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Abstract

The ARINC-653 standard defines a common interface for Integrated Modular Avionics (IMA)
code. In particular, ARINC-653 Part 1 specifies a process- and partition-management API that is
analogous to POSIX threads, but with certain extensions andrestrictions intended to support the
implementation of high reliability flight code.

MCP is a software model checker, developed at NASA Ames, thatprovides capabilities for model
checking C and C++ source code. In this paper, we present recent work aimed at implementing
extensions to MCP that support ARINC-653, and we discuss thechallenges and opportunities that
consequentially arise. Providing support for ARINC-653’stime and space partitioning is nontrivial,
though there are implicit benefits for partial order reduction possible as a consequence of the API’s
strict interprocess communication policy.

1 Introduction

NASA missions are becoming increasingly complex, and, moreand more of this complexity is imple-
mented in software. In 1977, the flight software for the Voyager mission amounted to only 3000 lines.
Twenty years later, the software for Cassini had grown by a factor of ten, and more strikingly, the soft-
ware for the Mars Path Finder mission amounted to 160 KLOCs (thousands of lines of code). Nowadays,
the software for the Space Shuttle has reached half a millionlines of code (0.5 MLOCs). Moreover the
software for the International Space Station has exploded to 3 MLOCs and it is still increasing. Some ex-
perts have estimated that the software required by the Constellation project will reach at least 50 MLOCs.
Yet, NASA is still relying on traditional (and expensive) testing and simulation to verify its software.

Naturally, NASA is now exploring new ways to speed up the testing process, reduce its cost, and
increase its efficiency. Model checking is seen as a way of helping verifying software, especially for
multi-threaded code. Our colleagues at JPL developed the well-known SPIN model checker [12]. Un-
fortunately, it requires translating code into a modeling language called Promela, which is not always
feasible or practical. However Promela models are compiledinto C programs that perform the model
checking activity. JPL therefore developedmodel-driven verification[13]; it consists of embedding C
code fragments into the compiled Promela models. This technique allows them to partially check C pro-
grams. NASA Ames has taken a different approach called software model checking. For example, the
JPF (Java PathFinder) model checker can check Java programswithout any translation [11].

Experience from the JPF project has demonstrated the utility of software model checking(i.e. model
checking that acts directly on a program, rather than on a model that has been manually extracted from
it). However, current flight software is mostly implementedin C, not Java, and in the future it seems
increasingly likely that C++ will become the platform of choice. The MCP model checker is being
developed to fill the requirement for an explicit-state software model checker, in the style of JPF and

1

sarah.j.thompson@nasa.gov
guillaume.p.brat@nasa.gov
arnaud.j.venet@nasa.gov


ARINC-653 and MCP S. J. Thompson

SPIN, that fully supports the C++ language. Moreover, we envision designing a continuum of tools for
the verification of C and C++ programs and test case generation. The tools will span techniques ranging
from static analysis to model checking.

1.1 ARINC-653

The ARINC-653 standard [1, 3, 2] specifies the software interface to be used by developers of Integrated
Modular Avionics flight software. It is comprised of three parts:

Part 1: Avionics software standard interface (APEX).This part defines the operating system’s interface
to avionics code, with specific focus on partition management, process management and error
handling.

Part 2: APEX extensions.Since Part 1 is insufficient on its own to support many kinds ofpractical code,
Part 2 extends the standard to provide interfaces for file handling, communications and a few other
commonly used operating system services.

Part 3: Compliance testing specification.Part 3 does not define extra functionality in and of itself –
rather, it specifies how compliance testing should be carried out for implementations of parts 1
and 2.

In this paper we concentrate on ARINC-653 Part 1. In a very real sense, Part 1 can be thought of as
occupying the same part of the software food chain as POSIX threads [15], though its execution model
is somewhat different.

1.1.1 Partitions

The key defining feature of ARINC-653 is its inclusion ofpartitions. A partition is analogous to a
Unix process, in the sense that it runs in its own, separate memory space that is not shared with that of
other partitions. Partitions also have strictly protectedtime slice allocations that also may not affect the
time slices of other partitions – the standard’s aim is to ensure that if a partition crashes, other correctly
functioning partitions are unaffected. It is not possible,in standards-compliant code, to define areas of
shared memory between partitions – all interpartition communication must be mediated via the APEX
API.

One area where partitions differ considerably from Unix processes is in their strict adherence to a
well-defined start up and shutdown mechanism, with strict prohibition of dynamic allocation and recon-
figuration. On cold- or warm-boot1, only the partition’s primary process may execute. It then starts any
other processes, creates and initializes interprocess andinterpartition communications channels, allocates
memory and performs any other necessary initialization. The primary process then sets the partition’s
state to NORMAL, at which point no further dynamic initialization (including memory allocation) is
allowed. Setting the partition’s state to IDLE causes all threads to cease execution.

1.1.2 Processes

ARINC-653 processes are analogous to POSIX threads2. A partition may include one or more processes
that share time and space resources. Processes have strictly applied priorities – if a process of higher
priority than the current process is blocked and becomes able to run, it will preempt the running process

1The exact meaning of cold and warm is left to the implementer.
2Arguably, the usage of the word ‘process’ in the standard is unconventional, and can be confusing.
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immediately. Processes that have equal priority are round-robin scheduled. Memory is shared between
all processes within a partition.

1.1.3 Error handling

Each partition has a special, user-supplied, error handling process that runs at a higher priority than all
other processes in the partition. Normally it sits idle, consuming no time resources, until it is invoked as
a consequence of an error detected by the operating system orexplicitly raised by the running code. It
then defines how the partition should respond, and can (for example) cause a partition to be restarted if
necessary.

It is possible to define watchdog timeouts for processes thatcause the error handler to be invoked
automatically if time limits are exceeded.

1.1.4 Events

ARINC-653 Part 1 events are similar, though somewhat simpler than, the event synchronization facilities
provided in most other threading APIs. Events may be explicitly in a setor resetstate – when set, they
allow all processes waiting on the event to continue. When reset, all processes waiting on the event are
blocked. No support for self-resetting events, or events that allow only a single process to proceed are
supported, nor is there explicit support for handling priority inversion.

1.1.5 Semaphores

Semaphores in Part 1 behave in the traditional way – they are typically used to protect one or more
resources from concurrent access. A semaphore created withan initial resource count of 0 and a resource
count limit of 1 behaves exactly like the mutex facilities found in other threading APIs.

1.1.6 Critical Sections

APEX defines a single, global, critical section that, when locked, prevents scheduling. This is a little
different, and more extreme in effect, in comparison with the critical section facilities in POSIX threads
and in the Windows threading API – rather, it is analogous to turning off interrupt handling.

1.1.7 Buffers and Queuing Ports

ARINC-653buffersare actually thread-safe queues intended for interprocess, intrapartition communica-
tion. They are constructed with a preset maximum length and maximum message length which may not
be varied at run time. Messages consist of blocks of arbitrarily formatted binary data. Processes attempt-
ing to read from an empty buffer block until another process inserts one or more messages. Similarly,
attempting to write to an already-full buffer will cause thesending process to block until space becomes
available.

Queuing portsare the interpartition equivalent to buffers, and provide queued communication be-
tween partitions.

1.1.8 Blackboards and Sampling Ports

Blackboards,ARINC-653’s other interprocess/intrapartition communications mechanism, are analogous
to buffers, except that they store exactly zero or one messages. Processes may write to blackboards at
any time without blocking – the message that they send replaces the existing message, if any. Reading
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from an empty blackboard causes the reading process to blockuntil another process writes a message to
the blackboard.

Sampling portsare the interpartition counterpart to blackboards. Their semantics are slightly differ-
ent, in that neither sending or receiving processes ever block. They also add a timestamping facility that
makes it easy for a receiving process to check whether the data it has retrieved has become stale.

1.2 The MCP Model Checker

The MCP (Model Checker for C++) project began as an attempt toreimplement the JPF architecture for
C++: JPF implements an extended virtual machine interpreting Java bytecode with backtracking, and
the first version of MCP had a similar architecture, substituting LLVM [16] for Java. MCP’s current
architecture is closer to that of SPIN than of JPF, however – rather than running code in an instrumented
virtual machine with backtracking, we use program transformation techniques to instrument the program
itself, then run it natively in an environment whose run-time system implements backtracking.

1.2.1 LLVM: Low Level Virtual Machine
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LLVM 

optimiser

LLVM

bitcode

LLVM

bitcode

LLVM just-in-time

compiler

LLVM interpreter
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code generator

Native

executable
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Figure 1: Simplified LLVM architecture

Fig. 1 shows a simplified version of the LLVM flow3. A modified version of thegcc front-end is
used to parse the C++ source code and to lower most of the language’s constructs to a level closer to
that of a typical C program. The originalgcc back-end is discarded in favour of emittingLLVM bitcode,
which is then optimised and passed on to various alternativeback-ends.

The LLVM bitcode format was specifically designed to supportprogram analysis, transformation and
optimization – a Static Single Assignment (SSA) representation [8] is adopted, making many analyses
and transformations (including ours) far more straightforward than they might otherwise be.

1.2.2 The MCP Architecture

Fig. 2 shows an outline of the MCP architecture. Functionality is split across several subsystems:

Transformation PassesSeveral MCP-specific transformations that instrument the code under test are
implemented as an extension module for LLVM’sopt program transformation framework.

3Many LLVM tools have been omitted here for clarity – LLVM is a large, rich toolset, so we concentrate on the subsystems
that are specifically relevant to MCP.
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Figure 2: MCP Architecture

Run-time System A run-time system is implemented in C++, compiled with LLVM’s gcc front-end,
then linked with the program under test after it has been transformed. Its primary purpose is to
intercept system calls that MCP needs to handle differently, e.g.,printf, malloc, free, memset,
memmove andmemcpy. This approach also provides a convenient place to implement compati-
bility wrappers that allow code written to specific operating system APIs to be handled without
modification – the ARINC-653 subsystem is implemented as an extension to the run-time system.

JIT Environment/User Interface Model checking is initiated by users by running themcp command-
line application (see Section??). Themcp tool comprises an instance of the LLVM just-in-time
(JIT) compiler environment, as well as MCP’s implementations of memory versioning, hashing,
state space searching etc.

1.2.3 Emulating threading

One of the trickier issues surrounding the model checking ofC++ source code is the fact that the language
standard specifically does not mandate any particular threading model. Real-time program semantics are
therefore dependent upon the execution environment, so anyattempt to analyse multithreaded code must
inevitably make some kind of assumption about the underlying threading model.

MCP implements its own low-level API, on top of which arbitrary threading models may be con-
structed. This API is deliberately constructed to, as far aspossible, serve as a superset of all of the
threading models that are of interest.

1.2.4 Search Algorithms

MCP implements several built-in search strategies:4.

4Since MCP’s partial order reduction algorithm does not presuppose any particular execution order, MCP does not have a
performance bias toward any particular search strategy.
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Breadth-first search Paths through the search space are explored in depth order, beginning with the
shortest first.

Depth-first search Paths are executed to completion before backtracking continues.

Heuristic search In this strategy, the test harness provides a ranking function that allows MCP to
implement a best-first search strategy.

Randomised search Randomised search explores the search space in a random order. In practice,
randomised search has a ‘look and feel’ somewhere between that of breadth- and depth-first search, but
in practice it has less tendency to get stuck in local minima.

1.2.5 Assertions and Backtrace Generation

When an assertion occurs or when MCP detects an error (e.g.,due to a segmentation fault, deadlock, as-
sertion failure or some other problem in the code under test), it generates a backtrace from the beginning
of execution of the current execution trace until the most recently executed instruction is reached. Back-
trace logs may optionally include all executed LLVM instructions, executed source lines and all memory
contents that are read or written by the program. Only the actual trace from the currently executing code
fragment is generated – the (usually enormous and irrelevant) logging information from other traces that
did not lead to errors are ignored.

2 Model checking ARINC-653 code

Since MCP supports the entire C++ programming language, thespecial considerations required for
checking ARINC-653 code are specifically related to the implementation of its peculiar threading se-
mantics. Though much of ARINC-653 can be mapped to existing approaches, there is sufficient oddity
that a simplistic approach such as mapping APEX to and existing POSIX threads implementation is not
sufficient.

Time management Like most threading APIs, ARINC-653 Part 1 provides facilities for dealing with
time, ranging from sleeping for a particular interval, waiting until a specific time, timeouts on
waiting on blocking synchronization objects, etc. It also supplies some facilities that are squarely
aimed at avionics code, such as watchdog timeouts and automatically detecting stale data.

Ideally, it would be preferable to be able to accurately model program execution time. However,
since actual flight code is likely to be targeted at an entirely different CPU architecture [14, 22]
and compiled with a different toolchain [9], this is impractical, and indeed it could be potentially
dangerous to extrapolate results from one platform to another. Therefore, code is assumed to run
arbitrarily (though not infinitely) quickly, unless it explicitly waits via an API call. We therefore
concentrate on modeling time at the level of explicit waits and timeouts rather than at the level of
instructions.

Since MCP backtracks, its time implementation must also be able to backtrack. Consequentially,
time is emulated rather than taken from a real-time clock. This has a number of benefits, not least
of which being that arbitrarily long wait intervals can be emulated without needing to actually wait
for the specified length of time – modeling, for example, Earth-Mars communications links with
very long packet round-trip times, becomes feasible and efficient.
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Process managementARINC-653 Part 1 processes map fairly directly to MCP’s existing thread model,
so could be accommodated relatively straightforwardly. Partitions were trickier to support, because
they required a new memory protection system to be implemented that could segment memory
access and check that it is being accessed with appropriate partitions. This turned out to be the
single largest change necessary to MCP in order to support the APEX API.

Partition start up/initialization control Most of the requirements of partition start-up and initialization
control involve parameter checking within API calls, so this is dealt with largely with assertions
in the API implementation. MCP’s memory manager was extended to support a flag that causes
memory allocation to throw an error, making it possible to detect accidental memory allocations
while a partition is in NORMAL mode.

Sampling ports, queuing ports, buffers and blackboardsThese communications APIs were imple-
mented fairly straightforwardly, and did not require alteration to the MCP core. Synchronization
was implemented purely in terms of MCP’s native event mechanism.

Events, semaphores, critical sections and error handlingThese APEX API features mapped more or
less directly to MCP’s existing facilities. Some changes were necessary, but these were mostly
consequential to the partitioned memory model support.

3 Partial order reduction under a partitioned memory model

Partial order reduction is carried out by model checkers in order to reduce the impact of the exponential
time complexity inherent in backtracking. GivenN representing the size of the program fragment under
test anda representing the amount of possible nondeterminism at eachdecision point, time complexity
for explicit state model checking has an upper bound proportional toaN. It therefore behooves us to try
to geta down to as close to 1 as possible, because this has a dramatic effect on the size of programN that
can be practically analyzed. Partial order reduction techniques typically attack this in two ways: making
the execution steps bigger by bundling thread-local operations together (thereby effectively reducing
N), and where possible bundling together nondeterministic choices that have equivalent consequences
(reducinga where possible). MCP does both – it leverages LLVM’s static analysis and optimization
capability in order to make the steps between yield points aslarge as possible, and second mechanism
tracks reads and writes to shared memory, suspending evaluation lazily when only a subset of currently
running threads have touched the relevant locations.

Though MCP’s existing partial order reduction strategy canbe applied to ARINC-653 code, there
are some potential benefits available as a consequence of thepartitioned execution scheme. In particular,
the decision to only allow partitions to affect each other via API calls has profound consequences. A
partition with a single process, or with multiple processesnone of which having the same priority, is
inherently deterministic. Therefore, nondeterminism mayonly arise as a consequence of timing relation-
ships between such partitions. The MCP APEX implementationoptionally treats partitions as executing
atomically between API calls, offering a huge speedup with minimal time or memory overhead. Initial
results are encouraging, though at the time of writing this functionality is too new for it to be possible to
quote performance statistics.

4 Related work

Structurally, MCP probably bears closest resemblance to JPF (Java Pathfinder) [11], though at the time
of writing it does not approach JPF’s maturity. The most significant differences between JPF and MCP
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stem from the differences between Java and C++; for example,JPF takes advantage of reflection and the
standard threading package in Java, which MCP can not since those features are not present in C or C++.

Since JPF is a explicit-state model checker “a la SPIN”, MCP is also a close cousin to SPIN [12]. Be-
sides the explicit-state model, MCP also shares with SPIN the concept of compiling the model checking
problem into an executable program. SPIN starts with Promela models while MCP performs transfor-
mations on C/C++ programs to embed the model checking problem into the original program.

Another model checker directly addressing C++ is Verisoft [10], which takes a completely different
approach. Verisoft follows a stateless approach to model checking while MCP follows a conventional
explicit-state model similar to SPIN [12].

CBMC is a bounded Model Checker for C and C++ programs [5]. It can check properties such as
buffer overflows, pointer safety, exceptions and user-specified assertions. CBMC does model checking
by unwinding loops and transform instructions into equations that are passed to a SAT solver. Paths are
explored only up to a certain depth.

There are, however, several model checkers that address C. SLAM [4] is really more of a static
analyzer than a model checker. It relies heavily on abstractions, starting from a highly abstracted form
and building up to a form that allows a complete analysis. CMC[17] uses an explicit-state approach, but
it requires some manual adaptation when dealing with complex types (pickleandunpicklefunctions).

Finally, there have been some attempts within NASA to use theValgrind tool [18, 20] as a model
checker. Unfortunately, it implies using very crude steps between transitions.

Other approaches to model checking code involve a translation step, be it automatic or manual.
For example, Bandera [7] provides model checking of Java programs by translating automatically the
program into a PVS [19], Promela [21] or SMV [6] model.

5 Conclusions

The ARINC-653 Part 1 support in MCP is very new and still underdevelopment, so the purpose of this
paper is to provide a first look at the capability within NASA’s wider formal methods community.

5.1 Future work

Other than a requirement for detailed testing and attentionto detail with respect to standards compliance,
the Part 1 implementation is largely complete at the time of writing. We hope, over the next few months,
to put together a larger demonstration of the technology based on a moderate-sized, ARINC-653-based
flight code model example, which will help us further tune ourAPEX implementation. If sufficient
interest is shown, extending our implementation to encompass Part 2 would be feasible.
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