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ABSTRACT 
The inheritance of subsystem traits in Evolving Systems is 

an important area of study. Evolving Systems are autonomously 
controlled subsystems which self-assemble into a new Evolved 
System with a higher purpose. Evolving Systems of aerospace 
structures often require additional control when assembling to 
maintain stability during the entire evolution process. If certain 
passivity traits of the subsystem components are inherited in 
the Evolving System, then it is possible to use an adaptive 
controller to restore stability in the Evolving System. This 
paper develops the theory for Nonlinear Evolving Systems and 
illustrates it with a simple example. 

INTRODUCTION 
The inheritance of subsystem traits in Evolving Systems is 

an important area of research. Evolving Systems [1, 2] are 
autonomously controlled subsystems which self-assemble into 
a new Evolved System with a higher purpose. Evolving 
Systems of aerospace structures often require additional control 
when assembling to maintain stability during the entire 
evolution process [3-5]. An adaptive key component controller 
has been shown to restore stability in Evolving Systems that 
would otherwise lose stability during evolution [6]. The 
adaptive key component controller uses a direct adaptation 
control law to restore stability to the Evolving System through 
a subset of the input and output ports on one key component of 
the Evolving System. 

The control laws used by the adaptive key component 
controller to restore stability in an Evolving System are 
guaranteed to have bounded gains and asymptotic tracking if 
the Evolved System is almost strictly dissipative. (This concept 
is similar to almost strict passivity [6].) Hence, it is desirable to 
know when the dissipativity traits of the subsystem 
components, including the key component, are inherited in an 
Evolving System. We present results showing when an 
Evolving System will inherit the almost strict dissipativity traits 
of its subsystem components. We also show results to guarantee 
stable adaptation when an adaptive key component controller is 
used to restore stability. An illustrative nonlinear example is 

given of successful restoration of stability using an adaptive 
key component controller. 

MATHEMATICAL FORMULATION OF EVOLVING 
SYSTEMS 

A mathematical formulation of a nonlinear time-invariant 
Evolving System is given here. Consider a system of L 
components of individually, actively controlled subsystems 
which can be described by the following nonlinear equations 
for the ith component: 

 

€ 

˙ x i = Ai (xi) + Bi (xi)ui

yi = Ci (xi)
 
 
 

 (1) 

where   

€ 

i = 1,2,…L . The ith component has a Lyapunov or 
Energy Storage Function 

€ 

Vi. These are the building blocks of 
the Evolving System. When these individual components are 
joined to form an Evolved System, the new entity becomes: 

 

€ 

˙ x = A(x,ε) + B(x)u
y = C (x)
 
 
 

 (2) 

with 

€ 

x ≡ [ x1...xL ]
T , 

€ 

y ≡ [ y1...yL ]
T , 

€ 

u ≡ [u1...uL ]
T , and 

Lyapunov or Energy Storage Function 

€ 

V ≡ Vi
i=1

L
∑ . The ith 

component in the above Evolved System is given by:  

 

€ 

˙ x i = Ai (xi) + B(xi)ui + ε ij
j=1

L
∑ Aij (x j ,u j )

yi = Ci (xi)

 

 
 

 
 

 (3) 

with 

€ 

0 ≤ ε ij ≤ 1 and 

€ 

ε ji = ε ij  and where 

€ 

Aij (x j ,u j ) represents 
the interconnections between the ith and jth  components. Note 
that when 

€ 

ε ij = 0 the system is in component form and when 

€ 

ε ij = 1, the system is fully evolved. As the system evolves, or 
joins together, the 

€ 

ε ij ’s evolve from 0 to 1. 
The components of the Evolving System are actively 

controlled by means of local control. Local control means 
dependence only on local state or local output information, i.e., 
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€ 

ui = hi (xi)  or 

€ 

hi (yi) . In general, the local controller on the ith 
component would have the form: 

 

€ 

ui = hi (yi ,zi) 
˙ z i = li (yi ,zi)

 
 
 

 (4) 

where  is the dynamical part of the control law. Local control 
will be used to keep the components stable and meet the 
individual component performance requirements. 

Once the system is fully evolved, the ith component in the 
fully evolved system becomes: 

 

€ 

˙ x i = Ai (xi) + B(xi)ui + Aij (x j ,u j )
j=1

L
∑

yi = Ci (xi)

 

 
 

 
 

 (5) 

The state space representation of the Evolved System then 
becomes: 

 

€ 

˙ x = A(x) + B(x)u
y = C (x)
 
 
 

 (6) 

which can also be denoted 

€ 

(A(x),B(x),C (x))  or 

€ 

(u, y) . 

INHERITANCE OF SUBSYSTEM TRAITS IN EVOLVING 
SYSTEMS 

We say a subsystem trait, such as stability, is inherited 
when the Evolved System retains the characteristic of the trait 
from the subsystem. Previous papers have examined the 
inheritance of stability and shown that stability is not a 
generally inherited trait [1-3]. Inheritance of almost strict 
passivity of subsystems is desirable in Evolving Systems that 
use an adaptive key component controller to restore stability. 

In previous papers [5, 6], a key component controller has 
been proposed to restore stability to Evolving Systems which 
would otherwise lose stability during evolution. The design 
approach used in the key component controller is for the 
control and sensing of the components to remain local and 
unaltered except in the case of one key component which has 
additional local control added to stabilize the system during 
evolution. The key component controller operates solely 
through a single set of input-output ports on the key 
component, see Fig. 1.  

Only the key component of the Evolving System needs 
modification to restore the inheritance of stability. A clear 
advantage of the key component design is that components can 
be reused in many different configurations of Evolving Systems 
without the need for component redesign. The reuse of 
components which are space-qualified, or at least previously 
designed and unit tested, could reduce the overall system 
development and testing time and should result in a higher 
quality system with potentially significant cost savings and risk 
mitigation. 

In many aerospace environments and applications, the 
parameters of a system are poorly known and difficult to 
obtain. Adaptive key component controllers, which make use of 

a direct adaptation control law, are a good design choice for 
restoring stability in Evolving Systems where access to 
precisely known parametric values is limited. The necessary 
condition for an Evolving System with an adaptive key 
component controller to be guaranteed to have bounded gains 
and to have asymptotic output tracking is that the system be 
almost strictly passive [6]. Hence, we are interested in the 
conditions under which the inheritance of almost strict passivity 
can be guaranteed in Evolving Systems. 

INHERITANCE OF ALMOST STRICT DISSIPATIVITY IN 
EVOLVING SYSTEMS 
Consider a Nonlinear System of the form: 

 

€ 

˙ x = A(x) + B(x)u
y = C (x)
 
 
 

 (7) 

We say this system is Strictly Dissipative when 

 

€ 

∃V (x) > 0∀x ≠ 0 such that
∇VA(x) ≤ −S(x) ∀x

∇VB(x) = CT (x);∇V ≡ gradient V

 
 
 

 (8) 

The function 

€ 

V (x(t))  is called the Storage Function for (7), 
and the above says that the storage rate is always less than the 
external power. This can be seen from  

 

€ 

˙ V ≡ ∇V[ A(x) + B(x)u]

≤ −S(x) + CT (x)u
= −S(x) + y,u

  (9) 

Taking 

€ 

u ≡ 0, it is easy to see that (9) implies (8a) but not 
necessarily (8b); so (8) implies (9) but not conversely. They are 
only equivalent if (8a) is an equality. When equality holds in 
(8) and (9), the property is called Strict Passivity. 

We will say a system

€ 

 (u, y)  is Almost Strictly Dissipative 
(ASD) when there is some output feedback, 

€ 

u =G*y + ur , so 
that the following is strictly dissipative: 

 

€ 

˙ x = AC (x) + B(x)ur

AC (x) ≡ A(x) + B(x)G*C (x)
y = C (x)

 

 
 

 
 

 (10) 

Now if each component (3) is ASD, then, from (5) and (8), we 
have 

 

  

€ 

∇Vi[Ai (xi) + Bi (xi)GiCi (xi)]≤ −Si (xi) +

                          + ε ij∇ViAij (x j ,u j )
j=1

L
∑

∇ViBi (xi) = Ci
T (xi); ∇Vi ≡ gradientVi

 

 

 
 

 

 
 

 (11) 

Due to the interconnection terms, (11) is not necessarily 
Strictly Dissipative. However, in some circumstances, the 
interconnection terms have a special form and ASD is inherited 
when the system evolves.  
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Suppose we have a pair of subsystems of the form: 

 

€ 

˙ x i = Ai (xi) + Bi (xi)ui + Bi
A (xi)ui

A

yi = Ci (xi)

yi
A = Ci

A (xi)

 

 
 

 
 

 (12) 

where 

€ 

i = 1,2  and both subsystems 

€ 

u1
u1
A

 

 
 

 

 
 ,

y1
y1
A

 

 
 

 

 
 

 

 
 

 

 
  and 

€ 

u2
u2
A

 

 
 

 

 
 ,
y2
y2
A

 

 
 

 

 
 

 

 
 

 

 
  have storage functions 

€ 

Vi. We have the following 

result: 
Theorem 1: If the subsystems 

€ 

(u1
A , y1

A )  and 

€ 

(u2
A , y2

A )  are ASD 
and 

 

€ 

∇ViBi (xi) = Ci
T (xi); i = 1,2 (13) 

 
then the resulting feedback connection, 

€ 

y1 = u2  and 

€ 

u1 = −y2 , 

will leave the composite system 

€ 

uA ≡
u1
A

u2
A

 

 
 

 

 
 , yA ≡

y1
A

y2
A

 

 
 

 

 
 

 

 
  

 

 
   almost 

strictly passive. 
Proof: 
 Let 

€ 

(ui
A , yi

A ) be ASP. From (9) and (11),  

       

€ 

∃Gi
* such that

∇ViAi
C (xi) ≡ ∇Vi[Ai (xi) + Bi

A (xi)Gi
*Ci

A (xi)]

≤ −Si (xi) +ε ij∇ViAij (xi ,ui ,ui
A )

∇ViBi
A (xi) = Ci

A (xi)
T

 

 
  

 
 
 

 (14) 

If we connect 

€ 

(u1, y1)  in feedback with 

€ 

(u2, y2) , then 

€ 

y1 = u2  
and 

€ 

u1 = −y2  and, use (12) and (13), then we have 

€ 

∇V1A12 (x1,u1,u1
A ) = ∇V1B1(x1)u1 = C1

T (x1)[−y2 ] = −y1
T y2  and 

similarly, 

€ 

∇V2A21(x2,u2,u2
A ) = y2

T y1. 

Let 

€ 

x ≡
x1
x2

 

 
 

 

 
  and, from (12), 

   

€ 

˙ x = A(x) + B(x)u

=
A1

C (x1) +ε12A12 (x2)
A2

C (x2) +ε21A21(x1)

 

 
 

 

 
 +

B1
A (x1) 0
0 B2

A (x2)

 

 
 

 

 
 

u1
A

u2
A

 

 
 

 

 
 

y =
y1

A

y2
A

 

 
 

 

 
 = C (x) =

C1
A (x1)

C2
A (x2)

 

 
 

 

 
 

 

 

 
 
 
 

 

 
 
 
 

 (15) 

with 

€ 

V = V1 +V2, using (13) and 

€ 

ε ji = ε ij  from (3), 

€ 

∇VA(x) = ∇V1 ∇V2[ ]
A1
C (x1) +ε12A12 (x2)

A2
C (x2) +ε21A21(x1)

 

 
 

 

 
 

= ∇V1A1(x1) +ε12 (−y1
T y2) +∇V2A2 (x2) +ε21(y2

T y1)

≤ −[S1(x1) + S2 (x2)]+ε21(−y1
T y2) +ε21(y2

T y1)
= −S(x)

 

and 

€ 

∇VB(x) = [∇V1 ∇V2 ] B1
A (x1) 0
0 B2

A (x2)

 

 
 

 

 
 

=
C1
A (x1)

C2
A (x2)

 

 
 

 

 
 

T

= CT (x)

 

Therefore 

€ 

uA ≡
u1
A

u2
A

 

 
 

 

 
 , yA ≡

y1
A

y2
A

 

 
 

 

 
 

 

 
  

 

 
   is ASD with output feedback 

€ 

u1
A

u2
A

 

 
 

 

 
 ≡

G1
* 0
0 G2

*

 

 
 

 

 
 
y1
A

y2
A

 

 
 

 

 
 +

u1
Ar

u2
Ar

 

 
 

 

 
  as desired. # 

In [3], it was shown that the physical connection of 
components is equivalent to the feedback connection of the 
admittance of one to the impedance of the other. Consequently, 
if 

€ 

(u1, y1)  and 

€ 

(u2, y2)  are in Admittance/Impedance form, then 
Theorem 1 shows that ASD is an inherited property for 
Nonlinear Evolving Systems. Theorem 1 was also proved for 
the stronger Almost Strict Passivity in [8]. 

This is one case where the interconnections have a form 
that allows ASD to be inherited. Other possibilities will be 
investigated elsewhere. 

MATHEMATICAL FORMULATION OF ADAPTIVE KEY 
COMPONENT CONTROLLER 

We will consider an Evolving System, 

€ 

A(x),B(x),C (x)( ) , 
consisting of two components: 

  

€ 

˙ x 1 = A1(x1) + B1(x1)u1 + B1
A (x1)u1

A

y1 = C1(x1)

y1
A = C1

A (x1)

 

 
 

 
 

 (16) 

and  

 

€ 

˙ x 2 = A2 (x2) + B2 (x2)u2

y2 = C2 (x2)
 
 
 

 (17) 

Without loss of generality, we can let component 1 be the 
key component since the system can be rewritten to switch 
component 1 with component 2. Also, we may think of 
Component 2 as all the rest of the Evolving System to which 
the Key Component and its Adaptive Controller will be 
connected. 

The Adaptive Key Component Controller on Component 1 
will be given by: 
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€ 

u1
A = G1y1

A

˙ G 1 = −y1
A (y1

A )T h1;h1 > 0

 
 
 

  
 (18) 

This controller uses only the input and output ports 

€ 

(u1
A , y1

A )  
on Component 1. 
Theorem 2: Assume that 

€ 

V1 and 

€ 

V2  are positive 

€ 

∀x ≠ 0  and 
radially unbounded, and 

€ 

A(x),B(x),C (x)( )  are continuous 
functions of 

€ 

x  and 

€ 

S(x) , above, is positive 

€ 

∀x ≠ 0  and has 
continuous partial derivatives in

€ 

x . Furthermore, assume: 
a) Component 2 

€ 

(u2, y2)  is strictly dissipative and in 
impedance form; 

b) Component 1 

€ 

(u1
A , y1

A )  is almost strictly dissipative; 
c) Component 1 

€ 

(u1, y1)  is in admittance form 
Then the Adaptive Key Component Controller (18) produces 

global asymptotic state stability 

€ 

x ≡
x1
x2

 

 
 

 

 
 t→∞
 →   0  with 

bounded adaptive gains when Component 1 is joined with 
Component 2 into an Evolved System and the 
outputs

€ 

yi = Ci (xi) t→∞
 →   0 .  

Proof: Since the physical connection of Component 1 to 
Component 2 is equivalent to the feedback 
connection

€ 

u1 = −y2  and 

€ 

u2 = y2 , by Theo.1 we have that the 
closed-loop system 

€ 

(u1
A , y1

A )  below is ASD: 

 

€ 

˙ x 1 = A1(x1) −εB1(x1)C2 (x 2) + B1
A (x1)u1

A

˙ x 2 = A2 (x2) +εB2 (x2)C1(x1); 0 ≤ ε ≤ 1

y1
A = C1

A (x1)

 

 
 

 
 

 (19) 

Rewrite (18), using 

€ 

G1
*constant, 

    

€ 

u1
A = G1y1

A = G1
*y1

A + ΔG1y1
A ; ΔG1 ≡G1 −G1

*

Δ ˙ G 1 = ˙ G 1 = −y1
A (y1

A )T h1; h1 > 0

 
 
 

  
 (20) 

Combining (19) and (20) yields: 

 

€ 

˙ x 1 = A1
C (x1) −εB1(x1)C2 (x 2) + B1

A (x1)w1
A

with w1
A ≡ ΔG1y1

A

and A1
C (x1) ≡ Ai (xi) + Bi

A (xi)Gi
*Ci

A (xi)
˙ x 2 = A2 (x2) +εB2 (x2)C1(x1); 0 ≤ ε ≤ 1

y1
A = C1

A (x1)

 

 

 
 
 

 

 
 
 

(21) 

Let 

€ 

V = V1 +V2 and we have: 

 

€ 

˙ V = −S(x) + y1
A ,w1

A  (22) 

Form 

€ 

VG ≡
1
2
tr(ΔG1h1

−1ΔG1
T )  and obtain from (20): 

 

€ 

˙ V G ≡ tr(Δ ˙ G 1h1
−1ΔG1

T )

= −tr(y1
A (y1

A )T h1h1
−1ΔG1

T )

= −tr(y1
A (w1

A )T )

= − y1
A ,w1

A

 (23) 

Define: 

€ 

V (x,ΔG) ≡ V (x) +VG (ΔG) and, from (22) and (23), we 
have: 

 

€ 

˙ V (x,ΔG) ≡ ˙ V (x) + ˙ V G (ΔG)

= −S(x) + y1
A ,w1

A − y1
A ,w1

A

= −S(x) ≤ 0

 (24) 

This guarantees that all trajectories 

€ 

(x,ΔG)  are bounded. If 

€ 

˙ V (x,ΔG)  is uniformly continuous or 

€ 

˙ ̇ V (x,ΔG)  is bounded, 
then Barbalat’s Lemma [9] yields: 

€ 

S(x) t→∞
 →   0, and the 

positivity and continuity of 

€ 

S(x)  imply that 

€ 

x ≡
x1
x2

 

 
 

 

 
 t→∞
 →   0 . 

Consider 

 

€ 

˙ ̇ V (x,ΔG) = − ˙ S (x)

≤ ˙ S (x)

=
∂S(x)
∂x

˙ x 

≤
∂S(x)
∂x

˙ x 

≤
∂S(x)
∂x

A(x) + B(x) w1
A[ ]

≤
∂S(x)
∂x

A(x) + B(x) ΔG1 C1
A (x1)[ ]

 

which is bounded because 

€ 

(x,ΔG)  is bounded, 

€ 

S(x)  has 
continuous partial derivatives and 

€ 

A(x),B(x),C (x)( )  are 
continuous, and a continuous function of bounded 

€ 

x(t)  is also 
bounded in t. 

So, 

€ 

yi = Ci (xi) t→∞
 →   0  because 

€ 

Ci (xi)  is continuous. # 
It should be noted that the above results might only hold on 

a neighborhood 

€ 

Ni (0,ri) ≡ xi / xi < ri{ } . However, then the 
stability in Theo. 2 is only locally asymptotic to the origin. 

SPECIAL CASE: INTERNAL STATE NONLINEARITY 
Here we look at a special case of the above theory when 

the only nonlinearity is in the internal state structure of each 
component. This means (12) becomes: 

 

€ 

˙ x i = Aixi + h(xi) + Biui + Bi
A ui

A

yi = Cixi

yi
A = Ci

A xi

 

 
 

 
 

 (25) 
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The nonlinearities are assumed to satisfy 

€ 

hi (0) = 0  and a 
Lipschitz continuity condition: 

 

€ 

hi (x) − hi (y) ≤ µ i x − y
∀x, y with µ i > 0

 (26) 

We can choose quadratic Storage Functions: 

€ 

V (xi) ≡
1
2
xi
T Pixi . We will assume the linear part of each 

component 

€ 

(Ai ,Bi
A ,Ci

A ) is Almost Strict Positive Real (ASPR), 
i.e. 

€ 

∃Gi
* ∍ Ai

C ≡ Ai + BiGi
*Ci  satisfies: 

 

€ 

(Ai
C )T Pi + PiAi

C = −Qi

PiBi
A = (Ci

A )T
 
 
 

  
 (27) 

with 

€ 

Pi > 0, Qi > 0 . In addition, we will assume: 

 

€ 

PiBi = Ci
T  (28) 

with the same 

€ 

Pi > 0 . Then, from (27)-(28), 

 

€ 

∇ViAi
C (xi) = xi

T Pi[(Ai + Bi
AGi

*Ci
A )xi + hi (xi) + Biui ]

= −
1
2
xi
TQixi + xi

T Pihi (xi) + yi
T ui

∇ViBi
A (xi) = xi

T PiBi
A = (Ci

A xi)
T

 

 

 
 

 

 
 

 (29) 

Now, from (26) and the Cauchy-Schwarz inequality, we have 

€ 

−
1
2
xi
TQixi + xi

T Pihi (xi) ≤ −
λmin (Qi)

2
− λmax (Pi)µ i

 

 
 

 

 
 xi

T xi

= −γ i xi
2
≡ −Si (xi)

 

Therefore (29) becomes  

 

  

€ 

∇ViAi
C (xi) = xi

T Pi[(Ai + Bi
AGi

*Ci
A )xi +

+ hi (xi) + Biui ]
≤ −Si (xi) + yi ,ui

∇ViBi
A (xi) = xi

T PiBi
A = (Ci

A xi)
T

with Si (xi) ≡ γ i xi
2

> 0 ∀xi ≠ 0 

when γ i ≡
λmin (Qi)

2
− λmax (Pi)µ i > 0

 

 

 
 
 
 

 

 
 
 
 

 (30) 

From this analysis, we have the following result: 
Theorem 3: If the linear part, 

€ 

(Ai ,Bi
A ,Ci

A ), of (25) is ASPR, 
then (28) holds, and the Lipschitz constant in (26) satisfies: 

  

€ 

0 < µ i <
λmin (Qi)
2λmax (Pi)

 (31) 

Then, when Component 1 is joined with Component 2, the 
Adaptive Key Component controller (18) will maintain closed-
loop stability. 
Proof: From (31), we have (30) and can apply Theo. 2 to 
achieve the result. #  

It is well known that (27) is equivalent to 

€ 

CiBi > 0 and the 
open-loop transfer functions 

€ 

 Ti (s) ≡ Ci
A (sI- Ai)

−1Bi  are 
minimum phase. 

Also, the above results need only hold on a neighborhood 

€ 

Ni (0,r) and (31) will hold when the size of the neighborhood r 
is small enough. However, then the stability is only locally 
asymptotic. 

NONLINEAR ILLUSTRATIVE EXAMPLE 
Example 1, which is shown in Fig. 2, is a two component 

nonlinear flexible structure Evolving System. The components 
of Example 1 are stable when they are unconnected 
components, but the Evolving System fails to inherit the 
stability of the components. This example will be used to 
demonstrate the successful use of an adaptive key component 
controller to restore stability. 
The dynamical equations for the components of Example 1 are: 

  

€ 

comp. 1 :  
m1˙ ̇ q 1 = u1 −ε12k12 (q1 − q2)

y1 = q1, ˙ q 1[ ]T

 
 
 

  

comp. 2 :  

m2˙ ̇ q 2 = u2 −ε12 k12 (q2 − q1)−
− [k22 (q2 − q3) + µ22 sin(q2 − q3)]

m3˙ ̇ q 3 = u3 − [k22 (q3 − q2) + µ22 sin(q3 − q2)]

y2 = q2, ˙ q 2[ ]T

y3 = q3, ˙ q 3[ ]T

 

 

 
 
 

 

 
 
 

(17) 

with 

€ 

m1 = 30 ,

€ 

m2 = 1 ,

€ 

m3 = 1 ,

€ 

 k12 = 4 ,

€ 

 k22 = 1  and

€ 

 µ22 = 0.5. 
Example 1 has the following controllers: 

 

€ 

u1 = − 0.9s+ 0.1( )q1

u2 = −
0.1
s

+ 0.2s+ 0.5
 

 
 

 

 
 q2

u3 = − 0.6s+1( )q3

 

 

 
 

 

 
 

 (18) 

The subsystem components are stable in closed-loop form 
when they are unconnected, i.e., 

€ 

ε12 = 0 . When 

€ 

ε12 = 1, the 
system is fully evolved and it is unstable as seen in Fig. 3. 

A Simulink model was created to implement an adaptive 
key component controller for Example 1 as described in the 
previous section. Simulations were run in which the connection 
parameter, 

€ 

ε12 , ranged from 0 to 1, allowing the system to go 
from unconnected components to a fully Evolved System. The 
key component controller was able to maintain system stability 
during the entire evolution process when it used the input-
output ports on mass 1 of component 1, see Fig. 3. When 
component 1 was the key component,  

€ 

A ,B ,C ( )  is ASD. 

CONCLUSION 
We have presented a result (Theo 1) describing when a 

Nonlinear Evolving System will inherit the almost strict 
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dissipativity trait of its subsystem components. In Theo.2 we 
show an adaptive key component controller that will guarantee 
that stability is inherited by the Evolved System, and a special 
case is considered in Theo.3 where only internal state 
nonlinearity is present. A simple nonlinear example was given 
of successful inheritance of almost strict dissipativity . 
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Figure 1. Key component controller architecture. 
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Figure 2. Example 1: A two component flexible structure Evolving System. 

Figure 3. Ex. 1 after evolution with no adaptive key component controller. 
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Figure 4. Ex. 1 with adaptive key component controller on mass 1. 

 


