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Abstract

The ARINC-653 standard defines a common interface for lategr Modular Avionics (IMA)
code. In particular, ARINC-653 Part 1 specifies a procesd-gartition-management API that is
analogous to POSIX threads, but with certain extensionsrasiictions intended to support the
implementation of high reliability flight code.

MCP is a software model checker, developed at NASA Amespifwatides capabilities for model
checking C and C++ source code. In this paper, we presenmtreagk aimed at implementing
extensions to MCP that support ARINC-653, and we discussliiaienges and opportunities that
consequentially arise. Providing support for ARINC-658ise and space partitioning is nontrivial,
though there are implicit benefits for partial order reduetpossible as a consequence of the API's
strict interprocess communication policy.

1 Introduction

NASA missions are becoming increasingly complex, and, naoiet more of this complexity is imple-
mented in software. In 1977, the flight software for the V@ragission amounted to only 3000 lines.
Twenty years later, the software for Cassini had grown byctofeof ten, and more strikingly, the soft-
ware for the Mars Path Finder mission amounted to 160 KLO@si&ands of lines of code). Nowadays,
the software for the Space Shuttle has reached half a milies of code (0.5 MLOCSs). Moreover the
software for the International Space Station has explood@MLOCs and it is still increasing. Some ex-
perts have estimated that the software required by the Eltatiin project will reach at least 50 MLOCs.
Yet, NASA is still relying on traditional (and expensivestig and simulation to verify its software.

Naturally, NASA is now exploring new ways to speed up theitgsprocess, reduce its cost, and
increase its efficiency. Model checking is seen as a way gfimglverifying software, especially for
multi-threaded code. Our colleagues at JPL developed thiekmmvn SPIN model checker [12]. Un-
fortunately, it requires translating code into a modeliagguage called Promela, which is not always
feasible or practical. However Promela models are compiilerlC programs that perform the model
checking activity. JPL therefore developetbdel-driven verificatiorfl3]; it consists of embedding C
code fragments into the compiled Promela models. This iquabrallows them to partially check C pro-
grams. NASA Ames has taken a different approach called soéwnodel checking. For example, the
JPF (Java PathFinder) model checker can check Java progngmosit any translatiori [11].

Experience from the JPF project has demonstrated theywiflgéoftware model checkin@ge. model
checking that acts directly on a program, rather than on aeirtbdt has been manually extracted from
it). However, current flight software is mostly implemeniadC, not Java, and in the future it seems
increasingly likely that C++ will become the platform of ¢b®. The MCP model checker is being
developed to fill the requirement for an explicit-state wafte model checker, in the style of JPF and
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SPIN, that fully supports the C++ language. Moreover, waston designing a continuum of tools for
the verification of C and C++ programs and test case generakite tools will span techniques ranging
from static analysis to model checking.

1.1 ARINC-653

The ARINC-653 standard [L] B 2] specifies the software faterto be used by developers of Integrated
Modular Avionics flight software. It is comprised of threerfsa

Part 1: Avionics software standard interface (APEXhis part defines the operating system'’s interface
to avionics code, with specific focus on partition managemprocess management and error
handling.

Part 2: APEX extensionsSince Part 1 is insufficient on its own to support many kindgrattical code,
Part 2 extends the standard to provide interfaces for filelivegy communications and a few other
commonly used operating system services.

Part 3: Compliance testing specificatiorRart 3 does not define extra functionality in and of itself —
rather, it specifies how compliance testing should be chwigt for implementations of parts 1
and 2.

In this paper we concentrate on ARINC-653 Part 1. In a verysease, Part 1 can be thought of as
occupying the same part of the software food chain as POSbads [15], though its execution model
is somewhat different.

1.1.1 Partitions

The key defining feature of ARINC-653 is its inclusion pértitions. A partition is analogous to a
Unix process, in the sense that it runs in its own, separataanespace that is not shared with that of
other partitions. Partitions also have strictly protediete slice allocations that also may not affect the
time slices of other partitions — the standard’s aim is taemghat if a partition crashes, other correctly
functioning partitions are unaffected. It is not possilitestandards-compliant code, to define areas of
shared memory between partitions — all interpartition camiration must be mediated via the APEX
API.

One area where partitions differ considerably from Unixgasses is in their strict adherence to a
well-defined start up and shutdown mechanism, with strichimition of dynamic allocation and recon-
figuration. On cold- or Warm—bdatonly the partition’s primary process may execute. It thants any
other processes, creates and initializes interprocessitangartition communications channels, allocates
memory and performs any other necessary initializatione pitimary process then sets the partition’s
state to NORMAL, at which point no further dynamic initisgditon (including memory allocation) is
allowed. Setting the partition’s state to IDLE causes ak#ius to cease execution.

1.1.2 Processes

ARINC-653 processes are analogous to POSIX th%d&lgartition may include one or more processes
that share time and space resources. Processes havg sipiglied priorities — if a process of higher
priority than the current process is blocked and becomestalslun, it will preempt the running process

1The exact meaning of cold and warm is left to the implementer.
2Arguably, the usage of the word ‘process’ in the standaraéonventional, and can be confusing.



ARINC-653 and MCP S. J. Thompson

immediately. Processes that have equal priority are raahoi scheduled. Memory is shared between
all processes within a partition.

1.1.3 Error handling

Each patrtition has a special, user-supplied, error haggliimcess that runs at a higher priority than all
other processes in the partition. Normally it sits idle, soming no time resources, until it is invoked as
a consequence of an error detected by the operating systerpliitly raised by the running code. It
then defines how the partition should respond, and can (fomgie) cause a partition to be restarted if
necessary.

It is possible to define watchdog timeouts for processesdéiase the error handler to be invoked
automatically if time limits are exceeded.

1.1.4 Events

ARINC-653 Part 1 events are similar, though somewhat sinthén, the event synchronization facilities
provided in most other threading APIs. Events may be explici a setor resetstate — when set, they
allow all processes waiting on the event to continue. Wheatrall processes waiting on the event are
blocked. No support for self-resetting events, or everdas @allow only a single process to proceed are
supported, nor is there explicit support for handling ptyoinversion.

1.1.5 Semaphores

Semaphores in Part 1 behave in the traditional way — theyypieally used to protect one or more
resources from concurrent access. A semaphore createdmiititial resource count of 0 and a resource
count limit of 1 behaves exactly like the mutex facilitiesifiml in other threading APIs.

1.1.6 Ciitical Sections

APEX defines a single, global, critical section that, wherkéml, prevents scheduling. This is a little
different, and more extreme in effect, in comparison with ¢hitical section facilities in POSIX threads
and in the Windows threading API — rather, it is analogousitoibg off interrupt handling.

1.1.7 Buffers and Queuing Ports

ARINC-653buffersare actually thread-safe queues intended for interpropggsspartition communica-
tion. They are constructed with a preset maximum length amximmum message length which may not
be varied at run time. Messages consist of blocks of arbjtfarmatted binary data. Processes attempt-
ing to read from an empty buffer block until another proceseits one or more messages. Similarly,
attempting to write to an already-full buffer will cause tending process to block until space becomes
available.

Queuing portsare the interpartition equivalent to buffers, and providewpd communication be-
tween partitions.

1.1.8 Blackboards and Sampling Ports

Blackboards ARINC-653's other interprocess/intrapartition commuations mechanism, are analogous
to buffers, except that they store exactly zero or one messagrocesses may write to blackboards at
any time without blocking — the message that they send repltite existing message, if any. Reading

3
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from an empty blackboard causes the reading process to biditkanother process writes a message to
the blackboard.

Sampling portare the interpartition counterpart to blackboards. Thatinantics are slightly differ-
ent, in that neither sending or receiving processes evekbibhey also add a timestamping facility that
makes it easy for a receiving process to check whether tlzeitdads retrieved has become stale.

1.2 The MCP Model Checker

The MCP (Model Checker for C++) project began as an attemgitoplement the JPF architecture for
C++: JPF implements an extended virtual machine interpgelava bytecode with backtracking, and
the first version of MCP had a similar architecture, subtiguLLVM [16] for Java. MCP’s current
architecture is closer to that of SPIN than of JPF, howevether than running code in an instrumented
virtual machine with backtracking, we use program tramefation techniques to instrument the program
itself, then run it natively in an environment whose rundisystem implements backtracking.

1.2.1 LLVM: Low Level Virtual Machine

LLVM Native
) | )

code generator executable
Modified gcc LLVM LLVM LLVM LLVM just-in-time In-memory
front-end bitcode optimiser bitcode compiler native code

| LLVM interpreter

Figure 1: Simplified LLVM architecture

Fig.[1 shows a simplified version of the LLVM filv A modified version of thecc front-end is
used to parse the C++ source code and to lower most of thedge@uconstructs to a level closer to
that of a typical C program. The origingtc back-end is discarded in favour of emittihgVM bitcode,
which is then optimised and passed on to various alternbtiek-ends.

The LLVM bitcode format was specifically designed to suppodgram analysis, transformation and
optimization — a Static Single Assignment (SSA) represemid8] is adopted, making many analyses
and transformations (including ours) far more straightfand than they might otherwise be.

1.2.2 The MCP Architecture
Fig.[2 shows an outline of the MCP architecture. Functidyasi split across several subsystems:

Transformation PassesSeveral MCP-specific transformations that instrument tideaunder test are
implemented as an extension module for LLVMist program transformation framework.

3Many LLVM tools have been omitted here for clarity — LLVM isarje, rich toolset, so we concentrate on the subsystems
that are specifically relevant to MCP.
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Figure 2: MCP Architecture

Run-time System A run-time system is implemented in C++, compiled with LL\cc front-end,
then linked with the program under test after it has beersfoamed. Its primary purpose is to
intercept system calls that MCP needs to handle differeaty,printf, malloc, free, memset,
memmove andmemcpy. This approach also provides a convenient place to implerm@mpati-
bility wrappers that allow code written to specific opergtsystem APIs to be handled without
modification — the ARINC-653 subsystem is implemented asxéension to the run-time system.

JIT Environment/User Interface Model checking is initiated by users by running e command-
line application (see Sectio??). Themcp tool comprises an instance of the LLVM just-in-time
(JIT) compiler environment, as well as MCP’s implementagi@f memory versioning, hashing,
state space searching etc.

1.2.3 Emulating threading

One of the trickier issues surrounding the model checkingref source code is the fact that the language
standard specifically does not mandate any particulardimganodel. Real-time program semantics are
therefore dependent upon the execution environment, sattempt to analyse multithreaded code must
inevitably make some kind of assumption about the undegl{fimeading model.

MCP implements its own low-level API, on top of which arbitrahreading models may be con-
structed. This API is deliberately constructed to, as fapessible, serve as a superset of all of the
threading models that are of interest.

1.2.4 Search Algorithms

MCP implements several built-in search strateies:

4Since MCP’s partial order reduction algorithm does not pppsse any particular execution order, MCP does not have a
performance bias toward any particular search strategy.
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Breadth-first search Paths through the search space are explored in depth oedgnning with the
shortest first.

Depth-first search Paths are executed to completion before backtrackingracesi

Heuristic search In this strategy, the test harness provides a ranking fomadtiat allows MCP to
implement a best-first search strategy.

Randomised search Randomised search explores the search space in a random brderactice,
randomised search has a ‘look and feel’ somewhere betweenftbreadth- and depth-first search, but
in practice it has less tendency to get stuck in local minima.

1.2.5 Assertions and Backtrace Generation

When an assertion occurs or when MCP detects an exrgr,due to a segmentation fault, deadlock, as-
sertion failure or some other problem in the code under,tiégfpnerates a backtrace from the beginning
of execution of the current execution trace until the mosengly executed instruction is reached. Back-
trace logs may optionally include all executed LLVM instioas, executed source lines and all memory
contents that are read or written by the program. Only thesdttace from the currently executing code
fragment is generated — the (usually enormous and irrefel@iging information from other traces that
did not lead to errors are ignored.

2 Model checking ARINC-653 code

Since MCP supports the entire C++ programming language spleeial considerations required for
checking ARINC-653 code are specifically related to the enmntation of its peculiar threading se-
mantics. Though much of ARINC-653 can be mapped to existppyaaches, there is sufficient oddity
that a simplistic approach such as mapping APEX to and agifi0OSIX threads implementation is not
sufficient.

Time management Like most threading APIs, ARINC-653 Part 1 provides faightfor dealing with
time, ranging from sleeping for a particular interval, wait until a specific time, timeouts on
waiting on blocking synchronization objects, etc. It alsplies some facilities that are squarely
aimed at avionics code, such as watchdog timeouts and atitaifyadetecting stale data.

Ideally, it would be preferable to be able to accurately nh@degram execution time. However,
since actual flight code is likely to be targeted at an entidifferent CPU architecture [14, 2]
and compiled with a different toolchain![9], this is imprigel, and indeed it could be potentially
dangerous to extrapolate results from one platform to amotrherefore, code is assumed to run
arbitrarily (though not infinitely) quickly, unless it expitly waits via an API call. We therefore
concentrate on modeling time at the level of explicit wartd éimeouts rather than at the level of
instructions.

Since MCP backtracks, its time implementation must alsolbe @ backtrack. Consequentially,
time is emulated rather than taken from a real-time clocks Tiks a number of benefits, not least
of which being that arbitrarily long wait intervals can bewdated without needing to actually wait
for the specified length of time — modeling, for example, Edviars communications links with
very long packet round-trip times, becomes feasible andiefi.

6
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Process managemenARINC-653 Part 1 processes map fairly directly to MCP’s tigsthread model,
so could be accommodated relatively straightforwardlytifRans were trickier to support, because
they required a new memory protection system to be implesdetitat could segment memory
access and check that it is being accessed with appropaatiigns. This turned out to be the
single largest change necessary to MCP in order to suppoAREX API.

Partition start up/initialization control Most of the requirements of partition start-up and initiation
control involve parameter checking within API calls, scsthd dealt with largely with assertions
in the API implementation. MCP’s memory manager was exténdesupport a flag that causes
memory allocation to throw an error, making it possible ttedeaccidental memory allocations
while a partition is in NORMAL mode.

Sampling ports, queuing ports, buffers and blackboardsThese communications APIs were imple-
mented fairly straightforwardly, and did not require atigzn to the MCP core. Synchronization
was implemented purely in terms of MCP’s native event meisinan

Events, semaphores, critical sections and error handlingThese APEX API features mapped more or
less directly to MCP’s existing facilities. Some changesemeecessary, but these were mostly
consequential to the partitioned memory model support.

3 Partial order reduction under a partitioned memory model

Partial order reduction is carried out by model checkersdeoto reduce the impact of the exponential
time complexity inherent in backtracking. Givehrepresenting the size of the program fragment under
test anda representing the amount of possible nondeterminism at @acision point, time complexity
for explicit state model checking has an upper bound prapuat toaN. It therefore behooves us to try
to getadown to as close to 1 as possible, because this has a drafffieticom the size of prograr that

can be practically analyzed. Partial order reduction teghes typically attack this in two ways: making
the execution steps bigger by bundling thread-local ojmerattogether (thereby effectively reducing
N), and where possible bundling together nondeterminidimoes that have equivalent consequences
(reducinga where possible). MCP does both — it leverages LLVM'’s statialgsis and optimization
capability in order to make the steps between yield pointarge as possible, and second mechanism
tracks reads and writes to shared memory, suspending &wealla@zily when only a subset of currently
running threads have touched the relevant locations.

Though MCP’s existing partial order reduction strategy barapplied to ARINC-653 code, there
are some potential benefits available as a consequence A titeoned execution scheme. In particular,
the decision to only allow partitions to affect each othex APl calls has profound consequences. A
partition with a single process, or with multiple processese of which having the same priority, is
inherently deterministic. Therefore, nondeterminism roaly arise as a consequence of timing relation-
ships between such partitions. The MCP APEX implementatjgtionally treats partitions as executing
atomically between API calls, offering a huge speedup withimmal time or memory overhead. Initial
results are encouraging, though at the time of writing thigfionality is too new for it to be possible to
guote performance statistics.

4 Related work

Structurally, MCP probably bears closest resemblance Fo(J&a Pathfinder) [11], though at the time
of writing it does not approach JPF’s maturity. The most ificgmt differences between JPF and MCP

7
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stem from the differences between Java and C++; for exardipletakes advantage of reflection and the
standard threading package in Java, which MCP can not diose features are not present in C or C++.

Since JPF is a explicit-state model checker “a la SPIN”, MC&So a close cousin to SPIN_[12]. Be-
sides the explicit-state model, MCP also shares with SP&\tincept of compiling the model checking
problem into an executable program. SPIN starts with Pram@dels while MCP performs transfor-
mations on C/C++ programs to embed the model checking probito the original program.

Another model checker directly addressing C++ is Verisbf]] which takes a completely different
approach. Verisoft follows a stateless approach to modetichg while MCP follows a conventional
explicit-state model similar to SPIN [12].

CBMC is a bounded Model Checker for C and C++ programs [5]ait check properties such as
buffer overflows, pointer safety, exceptions and useriipdcassertions. CBMC does model checking
by unwinding loops and transform instructions into equatithat are passed to a SAT solver. Paths are
explored only up to a certain depth.

There are, however, several model checkers that addresk AB4 $] is really more of a static
analyzer than a model checker. It relies heavily on abstragt starting from a highly abstracted form
and building up to a form that allows a complete analysis. U} uses an explicit-state approach, but
it requires some manual adaptation when dealing with caxtgfges pickle andunpicklefunctions).

Finally, there have been some attempts within NASA to usé/igrind tool [18,20] as a model
checker. Unfortunately, it implies using very crude steptsvgen transitions.

Other approaches to model checking code involve a traaslaiep, be it automatic or manual.
For example, Banderal[7] provides model checking of Javgraros by translating automatically the
program into a PVS [19], Promela [21] or SMM [6] model.

5 Conclusions

The ARINC-653 Part 1 support in MCP is very new and still undevelopment, so the purpose of this
paper is to provide a first look at the capability within NASAVider formal methods community.

5.1 Future work

Other than a requirement for detailed testing and attemti@i®tail with respect to standards compliance,
the Part 1 implementation is largely complete at the timeritirng. We hope, over the next few months,
to put together a larger demonstration of the technologgdas a moderate-sized, ARINC-653-based
flight code model example, which will help us further tune &REX implementation. If sufficient
interest is shown, extending our implementation to encasBart 2 would be feasible.
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