merr lassi�ation errors isolation
Mutl utility isolation
Msat onsisteny isolation
Mcpu CPU load omputational
Mmem memory load omputationalTable 2: Metris summaryFor the �rst implementation of the DXF frame-work, we de�ned 10 metris whih are summarizedin Table 2. These metris are based on extensivesurvey of literature and talking to experts fromvarious �elds (Kurtoglu et al., 2008). These met-ris are de�ned next.3.3.1 Detetion MetrisThe di�erene between detetion and isolationmakes pratial sense. A DA may announe a faultdetetion before it knows the root ause of failure(for example, a detetion announement an bebased solely on surpassing sensor threshold val-ues). A detetion signal annot be retrated bya DA while it is legal to retrat an isolation an-nounement when more faults are expeted. Thedetetion metris inlude:Fault Detetion Time The fault detetiontime (the reation time for a diagnosti engine todetet an anomaly) is diretly measured as:

Mfd = td (2)The fault detetion time is reported in millise-onds and is omputed only for non-nominal se-narios for whih a DA asserts the time detetionsignal at least one.False Negative Senario The false negativesenario metri measures whether a fault is missedby a diagnosti algorithm and is de�ned as:
Mfn =

{

1, if td =∞
0, otherwise (3)False Positive Senario The false positive se-nario metri penalizes DAs whih announe spu-rious faults and is de�ned as:

Mfp =

{

1, if td < t⋆

0, otherwise (4)where t⋆ =∞ for nominal senarios (i.e., senariosduring whih no fault is injeted).Note that the above two metris (Mfn and Mfp)are omputed for eah senario and their ompu-tation is based on the times of injeting and an-nouning the fault. We also have false negative6



and false positive omponents in the ontext ofindividual diagnosti andidates (reall that a DAsends a set of diagnosti andidates at isolationtime) whih we will disuss later in this paper.Senario Detetion Auray The senariodetetion auray metri is omputed from Mfnand Mfp:
Mda = 1−max(Mfn, Mfp) (5)

Mda is 1 if the senario is true positive or truenegative and 0 otherwise (equivalently, Mda = 0if Mfn = 1 or Mfp = 1, and Mda = 1 otherwise).
Mda splits all senarios into �true� and �false�. In-orret senarios are further lassi�ed into falsepositive (Mfp) and false negative (Mfn). Corretsenarios are true positive if there are injetedfaults and true negative otherwise (the latter sep-aration into true positives and true negatives israrely of pratial importane).3.3.2 Isolation MetrisComputation of isolation metris is more involveddue to the fat that an isolation an be retrated.Furthermore, an isolation event ontains a set ofdiagnosti andidates and we need metris thatompare this set of andidates to the injetedfault. Aordingly, we have de�ned several met-ris whih are omputed from the set of diagnostiandidates Ω and the injeted fault ω∗ (lassi�a-tion errors, and utility metris). Consider a singlediagnosti andidate ω ∈ Ω. Both the andidate ωand the injeted fault ω⋆ are sets of omponents.The intersetion of those two sets are the properlydiagnosed omponents. The false positives are theomponents that have been onsidered faulty butare not atually faulty. The false negatives are theomponents that have been onsidered healthy butare atually faulty. Figure 4 shows how ω and ω⋆partition all omponents into four sets.
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For brevity we use the notation in Table 3 forthe Fig. 4 sets.Var. Set Desription
f |COMPS| all omponents
n |ω⋆ \ ω| false negatives
N |COMPS \ ω| the set of healthy ompo-nents from the viewpointof the DA
n̄ |ω \ ω⋆| false positives
N̄ |ω| the set of faulty ompo-nents from the viewpointof the DATable 3: Notation for sizes of some frequently usedsetsThe isolation metris inlude (for a detailed dis-ussion and derivation of the isolation metris, f.Appendix A):Fault Isolation Time Consider an injetedfault ω⋆ = {c1, c2, . . ., cn} with the individ-ual omponent faults injeted at times T ⋆ =

〈t⋆1, t
⋆
2, . . . , t

⋆
n〉. Next, from the isolation signal,we onstrut a sequene of isolation times foreah omponent. This sequene ontaining time-stamps of positive fronts of the isolation signal isdenoted as Ti (Ti = 〈t1, t2, . . . , tn〉). Note that

t⋆k < ti for 1 ≤ k ≤ n. The fault isolation time isthen omputed as:
Mfi =

1

n

n
∑

k=1

ik − t⋆k (6)If there is no isolation for spei� fault (i.e., afault is missed) then there is no di�erene ik − t⋆komputed for that fault. E.g., if in a fault ω⋆ =
〈c1, c2, c3〉, c1 is isolated, c2 is not, and c3 is; theisolation time i2−t⋆2 is unde�ned and not inludedin the average (n = 2).The fault isolation time is reported in millise-onds and is omputed only for non-nominal se-narios for whih a DA asserts the time isolationsignal at least one.Classi�ation Error The lassi�ation errormetri is de�ned as:

Merr =
∑

ω∈Ω

W (ω)(|ω ⊖ ω⋆|) (7)In Eq. (7), ω⊖ω⋆ denotes the symmetri di�ereneof the ω and ω⋆ sets, i.e., the number of mislassi-�ed omponents. Note that |ω ⊖ ω⋆| = n + n̄ and
f = N + N̄ .Utility The utility metri measures the work fororretly identifying all false negatives and falsepositives in a diagnosti andidate. Alternatively,the utility metri measures the expeted number7



of alls to a testing orale that always determinesorretly the health state of a omponent. Notethat this metris assumes an equal ost for �xing afalse negative and a false positive. The derivationof the utility metri is given in Appendix A. Theutility metri (per andidate) is:
mutl = 1−

n(N + 1)

f(n + 1)
−

n̄(N̄ + 1)

f(n̄ + 1)
(8)Computing a weighted average of mutl gives us the�per senario� utility metri:

Mutl =
∑

ω∈Ω

W (ω)mutl(ω
⋆, ω) (9)The utility metri is, in fat, a ombination of two�half-utilities��the system repair utility and the di-agnosis repair utility. The latter are de�ned asseondary metris in Se. 3.3.4 and disussed indetail in Appendix A.Note that for Ω = ∅, the framework automati-ally assumes a single �all-healthy� diagnosti an-didate with weight 1 at the time of isolation.This a�ets the Merr and Mutl metris. For ex-ample, in a non-nominal false-negative senario,

Merr = |ω⋆|.Consisteny The next metri omes from MBD(de Kleer et al., 1992). It only applies to systemsfor whih (1) there is a formally de�ned systemdesription (model), (2) one an derive a formallyde�ned observation from the sensor data, and (3)the notion of onsisteny is formally de�ned. Weompute the onsisteny metri for the synthetimodels and senarios.Consider a model SD and an observation α (αis derived from the sensor data at time t∗). If SDand α are sentenes in propositional logi (as isthe ase with the syntheti models and senarios)then the set of onsistent diagnoses is de�ned as:
Ω⊤ = {ω ∈ Ω : SD ∧ α ∧ ω 6|=⊥} (10)The set Ω⊤ an be omputed from SD, α, and Ωby using a DPLL-solver (Davis et al., 1962). Theonsisteny metri an be omputed from Ω⊤, Wand the injeted fault ω⋆:

Msat =
∑

ω∈Ω⊤ 6|=⊥

W (ω)
|ω∗|

|ω|
(11)If ω∗ is a minimum ardinality (MC) fault, thenit follows that |ω| ≥ |ω∗| and 0 ≤ Msat ≤ 1. Msatredits DAs for the onsistent andidates only andeah andidate is (additionally) weighted with its(inverse) ardinality (hene diagnosti andidatesof smaller ardinality ontribute more).3.3.3 Computational MetrisCPU Load The CPU load during an experi-ment is omputed as:

Mcpu = Cs +
∑

c∈C

c (12)

where Cs is the amount of CPU time spent bya DA during startup and C is a vetor with theatual CPU time spent by the DA at eah timestep. The CPU load is reported in milliseonds.Memory Load The memory load is de�ned as:
Mmem = max

m∈M
m (13)where M is a vetor with the maximum memorysize alloated at eah step of the diagnosti session.The memory load is reported in Kb.3.3.4 Seondary MetrisThe onept of lassi�ation errors an be om-puted using di�erent metris. For example, a di-agnostiian may ompute the isolation aurayusing:

Mia =
∑

ω∈Ω

W (ω)(f − |ω ⊖ ω⋆|) (14)In general a diagnostiian has to perform extrawork to �verify� all misdiagnosed omponents in
ω. Suppose that the diagnostiian has aess to atest orale that states if a omponent c is healthyor faulty. The system repair utility is then de�nedas normalized average number of orale alls foridentifying all false negative omponents and isde�ned as:

msru = 1−
n(N + 1)

f(n + 1)
(15)The �per senario� system repair utility is the de-�ned as:

Msru =
∑

ω∈Ω

W (ω)msru(ω⋆, ω) (16)Similarly, a diagnostiian has to eliminate all falsepositive omponents in a andidate. This is re-�eted in the diagnosis repair utility:
mdru = 1−

n̄(N̄ + 1)

f(n̄ + 1)
(17)The diagnosis repair utility for a set of diagnostiandidates is de�ned as:

Mdru =
∑

ω∈Ω

W (ω)mdru(ω⋆, ω) (18)
Mutl, Msru, and Mdru are disussed in detail inAppendix A.The hoie of whih utility metri is best fora partiular use depends on the relative osts ofthe available repair ations. For example, if om-ponents are nearly free, but the at of replaingthem is expensive then it makes no sense to iden-tify whih erroneously replaed omponents wereatually orret (thus msru is preferred). 8



3.3.5 System MetrisThe metris (Mfn, Mfp, Mda,Mfd, Mfi, Merr, Mutl,
Msat, Mcpu, Mmem, Msru, and Mdru) are based ona single senario. To reeive �per system� resultswe ombine the metris of eah senario using un-weighted average. For example, if a system SDis tested with senarios S = {S1, S2, . . . , Sn}, the�per system� utility of SD is omputed as:

M̄utl =
∑

S∈S

1

|S|
Mutl(SD, S) (19)where Mutl(SD, S) is the �per senario� utility ofsystem SD and senario S.The rest of the �per system� metris (M̄fd, M̄fi,

M̄err, M̄sat, M̄cpu, M̄mem, M̄sru, and M̄dru) arede�ned in a way analogous to M̄utl.Note that Mfn, Mfp, and Mda are alled falsenegative senario, false positive senario and se-nario detetion auray, respetively. The analo-gous �per system� metris M̄fn, M̄fp, and M̄da arealled false negative rate, false positive rate, anddetetion auray. M̄da, for example, representsthe ratio of the number of orretly lassi�ed asesto the total number of ases. The latter �per sys-tem� metris (M̄fn, M̄fp, and M̄da) are equivalentto the ones in Kurtoglu et al. (2009). In this paperwe �rst de�ne eah metri �per senario� and then�per system�.4 EMPIRICAL EVALUATIONIn order to empirially evaluate the frameworkpresented in the previous setion we seleted 2ase studies. The �rst ase study was performedon an Eletrial Power System testbed (EPS) lo-ated in the ADAPT Lab of NASA Ames ResearhCenter (Poll et al., 2007). This system mimisomponents and on�gurations in a power sys-tem that might be found on an aerospae vehile.The seond ase study was performed on a set of14 syntheti systems alled the 74XXX/ISCAS85iruits (Brglez and Fujiwara, 1985), whih arepurely ombinational, i.e., they ontain no �ip-�ops or other memory elements, represent well-known benhmark models of ISCAS85 iruits.The empirial evaluation as part of the abovetwo ase studies employed 13 diagnosti algo-rithms (DAs) (Kurtoglu et al., 2009). The resultsfrom the DAs were used to ompute metris thatan are used to evaluate the DAs performane onthe aforementioned systems. We �rst present theDAs used in the evaluation and then present thetwo ase studies.4.1 Diagnosti AlgorithmsWe have experimented with a total of 13 DAs (f.Table 4 for an overview). In what follows we pro-vide a brief desription of eah DA.FACT: FACT (Royhoudhury et al., 2009) is amodel-based diagnosis system that uses hy-brid bond graphs, and models derived fromthem, at all levels of diagnosis, inluding

DA Systems Algorithm TypeFACT AL model-basedFault Buster A,AL statistialGoalArt A �ow-modelsHyDE A,AL model-basedHyDE-S AL model-basedLydia S,A,AL model-basedNGDE S,AL model-basedProADAPT A,AL probabilistiRaerX AL hange detetionRODON S,A,AL model-basedRulesRule AL rule-basedStanfordDA A optimizationWizards of Oz A,AL model-basedTable 4: Diagnosti Algorithms (S = syntheti, A= ADAPT, AL = ADAPT-Lite)fault detetion, isolation, and identi�ation.Faults are deteted using an observer-basedapproah with statistial tehniques for ro-bust detetion. Faults are isolated by math-ing qualitative deviations aused by faulttransients to those predited by the model.For systems with few operating on�gura-tions, fault isolation is implemented in a om-piled form to improve performane.Fault Buster: Fault Buster is based on a ombi-nation of multivariate statistial methods, forthe generation of residuals. One the dete-tion has been done a neural network performslassi�ation for omputing isolation.GoalArt: GoalArt Diagnosti System (Larsson,1996) is based on multilevel �ow models,whih are risp desriptions of �ows of mass,energy, and information. It is a fast root auseanalysis with linear omputational omplex-ity. The main advantage is a very e�ientknowledge engineering. The algorithm hasbeen proven in several ommerial applia-tions.HyDE: HyDE (Hybrid Diagnosis Engine) (Na-rasimhan and Brownston, 2007) is a model-based diagnosis engine that uses onsistenybetween model preditions and observationsto generate on�its whih in turn drive thesearh for new fault andidates. HyDE usesdisrete models of the system and a disretiza-tion of the sensor observations for diagnosis.HyDE-S: HyDE-S uses the HyDE system butruns it on interval values hybrid models andthe raw sensor data.Lydia: Lydia is a delarative modeling languagespei�ally developed for Model-Based Diag-nosis (MBD). The language ore is proposi-tional logi, enhaned with a number of syn-tati extensions for ease of modeling. Theaompanying toolset urrently omprises anumber of diagnosti engines and a simulatortool (Feldman et al., 2009). 9



NGDE: An Allegro Common Lisp implementa-tion of the lassi GDE. NGDE (de Kleer,2009) uses a minimum-ardinality andi-date generator to onstrut diagnoses. ForADAPT-Lite it uses interval onstraints. Nomodel of dynamis.ProADAPT: ProADAPT (Mengshoel, 2007)proesses all inoming environment data (ob-servations from a system being diagnosed),and ats as a gateway to a probabilisti in-ferene engine. The inferene engine uses anArithmeti Ciruit evaluator whih is om-piled from Bayesian network models. The pri-mary advantage of using arithmeti iruits isspeed, whih is key in resoure bounded envi-ronments.RaerX: RaerX is a detetion-only algorithmwhih detets a perentage hange in indi-vidual �ltered sensor values to raise a faultdetetion �ag.RODON: RODON (Karin et al., 2006) is basedon the priniples of the General DiagnostiEngine (GDE) as desribed by de Kleer andWilliams (1987) and the G+DE (Heller andStruss, 2001). RODON uses ontraditions(on�its) between the simulated and the ob-served behavior to generate hypotheses aboutpossible auses for the observed behavior. Ifthe model ontains failure modes besides thenominal behavior, these an be used to verifythe hypotheses, whih speeds up the diagnos-ti proess and improve the results.RulesRule: RulesRule is a rule-based isolation-only algorithm. The rule base was developedby analyzing the sample data and determin-ing harateristi features of fault. There isno expliit fault detetion though isolationimpliitly means that a fault has been de-teted.StanfordDA: StanfordDA is an optimization-based approah to estimating fault states inDC power systems. The model inludes faultshanging the system topology along with sen-sor faults. The approah an be onsidered asa relaxation of the mixed estimation problem.The authors have developed a linear model ofthe iruit and pose a onvex problem for es-timating the faults and other hidden states.A sparse fault vetor solution is omputed byusing L1 regularization (Zymnis et al., 2009).Wizards of Oz: Wizards of Oz (Grastien andKan-John, 2009) is a onsisteny-based algo-rithm. The model of the system ompletelyde�nes the stable (stati) output of the sys-tem in ase of normal and faulty behavior.Given a new ommand or new observations,the algorithm waits for a stable state andomputes the minimum diagnoses onsistentwith the observations and the previous diag-noses.

4.2 Case Study I: ADAPT EPSWe next desribe the ADAPT EPS system, thediagnosti senarios and the experimental results.4.2.1 System DesriptionThe ADAPT EPS testbed provides a means forevaluating DAs through the ontrolled insertionof faults in repeatable failure senarios. The EPStestbed inorporates low-ost ommerial o�-the-shelf (COTS) omponents onneted in a systemtopology that provides the funtions typial ofaerospae vehile eletrial power systems: en-ergy onversion/generation (battery hargers), en-ergy storage (three sets of lead-aid batteries),power distribution (two inverters, several relays,iruit breakers, and loads) and power manage-ment (ommand, ontrol, and data aquisition).The EPS delivers Alternating Current (AC) andDiret Current (DC) power to loads, whih in anaerospae vehile ould inlude subsystems suh asthe avionis, propulsion, life support, environmen-tal ontrols, and siene payloads. A data aqui-sition and ontrol system ommands the testbedinto di�erent on�gurations and reords data fromsensors that measure system variables suh as volt-ages, urrents, temperatures, and swith positions.Data are presently aquired at a 2 Hz rate.The sope of the ADAPT EPS testbed used inthis ase study is shown Fig. 5. Power storageand distribution elements from the batteries to theloads are within sope; there are no power gener-ation elements de�ned in the system atalog. Wehave reated two systems from the same physialtestbed, ADAPT-Lite and ADAPT, whih are de-sribed next.ADAPT-Lite ADAPT-Lite inludes a singlebattery and a single load as indiated by thedashed lines in the shemati (Fig. 5). The ini-tial on�guration for ADAPT-Lite data has all re-lays and iruit breakers losed and no nominalmode hanges are ommanded during the senar-ios. Hene, any notieable hanges in sensor val-ues may be orretly attributed to faults injetedinto the senarios. Furthermore, ADAPT-Lite isrestrited to single faults.ADAPT ADAPT inludes all batteries andloads in the EPS. The initial on�guration forADAPT has all relays open and nominal modehanges are ommanded during the senarios. Theommanded on�guration hanges result in ad-justments to sensor values as well as transientswhih are nominal and not indiative of injetedfaults, in ontrast to ADAPT-Lite. Finally, mul-tiple faults may be injeted in ADAPT. The dif-ferenes between ADAPT-Lite and ADAPT aresummarized in Table 5.4.2.2 Diagnosti ChallengesThe ADAPT EPS testbed o�ers a number of hal-lenges to DAs. It is a hybrid system with multiplemodes of operation due to swithing elements suh10



E265

ST

265

CB136

CB236

CB336

CB266

CB166

ESH

170

EY160

ESH

160A
E161

IT161

E165

ST

165

EY171

E167

IT167

ESH

171

EY172

ESH

172

EY170

EY174

ESH

174

EY175

ESH

175

EY173

ESH

173

EY183

ESH

183

EY184

ESH

184

L1A

L1B

L1C

L1D

L1E

L1F

L1G

L1H

Load Bank 1

120V AC >>

24V DC >>

Battery Cabinet
TE

133

BAT1

TE

128

E135

EY141

E140

EY144

IT140

ESH

141A

ESH

144A
TE

129

ISH

136

ISH

162

CB162

ISH

166

ISH

180

CB180

ESH

270

EY260

ESH

260A
E261

IT261
EY271

E267

IT267

ESH

271

EY272

ESH

272

EY270

EY274

ESH

274

EY275

ESH

275

EY273

ESH

273

EY283

ESH

283

EY284

ESH

284

L2A

L2B

L2C

L2D

L2E

L2F

L2G

L2H

Load Bank 2

120V AC >>

24V DC >>

ISH

262

CB262

ISH

266

ISH

280

CB280

BAT2

TE

228

E235

EY241

E240

EY244

IT240

ESH

241A

ESH

244A
TE

229

ISH

236

BAT3

TE

328

E335

EY341

E340

EY344

IT340

ESH

341A

ESH

344A
TE

329

ISH

336

E142

E242

XT167

XT267

IT181

IT281

TE

500

TE

501

TE

502

LT

500

TE

505

TE

506

TE

507

LT

505

ST

515

FT

525

TE

511

FT

520

TE

510

ST

516

LGT400

LGT401

LGT402

LGT405

LGT406

LGT407

FAN415

FAN480

LGT481

PMP425

LGT411

DC482

PMP420

LGT410

FAN483

LGT484

FAN416

DC485

E181

E281

INV

1

INV

2

ADAPT-Lite

ESH

ISHE

IT

FT LT

ST

TE

XT

Voltage

Relay Position 

Feedback

Circuit Breaker 

Position 

Feedback

Current

Flow Light

Frequency/Speed

Temperature

Phase Angle

Sensor Symbols

Figure 5: ADAPT EPSAspet ADAPT-Lite ADAPT
|COMPS| 37 173# of modes 93 430relays initially losed openiruit-breakers ini-tially losed losednominal mode hanges no yesmultiple faults no yesTable 5: ADAPT and ADAPT-Lite di�erenesas relays and iruit breakers. There are ontin-uous dynamis within the operating modes andomponents from multiple physial domains, in-luding eletrial, mehanial, and hydrauli. It ispossible to injet multiple faults into the system.Furthermore, timing onsiderations and transientbehavior must be taken into aount when design-ing DAs. For example, when power is input to

the inverter there is a delay of a few seonds be-fore power is available at the output. For someloads, there is a large urrent transient when thedevie is turned on. System voltages and urrentsdepend on the loads attahed, and noise in sensordata inreases as more loads are ativated. Mea-surement noise oasionally exhibits spikes and isnon-Gaussian. The 2 Hz sample rate limits thetypes of features that may be extrated from mea-surements. Finally, there may be insu�ient in-formation and data to estimate parameters of dy-nami models in ertain modeling paradigms.4.2.3 Fault Injetion and SenariosADAPT supports the repeatable injetion of faultsinto the system in three ways:Hardware-Indued Faults: These faults arephysially injeted at the testbed hardware.A simple example is tripping a iruit breakerusing the manual throw bars. Another is us-11



ing the power toggle swith to turn o� aninverter. Faults may also be introdued inthe loads attahed to the EPS. For example,the valve an be losed slightly to vary thebak pressure on the pump and redue the�ow rate.Software-Indued Faults: In addition to faultinjetion through hardware, faults may be in-trodued via software. Software fault inje-tion inludes one or more of the following: (1)sending ommands to the testbed that are notintended for nominal operations; (2) blokingommands sent to the testbed; and (3) alter-ing the testbed sensor data.Real Faults: In addition the aforementioned twomethods, real faults may be injeted into thesystem by using atual faulty omponents. Asimple example inludes a burned out lightbulb. This method of fault injetion was notused in this study.For results presented in this ase study, onlyabrupt disrete (hange in operating mode of om-ponent) and parametri (step hange in parametervalue) faults are onsidered. Nominal and failuresenarios are reated using hardware and software-indued fault injetion methods. The diagnostialgorithms are tested against a number of senar-ios, eah approximately four minutes in length.The ADAPT-Lite experiments inlude 36 nom-inal and 56 single-fault senarios. Table 6 sum-marizes the type of faults used for ADAPT-Lite.Type Subtype Fault #battery - degraded 3ir. breaker - failed-open 5inverter - failed-o� 2load fan failed-o� 2over-speed 2under-speed 2relay - stuk-open 6sensor position stuk 11urrent, phase o�set 12angle, speed, stuk 11temp., voltage Total: 56Table 6: ADAPT-Lite faultsThe ADAPT experiments have 48 nominal and
111 fault senarios, whih inlude single-fault,double-fault, and triple-faults. Figure 6 shows thefault-ardinality distribution of the ADAPT se-narios. Table 7 summarizes the type of faults usedfor ADAPT. The majority of faults involve sensors(102) and loads (30).4.2.4 Experimental ResultsWe next ompute the metris desribed in Se. 3.3for the ADAPT-Lite and ADAPT senarios.

41 double-fault

scenarios (26%)

51 single-fault

scenarios (32%)

19 triple-fault scenarios (12%)

48 nominal

scenarios

(30%)Figure 6: Fault-ardinality distribution of theADAPT senariosType Subtype Fault #battery - degraded 1iruitbreaker - failed-open 18inverter - failed-o� 10load basi failed-o� 1fan failed-o� 5over-speed 2under-speed 3light bulb failed-o� 14pump failed-o� 3bloked 2relay stuk-losed 3stuk-open 26sensor position stuk 26urrent, �ow,light, o�set 35phase angle,speed, stuk 41temp., voltage Total: 190Table 7: ADAPT faultsADAPT-Lite The DA benhmarking resultsfor ADAPT-Lite are shown in Table 8, with graph-ial depitions of some of the tabular data pre-sented in Fig. 7. Figure 7 shows (1) Merr by DA(top-left), (2) Msru and Mdru by DA (top-right),(3) Mfd and Mfi by DA (bottom-left), and (4) Mfnand Mfp (bottom-right). No DA dominates overall metris used in benhmarking; nine of elevenDAs tested are best or seond best with respet toat least one of the metris.The bottom-right plot of Fig. 7 shows the falsepositive and false negative rates. The orrespond-ing detetion auray an be seen in Table 8.As is evident from the de�nition of the metrisin Se. 3.3, a DA that has low false positive andnegative rates has high detetion auray. Falsepositives are ounted in the following two situa-12



Detetion Isolation ComputationDA M̄fd M̄fn M̄fp M̄da M̄fi M̄err M̄utl M̄cpu M̄memFACT 1 785 0 0.11 0.89 10 798 11 0.975 15 815 4 271Fault Buster 155 0.5 0.01 0.68 − 56 0.685 1 951 2 569HyDE 13 355 0.46 0 0.72 13 841 45 0.79 23 418 5 511HyDE-S 121 0.04 0.38 0.6 683 66 0.791 573 5 366Lydia 232 0.18 0.01 0.88 232 100.3 0.785 1 410 1 861NGDE 194 0.13 0.03 0.89 14 922 44.5 0.833 21 937 73 031ProADAPT 4 732 0.05 0.01 0.96 7 104 10 0.955 1 905 1 226RaerX 77 0.2 0.03 0.85 − 56 0.685 146 3 619RODON 4 204 0.04 0.01 0.97 12 364 4 0.983 12 050 28 870RulesRule 949 0.09 0.33 0.62 949 63 0.818 167 3 784Wizards of Oz 12 202 0.5 0 0.7 12 327 43 0.769 1 153 1 682Table 8: ADAPT-Lite metristions: for nominal senarios where the DA delaresa fault; and for faulty senarios where the DA de-lares a fault before any fault is injeted. Noise inthe data and inorret models are the main ausesof false positives. For example, the leftmost plotof Fig. 8 shows a nominal run with spike in sensorIT240 (battery 2 urrent); most of the DAs de-lare a false positive for this senario. Many falsenegatives are aused by senarios in whih a sen-sor reading is stuk within the nominal range ofthe sensor. The middle plot of Fig. 8 shows an ex-ample of a sensor-stuk failure for voltage sensorE261, the downstream voltage of relay EY260.The lassi�ation error metri for eah DA isshown in the top-left plot of Fig. 7, where theerror ontributions of senarios labeled false neg-ative, false positive, and true positive are noted.Many DAs have di�ulties distinguishing betweensensor-stuk and sensor-o�set faults. The distin-tion in the fault behavior is that stuk has zeronoise while o�set has the noise of the original sig-nal; the rightmost plot in Fig. 8 shows the fanspeed sensor ST516 with sensor-o�set and sensor-stuk faults. In many senarios, the sensor-stukfaults are set to the minimum or maximum valueof the sensor or held at its last reading. The latterase presents the most di�ulties to DAs.
Mfd and Mfi are shown in the bottom-left plot ofFig. 7. RaerX does not have an isolation time asit is a detetion-only DA (and its detetion timeis very low). Note that Mfd ≤ Mfi, hene thebottom-left plot of Fig. 7 shows the isolation timestaked on the detetion time (assume that partof the time goes into detetion �rst and then intoisolation).The top-right plot of Fig. 7 shows the system re-pair utilty, Msru, and the diagnosis repair utility,

Mdru. The diagnosis repair utility is very lose to 1for all DAs, whih re�ets the small fault ardinal-ity and diagnosis ambiguity groups for the system.The number of omponents that a DA onsidersfaulty, N̄ , in any given senario is typially loseto the number of faults injeted in the senario.Sine N̄ is muh less than the number of ompo-nents, f , it is evident from equation (17) that Mdruapproahes 1. Furthermore, sine the number of

healthy omponents, N , as determined by the DAis larger than the number of faulty omponents,
N̄ , whereas n is typially not muh di�erent from
n̄, the system repair utility is smaller than the di-agnosis repair utility.Note that HyDE has been used by two di�er-ent modelers of ADAPT-Lite. HyDE was mod-eled primarily with the larger and more omplexADAPT in mind and had a poliy of waiting fortransients to settle before requesting a diagnosis.The same poliy was applied to ADAPT-Lite aswell, even though transients in ADAPT-Lite or-responded stritly to fault events; this preventedfalse positives in ADAPT but negatively impatedthe timing metri in ADAPT-Lite. On the otherhand, HyDE-S was modeled only for ADAPT-Lite and did not inlude a lengthy time-out pe-riod for transients to settle. HyDE-S had dramat-ially smaller mean detetion and isolation times(f. the bottom-left plot of Fig. 7) with roughlythe same Merr (f. Table 8) as HyDE. This illus-trates the impat that modeling and implemen-tation deisions have on DA performane. Whilethis gives some insight into trade-o�s present inbuilding models, in this work we did not de�nemetris that diretly address the ease or di�ultyof building models of su�ient �delity for the di-agnosis task at hand.As it is visible from Table 8, there exist sig-ni�ant di�erenes in Mcpu and Mmem. Part ofthese di�erenes an be attributed to the operat-ing system (Linux or WindowsTM). RODON wasthe only Java DA that was run on WindowsTM,whih adversely a�eted its memory usage metri.ADAPT The empirial DA benhmarking re-sults for ADAPT are shown in Table 9. Fig-ure 9 shows (1) Merr by DA (top-left), (2) Msruand Mdru by DA (top-right), (3) Mfd and Mfi byDA (bottom-left), and (4) Mfn and Mfp (bottom-right). Five of eight DAs tested were best or se-ond best with respet to at least one of the metrisfor ADAPT.The omments in the ADAPT-Lite disussionabout noise and sensor stuk apply here as well.13
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Figure 7: ADAPT-Lite metrisAdditionally, false positives also result from nom-inal ommanded mode hanges in whih the relayfeedbak did not hange status as of the next datasample after the ommand. Here is an extratfrom one of the input senario �les that illustratesthis situation:ommand �120950 EY275_CL = false;sensors �121001 {..., ESH275 = true, ... };sensors �121501 {..., ESH275 = false, ... };A ommand is given at 120.95 seonds to open re-lay EY275. The assoiated relay position sensordoes not indiate open as of the next sensor dataupdate 51 milliseonds later. This is nominal be-havior for the system. A DA that does not aountfor this delay will indiate a false positive in thisase.The detetion and isolation times are generallywithin the same order of magnitude for the di�er-ent DAs (f. the bottom-left plot of Fig. 9). SomeDAs have isolation times that are similar to itsdetetion times while others show isolation timesthat are muh greater than the detetion times.This ould re�et di�erenes in reasoning strate-gies or di�erenes in poliies for when to delarean isolation based on aumulated evidene.The CPU and memory usage are shown in Ta-ble 9. The same omment for RODON mentioned

previously in regards to memory usage applieshere. The onvex optimization approah appliedin the StanfordDA and the ompiled arithmetiiruit in ProADAPT lead to very low CPU us-ages.4.2.5 Fault Type and CardinalityAnalysisThe plots on the left-hand side of Fig. 10 showdetetion auray for all DAs by fault type forADAPT-Lite and ADAPT. In general, Mda is notvery sensitive to the omponent type, exept inthe ase of load and sensor faults where it is lower.The data on the battery detetion auray is notrepresentative due to the limited number of faultsenarios ontaining battery faults (f. Table 6and Table 7).The plots on the right-hand side of Fig. 10 showlassi�ation errors for all DAs by fault type forADAPT-Lite and ADAPT. While the overall per-formane (averaged for all DAs) indiates thatmost fault ategories result in roughly the samenumber of errors per senario, it an be seen thata given DA may do better on some faults om-pared to others; furthermore, several DAs have thefewest lassi�ation errors for the di�erent faulttypes. We should also note that in this benh-marking study, no partial redit was given for14
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Figure 8: Examples of sensor readingsDetetion Isolation ComputationDA M̄fd M̄fn M̄fp M̄da M̄fi M̄err M̄utl M̄cpu M̄memFault Buster 21 255 0.39 0.03 0.70 100 292 193 0.587 10 051 7 119GoalArt 3 268 0.05 0.03 0.93 7 805 154 0.776 149 6 784HyDE 15 612 0.31 0 0.79 20 114 174.3 0.668 28 807 19 135Lydia 16 135 0.2 0.25 0.62 16 135 234.9 0.653 5 715 3 412ProADAPT 1 743 0.02 0.09 0.90 23 544 57 0.915 4 260 778RODON 5 543 0.03 0 0.98 35 792 75.6 0.853 85 331 31 459StanfordDA 3 826 0.05 0.17 0.79 16 816 176.6 0.706 1 012 2 213Wizards of Oz 25 695 0.09 0.16 0.77 50 980 209.2 0.76 17 111 3 390Table 9: ADAPT metris resultsorretly naming the failed omponent but inor-retly isolating the failure mode. We realize how-ever, that isolating to a failed omponent or line-replaeable-unit (LRU) in maintenane operationsis sometimes all that is required. We plan to re-visit this metri in future work.Figure 11 shows the breakdown of lassi�ationerrors by the number of faults in the senario. Ingeneral, the number of errors inreased approxi-mately linearly with the number of faults injetedin the senario.The errors in the multiple faultsenarios were evenly divided among the faults;for example, if there were four lassi�ation er-rors in a senario where two faults were injeted,eah fault was assigned two errors. We also dida more thorough assessment in whih eah diag-nosis andidate was examined and lassi�ationerorrs were assigned to fault ategories based onan understanding of whih sensors are a�eted bythe faults. The results are similar to evenly divid-ing the errors among the faults and are not shownhere.4.2.6 Metri CorrelationsThe orrelation matrix shown in Fig. 12 on-tains the Pearson's linear orrelation oe�ientsbetween eah metri for the industrial systemsADAPT and ADAPT-Lite.Ideally, metris should measure di�erent aspetsof DAs, i.e., the orrelation matrix should ontainsmall values only. Alternatively, users may usethe orrelation matrix from Fig. 12 to selet met-ris and adjust metri weights in omputing the
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Figure 9: ADAPT metris
0 are shown in blue olors.
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the isolation auray/lassi�ation errors (ρ =
0.75). This is expeted as both metris measuresimilar properties of the DAs' results. Less triv-ial is the high orrelation between M−

utl and M+
utl(ρ = 0.84). This indiates that DAs do not showpreferenes towards diagnosing false negatives orfalse positives.The time for fault isolationMia orrelates highlywith the three utility metris, for whih we haveno explanation. The Mfn metri orrelates highwith Mda whih omes from the metri design andindiates that, in general, DAs are tuned to avoidfalse positives at the prie of more false negatives.4.3 Case Study II: Syntheti SystemsWe ontinue our disussion with an overview of thesyntheti systems. As we will see, the major dif-ferene between this ase study and the previousare the sizes of the systems and the ardinalities ofthe injeted faults. Furthermore, all system vari-ables in this ase study are of Boolean type. Thisase study aims to ompare the robustness, CPUperformane, and memory onsumption of variousDAs under stress onditions (large systems, faultsof multiple-ardinality, et.). 16



F
a
u
lt

B
u
s
t
e
r

G
o
a
lA

r
t

H
y
D

E

L
y
d
ia

P
r
o
A

D
A

P
T

R
O

D
O

N

S
t
a
n
fo

r
d
D

A

W
iz

a
r
d
s

o
f
O

z

F
A

C
T

F
a
u
lt

B
u
s
t
e
r

H
y
D

E

H
y
D

E
-S

L
y
d
ia

N
G

D
E

P
r
o
A

D
A

P
T

R
a
c
e
r
X

R
O

D
O

N

R
u
le

s
R

u
le

W
iz

a
r
d
s

o
f
O

z

0

0
.2

0
.4

0
.6

0
.81

n
o

fa
u
lt

b
a
tt

e
ry

c
ir

c
u
it

b
re

a
k
e
rin

v
e
rt

e
r

lo
a
d

re
la

y
se

n
so

r

A
D

A
P

T
-L

it
e

0

0
.2

0
.4

0
.6

0
.81

n
o

fa
u
lt

b
a
tt

e
ry

c
ir

c
u
it

b
re

a
k
e
rin

v
e
rt

e
r

lo
a
d

re
la

y
se

n
so

r

A
D

A
P

T

0

0
.51

1
.52

n
o

fa
u
lt

b
a
tt

e
ry

c
ir

c
u
it

b
re

a
k
e
ri
n
v
e
rt

e
r

lo
a
d

re
la

y
se

n
so

r

A
D

A
P

T

0

0
.51

1
.52

2
.53

3
.54

4
.5

n
o

fa
u
lt

b
a
tt

e
ry

c
ir

c
u
it

b
re

a
k
e
ri
n
v
e
rt

e
r

lo
a
d

re
la

y
se

n
so

r

A
D

A
P

T
-L

it
e

MdaMda

MerrperscenarioMerrperscenario

Figure10: M̄ d
a

and M̄ errperf
aulttypefora
llDAs

17



Mia Merr Msru Mdru Mutl Mfd Mfi Mfn Mfp Mda Mcpu Mmem

Mia 1 −1 0.79 0.7 0.8 −0.18 −0.25 −0.04 −0.18 0.15 0.04 0.03
Merr −1 1 −0.79 −0.7 −0.8 0.18 0.25 0.04 0.18 −0.15 −0.04 −0.03
Msru 0.79 −0.79 1 0.21 1 −0.37 −0.5 −0.31 −0.11 0.33 0.1 −0.01
Mdru 0.7 −0.7 0.21 1 0.24 0.07 0.14 0.23 −0.16 −0.09 −0.04 0.06
Mutl 0.8 −0.8 1 0.24 1 −0.36 −0.49 −0.3 −0.12 0.33 0.1 0
Mfd −0.18 0.18 −0.37 0.07 −0.36 1 0.7 0.75 0.54 −0.98 −0.17 −0.12
Mfi −0.25 0.25 −0.5 0.14 −0.49 0.7 1 0.65 0.19 −0.67 −0.07 0.02
Mfn −0.04 0.04 −0.31 0.23 −0.3 0.75 0.65 1 −0.12 −0.76 −0.14 −0.06
Mfp −0.18 0.18 −0.11 −0.16 −0.12 0.54 0.19 −0.12 1 −0.55 −0.13 −0.1
Mda 0.15 −0.15 0.33 −0.09 0.33 −0.98 −0.67 −0.76 −0.55 1 0.2 0.12
Mcpu 0.04 −0.04 0.1 −0.04 0.1 −0.17 −0.07 −0.14 −0.13 0.2 1 0.54
Mmem 0.03 −0.03 −0.01 0.06 0 −0.12 0.02 −0.06 −0.1 0.12 0.54 1Figure 12: ADAPT metris orrelation matrix4.3.1 Desription of SystemsThe original 74XXX/ISCAS85 netlists an be me-hanially translated into propositional Wffs. Wehave translated the propositional Wffs into logi-ally equivalent Conjuntive Normal Form (CNF)formulae (Forbus and de Kleer, 1993). These CNFformulae are desribed in Table 10.Name |IN| |OUT| |COMPS| |V | |C|74182 9 5 19 47 7574L85 11 3 33 77 11874283 9 5 36 81 12274181 14 8 65 144 228432 36 7 160 356 1 028499 41 32 202 445 1 428880 60 26 383 826 2 2241355 41 32 546 1 133 3 2201908 33 25 880 1 793 4 7562670 233 140 1 193 2 695 6 5383540 50 22 1 669 3 388 9 2165315 178 123 2 307 4 792 13 3866288 32 32 2 416 4 864 14 4327552 207 108 3 512 7 232 19 312Table 10: 74XXX/ISCAS85 iruitsFor eah 74XXX/ISCAS85 CNF formula, Ta-ble 10 gives the number of inputs |IN|, the num-ber of outputs |OUT|, the size of the ompo-nents sets |COMPS|, the number of variables |V |,and the number of lauses |C|. The size of the

74XXX/ISCAS85 iruits an be redued by usingones for omputing single-omponent ambiguitygroups (Siddiqi and Huang, 2007).The syntheti iruits are ombinational, i.e.,they ontain no �ip-�ops or other memory ele-ments. The high-level struture of these iruits,whih an be bene�ial to DAs, has been �attenedout as well. A reverse engineering e�ort had re-sulted in high-level VerilogTMmodels (Hansen etal., 1999) and DA developers are enouraged touse those high-level strutural models in plae ofthe original �at ones.

4.3.2 Syntheti Model SenariosWe have notied that the performane of manyDAs depends on the minimum ardinality of thediagnoses. Hene, we have performed our experi-mentation with a number of di�erent observationsleading to diagnoses of di�erent MCs. Algorithm 1generates observations leading to diagnoses of dif-ferent MC, varying from 1 to nearly the maximumfor the respetive iruits (for the 74XXX modelsit is the maximum). The experiments omit nom-inal senarios as they are trivial with synthetisystems.The syntheti senarios disregard the temporalaspets of diagnosis. They are reated in the fol-lowing way. In the beginning of a senario, a DAis sent a nominal observation. After 5 s a fault ω⋆is injeted. An observation α onsistent with ω⋆ issent 6 s after the senario start. We next disussthe generation of the �faulty� observations.Algorithm 1 is an approximate algorithm thatreturns a set of observations A. Eah observation
α ∈ A leads to a diagnosis of di�erent MC andis used in a di�erent senario. We have exeutedAlg. 1 multiple times, �ltering out idential obser-vations, until we have olleted observations for asu�ient number of senarios.Algorithm 1 uses a number of auxiliary fun-tions. RandomInputs (line 3) assigns uniformlydistributed random values to eah input in IN(note that for the generation of observation ve-tors we partition the observable variables OBSinto inputs IN and outputs OUT and use theinput/output information whih omes with theoriginal 74XXX/ISCAS85 iruits for simulation).Given the �all healthy� health assignment andthe diagnosti system, NominalOutputs (line 4)performs simulation by propagating the input as-signment α. The result is an assignment β whihontains values for eah output variable in OUT.The loop in lines 7 � 14 inreases the ardinal-ity by greedily �ipping the values of the outputvariables. For eah new andidate observation
αn, Alg. 1 uses the diagnosti algorithm Safarito ompute a minimal diagnosis of ardinality c(Feldman et al., 2008a). As Safari returns morethan one diagnosis (up to N), we use MinCard-18



Algorithm 1 Algorithm for generation of obser-vation vetors1: funtion MakeAlphas(DS, N, K) returnsa set of observationsinputs: DS = 〈SD, COMPS, OBS〉
OBS = IN ∪OUT, IN ∩OUT = ∅
N , integer, number of tries
K, integer, maximal number ofdiagnoses per ardinalityloal variables: α, β, αn, ω, terms

c, integer, best ard. so far
Ω, set of terms, diagnoses
A, set of terms, result2: for k ← 1, 2, . . . , K do3: α← RandomInputs(IN)4: β ← NominalOutputs(DS, α)5: c← 06: for all v ∈ OUT do7: αn ← α ∧ Flip(β, v)8: Ω← Safari(SD, αn, |COMPS|, N)9: ω ←MinCardDiag(Ω)10: if |ω| > c then11: c← |ω|12: A← A ∪ αn13: end if14: end for15: end for16: return A17: end funtionDiag to hoose the one of smallest ardinality. Ifthe ardinality c of this diagnosis inreases in om-parison to the previous iteration, the observationis added to the list.By running Alg. 1 we get up to K observationsleading to faults of ardinality 1, 2, . . . , m, where

m is the ardinality of the MFMC diagnosis (Feld-man et al., 2008b) for the respetive iruit. Alg. 1learly shows a bootstrapping problem. In orderto reate potentially �di�ult� observations for aDA we require a DA to solve those �di�ult� obser-vations. In our ase we have used the anytime Sa-fari. As Safari is a stohasti algorithm, some-times it returns a minimal diagnosis when we needa minimal-ardinality one. This leads to senariosresulting in lower ardinalities than intended butthis seemingly auses no problems exept minordi�ulties in the analysis of the DAs' performane.4.3.3 Experimental ResultsWe start this setion by omputing the relevantmetris for this ase study: M̄utl, M̄cpu, and
M̄mem. The results are shown in Table 11.It an be seen that Safari has ahieved signif-iantly better M̄cpu and M̄mem than NGDE andRODON. Mutl of Lydia is slightly worse due tosmaller number of diagnosti andidates omputedby this DA. Lydia and RODON showed similarresults in the utility metris.The size of the iruits in Table 10 an be re-dued by using ones (Siddiqi and Huang, 2007)for omputing single-omponent ambiguity groups(Kurtoglu et al., 2009).

We have omputed M̄sat and the results areshown in Table 13. The SAT and UNSAT olumnsshow the number of onsistent and inonsistentandidates, respetively. Interestingly, generat-ing more onsistent diagnosti andidates does notneessarily result in optimal M̄sat results. NGDE,for example, has generated approximately two or-ders of magnitude more satis�able andidates thanLydia, but due to the weight distribution hassored a lower M̄sat. The poliy of Lydia has beento ompute a small number of andidates, mini-mizing M̄mem and M̄cpu. Furthermore, in orderto improve M̄utl, Lydia maps multiple-ardinalityandidates into single-omponent failure probabil-ities. Hene, only single-fault senarios ontributeto the M̄sat sore for Lydia.5 DISCUSSIONThe primary goal of the empirial evaluation pre-sented in this paper was to demonstrate an end-to-end implementation of DXF and reate a foun-dation for future usage of the framework. As a re-sult we made several simplifying assumptions. Wealso ran into several issues during the ourse ofthis implementation that ould not be addressed.In this setion, we present those assumptions andissues, whih we hope an be addressed in futureimplementations.5.1 DXF Data StruturesThe system atalog has been intentionally de�nedas a general XML format to avoid ommittingto spei� modeling or knowledge representations(e.g., equations). It is expeted that the sampletraining data and pointers to additional doumen-tation would be su�ient for DA developers tolearn the behavior of the system. We will on-tinue to look for ways to extend the system ata-log representation to provide as muh general in-formation about the system as possible. The di-agnosis result format is de�ned to be a set of an-didates with a weight assoiated with eah an-didate. Eah andidate reports faulty modes of0 (all nominal) or more omponents. Obviouslythis is a simplisti representation sine it does notallow reporting of intermittent faults, parametrifaults, among others. Also, in some ases it maybe desirable to report a belief state (a probabilitydistribution over omponent states) as opposed toa set of andidates.5.2 Run-Time ArhitetureFor the ADAPT system, the fault signatures werelimited to abrupt parametri and disrete types.We plan to introdue other fault types (inipi-ent, intermittent, and noise) in the future. Theruntime arhiteture was de�ned suh that no as-sumptions were made regarding the atual opera-tional environments in whih the diagnosti algo-rithms may be run. We understand that a truetest would simulate operating onditions of thereal system, i.e. the system operates nominally forlong periods of time and failures our periodially19



Lydia NGDE RODONName M̄utl M̄cpu M̄mem M̄utl M̄cpu M̄mem M̄utl M̄cpu M̄mem74182 0.365 62 17 0.466 230 10 716 0.262 1 293 18 20574L85 0.455 53 18 0.575 341 11 838 0.372 5 233 22 53374283 0.419 57 17 0.479 206 10 654 0.353 4 863 20 71474181 0.374 73 21 0.486 213 10 879 0.405 14 222 26 962432 0.529 91 24 0.664 319 12 058 0.492 19 129 36 772499 0.29 80 33 0.414 1 719 17 063 0.258 20 649 36 436880 0.262 1 842 37 0.296 1 516 21 437 0.275 18 404 34 8431355 0.335 387 34 0.37 4 734 23 967 0.373 22 133 33 6531908 0.208 745 29 0.232 8 994 33 995 0.19 24 361 36 1022670 0.603 327 119 0.921 571 14 828 0.886 17 178 34 0693540 0.355 833 33 0.374 9 223 31 954 0.307 49 397 48 1625315 0.243 811 94 0.531 6 477 22 406 0.238 87 720 50 5266288 0.316 2 162 32 0.32 11 784 65 086 0.316 89 130 51 2687552 0.3 2 001 97 0.436 8 638 39 592 0.364 172 558 65 846Averaged 0.361 680 43 0.469 3 926 23 320 0.364 39 019 36 864Table 11: Syntheti systems metris resultsfollowing the prior probability of failure distribu-tion. In this work, faults were inserted assumingequal probabilities. In the future, we will providethe failure rates of omponents and use these toevaluate the performane of DAs. It was also as-sumed that all sensor data was available to theDAs at all time steps. In the future, we would liketo relax this assumption and provide only a sub-set of the sensor data. Additional ideas for futureresearh inlude giving DAs redued sensor sets,introduing multi-rate sensor data, injeting tran-sient faults, allowing for autonomous transitions,adding variable loads, and extending the sope andomplexity of the physial system.For the syntheti systems, all the systems havebeen known in advane. This means researhersould optimize for these iruits. In addition, onlyone observation time was sampled. In the future,we will provide multiple observations. This willevaluate a DA's ability to merge information frommultiple times. An important omponent of trou-bleshooting is introduing probe points. In the fu-ture, we an evaluate the number of probes neededto isolate the fault.5.3 Diagnosti MetrisThe set of metris we have hosen as primary isbased on literature survey and expert opinion onwhat measures are important to assess the e�e-tiveness of DAs. However, we realize that thisset is by no means exhaustive. Di�erent sets ofmetris may be appliable depending on what thediagnosis results are supporting (abort deisions,ground support, fault-adaptive ontrol, et.). Inaddition there might be a set of weights assoi-ated with the metris depending on their impor-tane (for abort deisions the fault detetion timeis of utmost importane). We expet to add moremetris to the list in the future (with support toolsto ompute those metris). In addition sine wewere dealing with abrupt, persistent, and disrete

faults, metris assoiated with inipient, intermit-tent, and/or ontinuous faults were not onsid-ered.Finally, the metris listed in this paper do notapture the amount of e�ort neessary to buildmodels of su�ient �delity for the diagnosis taskat hand. Furthermore, we have not investigatedthe ease or di�ulty of updating models with newor hanged system information. The art of build-ing models is an important pratial onsiderationwhih is not addressed in the urrent work.In future work, we would like to determine aset of appliation-spei� use ases (maintenane,autonomous operation, abort deision et.) thatthe DA is supporting and selet metris that wouldbe relevant to that use ase.5.4 Empirial EvaluationSome pratial issues arose in the exeution ofexperiments. Muh e�ort was put into ensuringstable, uniform onditions on the host mahines;however, during the implementation, it was nees-sary to take measures that may have aused slightvariability. One example was the manual exam-ination of ongoing experiment results for qualityassurane. Future releases of the DXF an addressthis by being more robust to unexpeted DA be-havior, and sending noti�ations in the event ofsuh. Additionally, for Java DAs, signi�ant dif-ferenes were evident in the peak memory usagemetri when run on Linux versus Windows. Theproblem was bypassed by running all Java DAs onLinux.6 CONCLUSIONWe presented a framework for evaluating and om-paring DAs under idential onditions. The frame-work is general enough to be applied to any sys-tem and any kind of DA. The run-time arhite-ture was designed to be as platform independent as20



Lydia NGDE RODON
M̄sru M̄dru M̄err M̄sru M̄dru M̄err M̄sru M̄dru M̄err74182 0.381 0.984 69 0.574 0.892 78 0.262 1 8074L85 0.458 0.996 30 0.617 0.958 39 0.46 0.913 7874283 0.437 0.982 46 0.523 0.957 51 0.423 0.93 8274181 0.378 0.995 48 0.517 0.969 55 0.456 0.949 87432 0.53 0.999 29 0.671 0.993 35 0.505 0.987 64499 0.293 0.997 71 0.428 0.986 78 0.268 0.99 107880 0.263 0.999 89 0.306 0.99 127 0.281 0.994 1131355 0.336 0.999 73 0.375 0.995 94 0.375 0.999 711908 0.208 0.999 69 0.239 0.993 113 0.191 1 702670 0.603 1 24 0.921 1 6 0.886 1 103540 0.355 1 58 0.376 0.999 88 0.308 0.999 825315 0.243 1 73 0.532 0.999 58 0.239 0.999 1146288 0.317 1 16 0.32 1 15 0.317 0.999 187552 0.3 1 60 0.437 0.999 69 0.364 0.999 70Averaged 0.364 0.996 54.02 0.488 0.981 64.75 0.381 0.983 74.71Table 12: Syntheti systems seondary metris resultspossible. We de�ned a set of metris that might beof interest when designing a diagnosti algorithmand the framework inludes tools to ompute themetris by omparing atual senarios and diag-nosti results.Using the framework, we have experimentedwith 13 diagnosti algorithms on 16 systems ofvarious size and syntheti/real-world origin. Wehave, both manually and programatially, reated

1 651 observation senarios of various omplexity.We have designed 10 metris for measuring diag-nosti performane. This has resulted in the ex-eution of 6 484 senarios with a total durationof more than 169.7 hours and the omputation of
84 292 metris.We presented the results from our e�ort to eval-uate the performane of a set of diagnosti al-gorithms on the ADAPT eletrial power systemtestbed, and a set of syntheti iruits. We learnedvaluable lessons in trying to omplete this e�ort.One major take-away is that there is still a lot ofwork and disussion needed to determine a om-mon omparison and evaluation framework for thediagnosis ommunity. The other key observationis that no DA was able to be best in a majority ofthe metris. This learly indiates that the sele-tion of DAs would neessarily involve a trade-o�analysis between various performane metris.The framework presented is by no means a �n-ished produt and we expet it to evolve over theyears. In the paper, we have identi�ed some of thelimitations and expeted sope for future expan-sion. Our sinere hope is that the framework isadopted by growing number of people and appliedto a wide variety of physial systems inluding di-agnosis algorithms from several di�erent researhommunities. The long-term goal is to reate adatabase of performane evaluation results whihwill allow system designers to hoose the appro-priate DA for their system given the onstraints
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Lydia NGDE RODONName SAT UNSAT M̄sat SAT UNSAT M̄sat SAT UNSAT M̄sat74182 19 45 18.25 1240 0 28 0 0 074L85 1 27 1 178 0 20 445 414 2674283 34 57 34 561 0 20 1 194 722 8074181 12 43 12 691 0 20 1 079 2 132 44432 10 29 10 1 109 0 20 128 1 985 20499 2 118 2 707 0 20 176 686 15880 27 86 27 12 663 0 20 1 259 42 611355 36 162 36 3 246 0 20 236 314 831908 13 35 13 3 593 4 7 114 117 402670 7 30 7 25 0 19 25 143 83540 38 77 38 231 10 10 129 1 030 495315 0 55 0 1 665 0 20 16 765 06288 8 30 8 126 0 2 51 372 287552 7 53 7 1 493 3 17 86 510 9Averaged 15.29 60.50 15.23 1966.29 1.21 17.36 352.71 659.43 33.51Table 13: Syntheti systems satis�ability results
C lauses
td �rst detetion
ti last isolation
Cs startup CPU yles
C CPU yles per step
M memory in use
ω⋆ injeted fault
t⋆i injetion of fault i
Ω andidate diagnoses
Ω⊤ satis�able andidate diagnoses
W andidate weights
f number of all omponents
n number of false negatives
N number of healthy omponents
n̄ number of false positives
N̄ number of faulty omponents
mia andidate isolation auray
msru andidate system repair utility
mdru andidate diagnosis repair utility
mutl andidate utility
Mfd senario fault detetion time
Mfn senario false negative senario
Mfp senario false positive senario
Mda senario detetion auray
Mfi senario fault isolation time
Mia senario isolation auray
Merr senario lassi�ation errors
Mutl senario utility
Msru senario system repair utility
Mdru senario diagnosis repair utility
Msat senario onsisteny
Mcpu senario CPU load
Mmem senario memory load
M̄fd system fault detetion time
M̄fn system false negative senario
M̄fp system false positive senario

M̄da system senario detetion auray
M̄fi system fault isolation time
M̄err system lassi�ation errors
M̄utl system utility
M̄sru system system repair utility
M̄dru system diagnosis repair utility
M̄sat system onsisteny
M̄cpu system CPU load
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A DERIVATIONS OF METRICSThis appendix provides detailed derivation of theformulae for the tehnial auray metris. Inthis appendix we use notation of Se. 3.3 (in par-tiular, reall Fig. 4 and Table 3).A.1 Classi�ation Errors and IsolationAurayReall the de�nition of Merr and Mia:
Merr =

∑

ω∈Ω

W (ω)(|ω ⊖ ω⋆|) (20)
Mia =

∑

ω∈Ω

W (ω)(f − |ω ⊖ ω⋆|) (21)One an see that Mia and Merr are duals, i.e.:
Mia

f
+

Merr

f
= 1 (22)Consider the isolation auray (mia) of a singlediagnosti andidate ω ∈ Ω:

mia = f − |ω ⊖ ω⋆| (23)Eq. 23 de�nes a plane in the (n, n̄, mia)-spae (f.Fig 14).
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Figure 14: mia as a funtion of n and n̄

mia �penalizes� a DA for eah mislassi�ed om-ponent. As it is visible from Fig. 14, the penaltyis applied linearly.The isolation auray metri Mia originates inthe automotive industry (Committee E-32, 2008).The Aerospae Reommended Pratie (ARP)omputes the losely related probability of orretlassi�ation in the following way. For eah om-ponent we omputed the square onfusion matrix.The probability of orret lassi�ation is the sumof the main diagonal divided by the total numberof lassi�ations (f. the referened ARP (Com-mittee E-32, 2008) for details and examples).It an be shown that the probability of or-ret lassi�ation, as de�ned in the above ARP,is equivalent to Mia, if both fault and nominalomponent modes are used for the omputation

of the onfusion matries. The probability of or-ret lassi�ation is onditioned on the fault prob-ability while the probability measured by Mia isnot. The latter is purely a metri design onsid-eration. The fat that we use nominal modes foromputing Mia leads to higher orrelation of Miawith the detetion auray metris de�ned laterin this setion.If more than one predited mode vetor is re-ported by a DA, (meaning that the diagnosti out-put onsists of a set of andidate diagnoses), thenthe isolation auray and the lassi�ation errorsare alulated for eah predited omponent modevetor and weighted by the andidate probabilitiesreported by the DA as it is seen in Eq. (20) andEq. (14). Mia and Merr are very useful for singlediagnoses but with multiple andidates they areless intuitive. The metri that follows is looselybased on the onept of �repair e�ort� and partlyremedies this problem.A.2 UtilitiesIn what follows we show the derivations of thethree utility metris (system repair utility Msru,diagnosis repair utility Mdru, and utility Mutl).A.2.1 System Repair UtilityConsider an injeted fault ω⋆ (ω⋆ is a set of faultyomponents) and a diagnosti andidate ω (also aset of what the DA onsiders faulty omponents).The number of truly faulty omponents that areimproperly diagnosed by the diagnosti algorithmas healthy (false negatives) is n = |ω⋆ \ ω| (f.Fig. 4). In general a diagnostiian has to per-form extra work to verify a diagnosti andidate
ω, whih must be re�eted in the system repairutility. We assume that he or she has aess to atest orale that states if a omponent c is healthyor faulty.We �rst determine what the expeted numberof tests a diagnostiian has to perform to testall omponents in ω⋆ \ ω (the false negatives) ifthe diagnostiian hooses untested omponents atrandom with uniform probability. In the worstase, the diagnostiian has to test all the remain-ing COMPS \ ω omponents (the diagnosti al-gorithm has already determined the state of allomponents in ω). Consider the average situation.We denote N = |COMPS\ω|. N is the size of the�population� of omponents to be tested.The probability of observing s − 1 suesses(faulty omponents) in k + s− 1 trials (i.e., k ora-le tests) is given by the diret appliation of thehypergeometri distribution:

p(k, s− 1) =

(

n
s−1

)(

N−n
k

)

(

N

k+s−1

) (24)The probability p(k, s) of then observing a faultyomponent in the next orale test is simply thenumber of remaining false negatives n − (s − 1)divided by the size of the remaining population(N − (s + k − 1)):
p(k, s) =

n− s + 1

N − k − s + 1
(25)25



and the probability of having exatly k oralefaults up to the s-th test, is then the produt ofthese two probabilities:
p′(k, s, n, N) =

(

n
s−1

)(

N−n
k

)

(n− s + 1)
(

N

k+s−1

)

(N − k − s + 1)
(26)The formula above is the probability mass of theinverse hypergeometri distribution that, in ourase, yields the probabilities for testing k healthyomponents before we �nd s faulty omponentsout of the population (no repetitions). The ex-peted value E′[k] of p′(k, s, n, N) (from the de�-nition of a �rst entral moment of a random vari-able) is:

E′[k] =
n

∑

x=0

xp′(x, s, n, N) (27)Replaing p′(k, s, n, N) in (27) and simplifyinggives us the mean of the inverse hypergeometridistribution1:
E′[k] =

s(N − n)

n + 1
(28)As we are interested in �nding s = n faulty om-ponents, the expeted value E′(n, N) beomes:

E′[k] =
n(N − n)

n + 1
(29)The expeted number of tests E[t] (as opposed tothe expeted number of faulty omponents E′[k])then beomes:

E[t] =
n(N − n)

n + 1
+ n =

n(N + 1)

n + 1
(30)The expeted number of tests E[t] is then normal-ized by the number of omponents f and �ippedalongside the y axis to give the system repair util-ity:

msru = 1−
n(N + 1)

f(n + 1)
(31)Plotting the system repair utility msru againsta variable number of false negatives is shown inFig. 15. One an see that unlike merr whihhanges linearly, msru �penalizes� improperly di-agnosed omponents exponentially.The system repair utility for a set of diagnosesis de�ned as:

Msru =
∑

ω∈Ω

W (ω)msru(ω⋆, ω) (32)where W (ω) is the weight of a diagnosis ω suhthat:
∑

ω∈Ω

W (ω) = 1 (33)All weights W (ω), ω ∈ Ω, are omputed by thediagnosti algorithm.1For a detailed derivation of the negative hyperge-ometri mean, f. (Shuster and Sype, 1987).
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|COMPS|Figure 15: msru as a funtion of nA.3 Diagnosis Repair UtilityUsing E[t] in a metri is not enough as it onlyaptures the e�ort to �eliminate� (test) all falsenegatives. The size of the set of false positives is

n̄ = |ω \ω⋆| (f. Fig. 4). To �nd all false positives,the diagnostiian has to test in the worst ase allomponents in ω. Hene, the general populationis N̄ = |ω|. Repeating the argument for E[t] wedetermine the expeted number of tests for testingall false positives E[t̄]:
E[t̄] =

n̄(N̄ + 1)

n̄ + 1
(34)Similarly, the diagnosti repair utility mdru is thenormalized E[t̄]:

mdru = 1−
n̄(N̄ + 1)

f(n̄ + 1)
(35)The system repair utility for a set of diagnoses isde�ned as:

Mdru =
∑

ω∈Ω

W (ω)mdru(ω⋆, ω) (36)A.4 UtilityThe utility metri (per andidate) is a ombinationof msru and mdru:
mutl = 1−

E[t] + E[t̄]

f
= (37)

= 1−
n(N + 1)

f(n + 1)
−

n̄(N̄ + 1)

f(n̄ + 1)
(38)The utility metri (per senario) is

Mutl =
∑

ω∈Ω

W (ω)mutl(ω
⋆, ω) (39)Figure 16 plots mutl for varying numbers of falsenegatives and false positives in a (symmetri) asewhere the ardinality of the diagnosis is half thenumber of omponents. Normally, the number ofinjeted faulty omponents |ω⋆| and, hene, the26



number of false positives n are small ompared tothe total number of omponents f), whih leadsto an asymmetri mutl plot. In suh ases the roleof the false positives is small. There is a globaloptimum mutl = 1 for n = 0 and n̄ = 0, i.e., allomponents in ω are lassi�ed orretly.

n
|COMPS|

n̄
|COMPS|

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1

0

0.5

1

m
u
tl

Figure 16: mutl as a funtion of n and n̄B SYSTEM DESCRIPTION FORMATConsider c17, the smallest ISCAS85 iruit. Anexample system desription starts by de�ning anumber of omponents in the following manner(we have trunated the XML ode):<?xml version="1.0" enoding="UTF-8"?><systemCatalog ...><systemInstanes><systemInstane id="17" system="17" /></systemInstanes><systems><system><systemName>17</systemName><desription>The 17 ISCAS85 ombinational iruit.</desription><omponents><omponent><name>i1</name><omponentType>port</omponentType></omponent><omponent><name>gate11</name><omponentType>nand2</omponentType></omponent><omponent><name>gate11.o</name><omponentType>wire</omponentType></omponent>...Part of the topology of c17 is desribed in the XMLexerpt below:<onnetions><onnetion><1>gate10.o</1><2>z1</2>

</onnetion><onnetion><1>gate10.i1</1><2>i1</2></onnetion><onnetion><1>gate10.i2</1><2>i3</2></onnetion>...<onnetions>The omponent type speifying a iruit breakerand shown next is part of ADAPT-Lite andADAPT (this omponent type is referened, forexample, by a omponent with unique identi�erCB180):<omponentType xsi:type="iruitBreaker"><name>CiruitBreaker4Amp</name><desription>4 Amp CiruitBreaker</desription><modesRef>CiruitBreaker</modesRef><rating>4</rating></omponentType>Another example of a omponent type is the ACvoltage sensor shown below.<omponentType xsi:type="sensor"><name>ACVoltageSensor</name><desription>AC voltage sensor.</desription><modesRef>SalarSensor</modesRef><sensorValue xsi:type="numberValue"><dataType>double</dataType><rangeMin>0</rangeMin><rangeMax>150</rangeMax></sensorValue><engUnits>VAC</engUnits></omponentType>Below is shown a nand-gate, part of a digital ir-uit.<omponentType><name>nand2</name><desription>A 2-input logi NAND gate.</desription><modesRef>gate</modesRef></omponentType>Finally, we have the modes of a iruit-breaker.<modeGroup><name>CiruitBreaker</name><mode xsi:type="mode"><name>Nominal</name><desription>Transmits urrent and voltage ...</desription></mode><mode xsi:type="mode"><name>Tripped</name><desription>Breaks the iruit and must be ...</desription></mode> 27



<mode xsi:type="faultMode"><name>FailedOpen</name><desription>Trips even though urrent is ...</desription><faultSoure>Hardware</faultSoure><parameters/></mode></modeGroup>C MESSAGE FORMATSThough there are additional message types, themost important messages for the purpose of benh-marking are the sensor data message, ommandmessage, and diagnosis message, desribed below.C.1 Sensor/Command DataSensor data are de�ned broadly as a map of sensorIDs to sensor values (observations). Sensor valuesan be of any type; urrently the framework al-lows for integer, real, boolean, and string values.The type of eah observation is indiated by thesystem's XML atalog.SensorMessage+timestamp+sensorValues: Map<sensorIds→sensorValues>CommandMessage+timestamp+ommandID: string+ommand: ommandValueTable 14: Sensor and ommand message formatCommandable omponents ontain an additionalentry in the system atalog speifying a ommandID and ommand value type (analogous to sen-sor value type). The ommand message repre-sents the issuane of a ommand to the system.In the ADAPT system, for example, the message(EY144_CL, true) signi�es that relay EY144 isbeing ommanded to lose. �EY144_CL� is theommand ID, and �true� is the ommand value(in this ase, a Boolean).C.2 Diagnosis Result FormatThe DA's output (i.e., estimate of the physial sta-tus of the system) is standardized to failitate thegeneration of ommon data sets and the alula-tion of the benhmarking metris, whih are intro-dued in Se. 3.3. The resulting diagnosis messageis summarized in Table 15 and ontains:timestamp: a value indiating when the diagno-sis has been issued by the algorithm.andidateSet: a andidate fault set is a list ofandidates an algorithm reports as a diagno-sis. A andidate fault set may inlude a singleandidate with a single or multiple faults; or

multiple andidates eah with a single or mul-tiple faults. It is assumed that only one an-didate in a andidate fault set an representthe system at any given time.detetionSignal: a Boolean value as to whetherthe diagnosis system has deteted a fault.isolationSignal: a Boolean value as to whetherthe diagnosis system has isolated a andidateor a set of andidates.DiagnosisMessage+timestamp+andidateSet: Set <Candidate>+detetionSignal: Boolean+isolationSignal: Boolean+notes: stringCandidate+faults: Map<omponentIds→omponentState>+weight: doubleTable 15: Diagnosis message formatIn addition, eah andidate in the andidate sethas an assoiated weight. Candidate weights arenormalized by the framework suh that their sumfor any given diagnosis is 1.
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