
Slicing and Dicing Bugs in Concurrent Programs

Neha Rungta
NASA Ames Research Center
Moffett Field, CA 94035-1000
neha.s.rungta@nasa.gov

Eric Mercer
Brigham Young University

Provo, UT 84660
eric.mercer@byu.edu

ABSTRACT
A lack of scalable verification tools for concurrent programs
has not allowed concurrent software development to keep
abreast with hardware trends of multi-core technologies. The
growing complexity of modern concurrent systems necessi-
tates the use of abstractions in order to verify all the ex-
pected behaviors of the system. Current abstraction refine-
ment techniques are restricted to verifying mostly sequential
and simpler concurrent programs. In this work, we present
a novel abstraction refinement technique that uses program
slicing based on reachability properties to generate an initial
abstraction over a single thread. The initial single thread ab-
straction is coupled with a concrete execution to drive the
single thread; generating an underapproximation of the pro-
gram behavior space. If the target location is reached in
the underapproximation, then we have an actual concrete
trace. Otherwise, the initial abstraction is refined to include
another thread that affects the reachability of the target lo-
cation. In this case, the concrete execution only considers
the two threads in the abstraction and preemption points
between the threads only occur at locations in the abstrac-
tion. This refinement process is repeated until the target
location is reached or is shown to be unreachable. Initial
results indicate that the incremental technique can poten-
tially allow the discovery of errors in larger systems using
fewer resources and produce a better reduction in systems
that are correct.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software Verification

Keywords
Abstraction-refinement, concurrency, underapproximation

General Terms
Reliability, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
We expect to see an increase in the number of application

programmers writing concurrent applications to take advan-
tage of the multi-core processors. Access to efficient verifi-
cation tools is an important aspect in making these systems
reliable.

In this work, underapproximation of a system is explored
by limiting the number of threads and preemption points us-
ing information generated from program slicing with respect
to a reachability property. The underapproximations are re-
fined incrementally by adding behaviors (interleavings) at
each iteration. The goal is use the information from pro-
gram slicing and concrete execution incrementally to create
a reduction in the number of interleavings explored before
finding errors or proving the correctness of the program.

Explicit model checking is a precise verification technique
that exhaustively explores all possible behaviors of the pro-
gram to check for errors or demonstrate a proof of correct-
ness [9, 4]. The number of possible behaviors in the system
often increases exponentially with the number of threads
and program locations.

Partial order reduction techniques have been applied to
combat the explosion in the number of behaviors [1, 2].
Partial order reduction only considers interleavings at op-
erations on global variables that are relevant in verifying
a particular property. These techniques are not sufficient
to make model checking tractable. Partial order reduction
techniques do not incrementally refine their dependence re-
lation based on an underapproximation of a concrete exe-
cution as proposed in this work. We believe that such an
incremental approach produces a more aggressive reduction
than what is seen in other partial order reduction techniques.

A closely related work incrementally explores the under-
approximations of a concurrent system using bounded model
checking [3]. The technique uses a SAT solver to determine
the satifisability of the property. The information from the
SAT solution is used to refine the system if needed. The
technique presented in this work does not rely on SAT and
is designed for verifying object-oriented languages such as
Java. Also we use dependence analyses and program slic-
ing to refine the abstraction. We also believe the proposed
technique in this work has the potential to scale to larger
systems and can be applied to a varied domain of programs.

In our previous work, we generated an abstract system
from standard static analysis techniques such as control de-
pendence, data dependence, and backward slicing to gener-
ate program locations relevant in verifying a property [8]. A
class of heuristics were developed to guide the program ex-

Global vars initial values : x := 0, y := 1
Thread t0 Thread t1

1: if x == 0 then
2: if y ≤ 1 then
3: x := x + 12
4: else
5: y := y ∗ 30
6: x := x + 9
7: if x == 10 then
8: throw exception
9: return

1: if y ≥ x then
2: y := y + 1
3: x + +

Thread t2

1: y := y − 1
2: if y == 9 then
3: y := y ∗ 10

Figure 1: A program where threads t0, t1, and t2
operate on shared global variables x and y.

ecution along a single sequence of program locations in the
abstract system in the hope of finding an error. Additional
program locations are added to the trace when the concrete
execution cannot make progress. The main limitation of the
work is that it cannot detect the absence of an error and it
is restricted to following a single sequence of locations and
other sequences have to be explored iteratively or in parallel.

Various other underapproximation exploration techniques
have been researched using must-may abstractions [7]. While
in the testing domain, the dynamic analysis tool Chess ex-
plores the underapproximation of the system by restricting
the number of preemptions along a particular path [6]. It is
limited because a lot of time is spent in exploring all paths
and interleavings on variables that may not be related in
determining the feasibility of a particular error.

2. INCREMENTAL APPROACH
Initially, an abstract system is constructed to contain pro-

gram locations from a single thread such that the locations
are relevant in verifying the reachability property. On the
first iteration of the refinement loop, the lone thread in the
abstract system is executed in the actual concrete system to
create an underapproximation of the actual behavior space.
If the target is reached the analysis stops. When the tar-
get, however, cannot be reached the information about non-
executed locations in the abstract system is used in the re-
finement process. Refinement incrementally adds additional
threads, one at a time in each iteration, along with relevant
locations in the threads to the abstract system. The new
abstraction is again coupled with the concrete execution of
the real system to restrict the real system to only execute
threads in the abstraction and only consider preemption at
locations in the abstraction. The new underapproximation
of the actual behavior space contains additional interleav-
ings caused by the additional thread and preemption points
in the abstraction. The process is repeated until the target
can be reached or is shown to be unreachable.

The input to our technique is a concurrent program and
a reachability property. The threads in the concurrent pro-
gram communicate with each through shared variables and
use synchronization primitives to allow exclusive access to
threads while performing operations on shared variables.
The programs do not have any data input. The non-determinism
in the program behavior, hence, arises from different thread
execution order and not from data input. The other input is
a reachability property consisting of target location. In order
to simplify the presentation we describe the technique for a

single target location, but the technique extends to multiple
target locations, for instance, lock acquisition locations in a
deadlock or pair of unprotected accesses in a race-condition.
An example of a concurrent program meeting our input re-
quirements is shown in Fig. 1. It has three unique thread
entities: t0, t1, and t2 that operate on two shared global
variables x and y. The property being checked in this case
is whether the exception on line 8 of thread t0 can be raised.

2.1 Abstract System
An abstract system is created for the thread that contains

the target location. The abstract system contains the pro-
gram locations relevant in verifying the reachability of the
target location. Interprocedural backward slicing is used to
generate the set of relevant program locations [5]. Backward
slicing uses a combination of control and data dependence
analyses to generate a set of program locations relevant to
the reachability of the target. The relevant synchronization
operations on the global variables of interest are also added
to the abstract system.

The abstract system for thread t0, Fig. 1, is shown in
Fig. 2(a). The reachability of the target location on line 8
is control dependent on the predicate, x == 10, at line 7
evaluating to true. There are two definitions of the global
variable x in the system and their reachability is also deter-
mined by other conditional branches. In Fig. 2(a), the loca-
tions represent a backward slice and are relevant in verifying
the reachability of the target location. This is the initial ab-
straction. It is used to restrict the concrete execution of the
real system to the single thread in the abstraction. For the
example in Fig. 1, the single thread is t0.

2.2 Explore initial underapproximation
A runtime environment implements an interleaving se-

mantics over the restricted threads in the program. The
runtime environment operates on a program state, s, that
contains (1) the values of the global shared variables, (2)
the local variable values and stack contents for each thread,
and (3) information about the locks held by each thread.
An underapproximation of the actual system is explored by
limiting the locations where preemptions occurs and also
restricting the threads that are allowed to execute in the
system.

The initial underapproximation of the concrete system ex-
plored for thread t0 is shown in Fig. 2(b). The initial ab-
stract system in Fig. 2(a) only contains a single thread t0,
hence, in the restricted concrete execution of the total sys-
tem, there is no thread non-determinism; only thread t0
runs. At the init state the values of x and y are zero and
one respectively. The initial values allow the assignment,
x := x + 12, to be executed. The value of x is not equal to
ten and concrete execution of t0 in the actual system ends
without reaching the target.

When the target location cannot be reached there are two
possibilities, (1) the underapproximation explored does not
contain the required behaviors to find the target location
and needs to be refined, or (2) the target location is not
reachable. We discuss the conditions for both cases.

2.3 Refinement
In the refinement phase, an additional thread that may

affect the reachability of the target location is added to the
abstract system. The locations in the abstract system that

true

7 : if x == 10

exception
8 : throw

2 : if y ≤ 1

1 : if x == 0

3 : x := x + 12 6 : x := x + 9

A(t0)

false

true

true

init

t0 : x == 0

t0 : x := x + 12

t0 : x 6= 10

[x = 0, y = 1]

[x = 0, y = 1]

t0 : y ≤ 1

[x = 0, y = 1]

[x = 12, y = 1]

end

true

7 : if x == 10

exception
8 : throw

1 : if x == 0

2

3 6 : x := x + 9

A(t0)

A(t1)

3 : x + +

false

true

true
[x = 0, y = 1]

t0 : x == 0

t0 : x 6= 0

t0 : x := x + 9

t0 : x == 10

t0 : y ≤ 1

t1 : x + +

t1 : x + +

[x = 0, y = 1]

[x = 1, y = 1]

[x = 1, y = 1]

[x = 10, y = 1]

target

init

(a) (b) (c) (d)

Figure 2: Incremental underapproximations of the example in Fig. 1 (a) Initial abstract system (b) First
underapproximation exploration (c) Refined abstract state (d) Second underapproximation exploration.

do not get executed in the underapproximation of the con-
crete system are used to determine the thread to be added
to the abstract system.

In the underapproximation from the concrete execution of
t0 shown in Fig. 2(b), lines 6 and 8 do not get executed. The
reachability of line 6 is control dependent on the predicate
at line 1, x == 0 evaluating to false. Similarly the reach-
ability of the target location at line 8 is control dependent
on x == 10 evaluating to true. The predicates in the con-
ditional branches of interest are over the global variable x.
In an attempt to reach the target location, another thread
that modifies the global variable x is added to the abstract
system. When there are multiple global variables hindering
the reachability of locations in the abstract system, then all
the variables are considered when adding a new thread.

Thread t1 in Fig. 1 modifies the global variable x on line 3.
An abstraction from a program slice on thread t1 is added to
the abstract system as shown in Fig. 2(c). The abstract t1
only contains locations in the thread that affect the reacha-
bility of the program location at line 3 as given by the slice.
These locations define the preemption points considered in
the concrete execution of the actual system; furthermore,
only threads t0 and t1 are allowed to execute in the con-
crete system. Control and data flow analyses are used to
identify other program locations that affect the reachabil-
ity of the assignments to the global variables of interest. In
the example in Fig. 2(c), however, no other locations need
to be added. In the case there are multiple assignments to
the global variables of interest in the same thread then all
the assignments and their dependencies are added to the re-
fined abstract system. Also, in the case that more than one
thread contains assignments to global variables of interest,
we incrementally add one thread to the abstract system in
each refinement cycle.

It is important to note that even though the global vari-
able y is part of the original system, we do not need to add a
thread that modifies its values. Line 3 in thread t0 is control
dependent on y ≤ 1 and the initial value of y is sufficient
to execute the program location at line 3. Since there exists
a value of y that allows line 3 in thread t0 to be executed
in the first iteration we are guaranteed that line 3 will be

executed in all subsequent iterations.
Part of the underapproximation of the concrete system

with additional interleavings after the refinement process
is shown in Fig. 2(d). The abstract system contains two
threads t0 and t1. In the underapproximation from the ab-
straction restricted concrete execution, the interleavings be-
tween thread t0 and t1 are explored preempting at locations
that are in the abstract system. At the init state in Fig. 2(d)
when thread t1 is executed, the value of x is set to one. Next,
when thread t0 is executed, the predicate x == 0 evaluates
to false. After executing the instruction, x := x + 9, the
predicate x == 10 evaluates to true and the target location
is reached.

2.4 Unreachable Target
After exploring an underapproximation based on an ab-

stract system when the refinement process does not add any
new threads to the system, then the target location is termed
unreachable. Suppose, for example, at line 7 in thread t0,
the predicate controlling the reachability of the target lo-
cation is if (x == 45) and the rest of the program is un-
changed. Even after refinement, the target location cannot
be reached. The global variable affecting the reachability of
the target still remains x. All the interleavings in the pro-
gram relevant to x have already been explored, hence, the
target is unreachable.

This is an improvement over other partial order reduction
techniques because the partial order reduction techniques
construct the dependence relation over visible behaviors only
once. For the example in Fig. 1, all the operations on x and
y in threads t0, t1 and t2 are considered as preemption points
in the partial order reduction. Intuitively, the operations on
x and y are visible for verifying the reachability of the target
location. The incremental refinement in our technique pro-
duces a better partial order reduction based on the property
being explored than a more typical dynamic reduction.

3. RESULTS
We present some preliminary results from an initial im-

plementation. The technique is implemented in the Java
Pathfinder (JPF) model checker, [9], that uses a modified

SharedVar-v0, no error
Search States Time (sec)

DFS 18199 7.0
Under(Iter-1) 2 0.1
Under(Iter-2) 385 0.4
Total(Iter) 387 0.5

(a)

SharedVar-v1, 1-thread error
Search States Time (sec)

DFS 18 0.1
Under(Iter-1) 2 0.1
Under(Iter-2) - -
Total(Iter) 2 0.1

(b)

SharedVar-v2, 2-thread error
Search States Time (sec)

DFS 5880 3.0
Under(Iter-1) 2 0.1
Under(Iter-2) 355 0.2
Total(Iter) 357 0.3

(c)

Table 1: Comparing depth-first with exploring un-
derapproximations results for: (a) model containing
no error (b) model with error found with one thread
(c) model with error needs interactions between 2
threads

JVM to execute Java bytecode. It is implemented as an ex-
tension to JPF and can be obtained along with the examples
described here from a mercurial repository:
http://babelfish.arc.nasa.gov/hg/jpf/jpf-guided-test

We compare three different versions of a model named
SharedVar: v0, v1, and v2. The SharedVar example has
three threads and operates on two shared variables. Among
the variants of the program, v0 does not contain error, v1
requires simply the execution of one thread to raise an ex-
ception (error) in the program, and v2 requires interactions
between two threads to raise an exception (error) in the pro-
gram. The results for v0, v1 and v2 are shown in Table 1(a),
Table 1(b), and Table 1(c) respectively.

The results in Table 1 compare a dynamic partial order re-
duced depth-first search implemented in JPF with our incre-
mentally refined underapproximations of the concrete sys-
tem. The Under(Iter-1) indicates that the values in the first
iteration of exploring the underapproximation, while Iter-
2 represents the second iteration. The total time reported
is in seconds. When reporting the times for exploring the
underapproximation the Total time includes generating the
abstraction and refining the abstract system. States indi-
cate the total number of states explored before reaching the
target or states explored before showing it is unreachable.

In general, in all three versions of the example we see that
in exploring the underapproximation of the system even with
a refinement process, we explore fewer total states and take
less total time in verifying the system. The trend is seen for
versions that contain the error and the version that does not
contain the error. In version v0, a depth-first search with
dynamic partial order reduction takes seven seconds and ex-

plores 18, 199 states before completing while even after refin-
ing once, searching the underapproximation takes only 0.5
seconds to show the absence of the error and generates 387
states in the process. This dramatic reduction we believe
arises from the criteria used to detect when the refinement
has a reached a fixpoint and adding further behaviors to the
system will not change the output of the program.

4. IMPACT AND FUTURE WORK
An initial implementation and testing of the incremental

underapproximation shows that (i) target locations are often
reached with only a few refinements; and (ii) the total num-
ber of states necessary to show a target cannot be reached
is dramatically less that what is obtained from a dynamic
partial order reduction on the same program. These two
observations suggest that it might be possible to create an
abstraction refinement loop based on underapproximation
that (i) can lead to error discovery in large systems where
formal verification is normally intractable; and (ii) the incre-
mental refinement produces a better partial order reduction
based on the property being explored that a more typical
dynamic reduction that could potentially allow us show the
absence of errors in larger systems. Such contributions have
the potential to move forward the current state-of-the-art in
concurrent program verification based on exhaustive search
techniques. Immediate future work will focus on extensive
evaluation with other abstraction techniques and construct-
ing formal proofs for the claims of refinement reaching a
fixpoint.

5. REFERENCES
[1] C. Flanagan and P. Godefroid. Dynamic partial-order

reduction for model checking software. In Proc. POPL,
pages 110–121, New York, NY, USA, 2005. ACM.

[2] P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems: An Approach to
the State-Explosion Problem. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1996. Foreword
By-Pierre Wolper.

[3] O. Grumberg, F. Lerda, O. Strichman, and
M. Theobald. Proof-guided
underapproximation-widening for multi-process
systems. SIGPLAN Not., 40(1):122–131, 2005.

[4] G. J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.

[5] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. SIGPLAN Not.,
39(4):229–243, 2004.

[6] M. Musuvathi and S. Qadeer. Iterative context
bounding for systematic testing of multithreaded
programs. SIGPLAN Not., 42(6):446–455, 2007.

[7] C. Pasareanu, R. Pelánek, and W. Visser. Predicate
abstraction with under-approximation refinement.
Logical Methods in Computer Science, 3(1), 2007.

[8] N. Rungta, E. G. Mercer, and W. Visser. Efficient
testing of concurrent programs with abstraction-guided
symbolic execution. In Proc. SPIN Workshop, pages
174–191, Grenoble, France, June 2009. Springer–Verlag.

[9] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proc. ASE, Grenoble, France,
September 2000.

