
Vector-Clock Based Partial Order Reduction for JPF∗

Eric Noonan
Brigham Young University

Provo, Utah
noonanes@gmail.com

Eric Mercer
Brigham Young University

Provo, Utah
egm@cs.byu.edu

Neha Rungta
NASA, Ames Research

Center
Mountain View, CA

neha.s.rungta@nasa.gov

ABSTRACT
Java Pathfinder (JPF) employs a dynamic partial order re-
duction based on sharing and state hashing to reduce the
schedules in concurrent systems. That partial order reduc-
tion is believed to be complete in the new version of JPF
using search global IDs (SGOIDs) but does miss behaviors
when SGOIDs are not employed. More importantly, it is not
clear how such a dynamic partial order reduction, with or
without SGOIDs, compares to other dynamic partial order
reductions based on persistent sets, sleep sets, or clock vec-
tors. In order to understand JPF’s native dynamic partial
order reduction better, this paper discusses an implementa-
tion of Flanagan and Goidefroid’s clock vector partial order
reduction in JPF. Then, the performance of JPF’s native
dynamic partial order reduction and the clock vector partial
order reduction in JPF using SGOIDs will be compared in an
effort to understand JPF’s dynamic partial order reduction
more fully. It was discovered that a clock vector POR al-
ways performs better in terms of runtime on the benchmarks
chosen, and sometimes even better in terms of memory.

1. INTRODUCTION
Writing error-free concurrent programs is a difficult task.

For this purpose, model checkers were developed. Model
checkers execute the program and watch its state as it ex-
ecutes and look for errors in the states generated as the
program executes. For concurrent programs, model check-
ers need to verify that all combinations of states in each
of their individual components do not yield a global error
state (such as a deadlock). Because not all combinations of
states in each component are actually relevant when model
checking a parallel program, partial order reductions were
developed.

Java Pathfinder (JPF) is a model checker developed by
NASA with the aim of verifying Java programs. JPF also
has the ability to model-check concurrent programs with

∗Research funded by NSF grant CCF-1302524

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

its own partial order reduction. This partial order reduc-
tion works using preemptive sharing detecting with Search
Global Object Ids (SGOIDs). SGOIDs are used to associate
objects with all of the threads that have accessed them over
the course of the search. The authors have not found pub-
lished research describing JPFs partial order reduction. It
is believed that it explores more states than is necessary
and the authors have not found published research for un-
derstanding its completeness. It is sound because it only
executes reachable states. The major contributions of this
paper are: (i) an implementation of Flanagan and Goide-
froid’s clock vector partial order reduction in JPF [2]; and
(ii) a comparison between JPF’s native POR and the JPF
clock vector partial order reduction implementation.

2. JPF’S POR OVERVIEW
Table 1 gives an outline of how JPF’s POR works. The

following definitions are useful for understanding it:
• o refers an object and its SGOID.
• The accessed(o) function returns a set of SGOIDs cor-

responding to the threads that accessed the object ref-
erenced by o.
• The enabled(s) function returns all the enabled threads

in state s.
• The nextins(p) function returns the next instruction

to be executed be the thread p.
From lines 6-10 it is apparent that JPF ignores all instruc-
tions that are not scheduling relevant. On lines 7 and 13,
GETFIELD and PUTFIELD are the only instructions being
considered ”POR-relevant.” In summary, JPF’s POR exe-
cutes instructions until it hits a POR-relevant instruction or
a thread start or end instruction. Once JPF’s POR reaches
one of those instructions it stops. If it is dealing with a
thread start instruction, it executes that instruction and cre-
ates a state from which it explores all active threads from
their current state (lines 26-27), including the new thread.
If the algorithm reaches a thread terminate instruction, all
enabled threads are explored from that state (lines 26-27).

If JPF’s POR reaches a POR relevant instruction, it marks
the shared object the instruction accesses as being accessed
by the current thread (line 15). Next, it checks if there are
any enabled threads that also accessed the object (line 16).
If there are, all enabled threads are added to the current
state’s backtrack set as potentially scheduling relevant (lines
16-19), otherwise, JPF continues executing instructions un-
til it reaches another scheduling relevant instruction (line
21, 6-10). This means that there is at least one run through
the program where there is no interleaving on POR relevant

00: S = {};
01: s0.backtrack = Thread0

02: s0.done = ∅
03: S = S.push(s0)
04: while(!S.empty()) {
05: s = S.peek()
06: if(∃ p ∈ (s.backtrack \ s.done) {
07: while(nextins(p) != (threadstart || threadterminate)
07.1: && nextins(p) is not a POR-relevant instruction) {
08: if s is an error state, break and report
09: s = s.execute(nextins(p))
10: }
11: if(nextins(p) has not been marked as executed) {
12: mark nextins(p) as executed once
13: if(nextins(p) is a POR-relevant instruction) {
14: o = object nextins(p) operates on
15: accessed(o) = accessed(o) U p
16: if(|enabled(s) ∩ accessed(o)| >= 2) {
17: s’ = s
18: s’.done = ∅
19: s’.backtrack = enabled(s)
20: S.push(s’)
21: } else goto 9
22: }
23: } else {
24: s.done = s.done U p
25: s’ = s.execute(nextins(p))
26: if(nextins(p) is (threadstart || threadterminate)) {
27: s’.backtrack = enabled(s’)
28: } else goto 8
29: S.push(s’)
30: }
31: } else {
32: S.pop()
33: }
34: }

Table 1: Pseudo-code describing the POR in JPF.

instructions. This happens because threads are executed un-
til completion, so after one thread finishes, the next thread
executed will not interleave even if it accessed the same ob-
ject as the previous thread because the previous thread is
not currently enabled (see line 16). This means that the
completeness of JPF’s POR relies critically on interleaving
on started threads. When JPF backtracks to a point where
it scheduled all threads because a new one started, it will
remember the sharedness from the previous run when it ex-
ecutes the next thread and interleave on all shared accesses
afterwards.

The first obvious problem with JPF’s POR is in lines 16-
19 where all enabled threads are added to the backtrack set
of a given state regardless of whether the thread actually
accessed the object being operated on in that state. There
is also a problem with trying to preemptively detect shared-
ness and interleave on threads that share in lines 16-19. In
short, it causes redundant schedulings. This will be dis-
cussed further in section 4.

3. CLOCK VECTORS
A full description of a partial order reduction using clock

vectors is in [2]. A brief description of key components is
in this paragraph. A program is comprised of a finite set P
where individual members of P are denoted by p. Individual
members of P can refer to a thread or a process. A clock
vector C(p) is a way of tracking dependencies between the
current thread or process states and transitions that have
already occurred in the search. If thread pi has a clock

00: S = {};
01: s0.backtrack = Thread0;
02: s0.done = ∅;
03: s0.L = {};
04: s0.C = {};
05: S = S.push(s0)
06: while(!S.empty()) {
07: let s = S.peek()
08: if (∃ p ∈ (s.backtrack \ s.done) {
09: while(nextins(p) != (threadstart || threadterminate) &&
09.1: nextins(p) is not a POR-relevant instruction) {
10: if s is an error state, break and report
11: s = s.execute(nextins(p))
12: }
13: if(nextins(p) is a marked POR-relevant instruction)
14: let o = α(nextins(p))
15: let cv = max(C(p), C(o))[p := |S |]
16: let s.C = s.C [p:=cv, o:=cv]
17: let s.L = if nextins(p) is a release
18: L
19: else L[o:=|S ’|]
20: goto 12
21: }
22: if (nextins(p) is a non-marked POR-relevant instruction) {
23: o = object nextins(p) operates on
24: accessed(o) = accessed(o) U p
25: mark nextins(p)
26: if (|accessed(o)| >= 2) {
27: let i = s.L(α(nextins(p)))
28: if(i != 0 and i > s.C(p)(proc(Si))
29: if (p ∈ enabled(pre(S, i)))
30: pre(S, i).backtrack = pre(S, i).backtrack U p
31: else
32: pre(S, i).backtrack = enabled(pre(S, i)))
33: } else goto 12
34: }
35: s.done = s.done U p
36: if(nextins(p) is (threadstart || threadterminate)) {
37: let s’ = s.execute(nextins(p))
38: } else let s’ = s
39: s’.done = ∅
40: S .push(s’)
41: if(nextins(p) is (threadstart || threadterminate)) {
42: s’.backtrack = enabled(s’))
43: } else s’.backtrack = p
44: } else S.pop()
45: }

Table 2: Pseudo-code for the clock vector POR.

vector C(pi) = {c1, ... , cm}. Then cj is the index of last
transition in the search space executed by thread pj that had
to happen in order for thread pi to reach its current state.
Similarly, clock vectors can be made for objects (denoted
C(o)). When a clock vector corresponds to an object, the
clock vector is tracking dependencies of the accessed object’s
current state on transitions performed during the state space
search by each of the threads or processes in the system.
The pseudocode for a clock-vector partial order reduction
implemented in JPF is given in Table 2. Definitions for
understanding the table are as follows:
• S is a transition sequence represented by {t1, ..., tm}

where tj refers to transition j in the sequence.
• C is a data structure for storing clock vectors.
• L is an object that stores the last transition to access

an object o. L(o) denotes the index of the last transi-
tion in S that accessed o.
• s is a global state of the system.
• last(S) denotes a global state s generated after the last

transition in S executed.
• i refers to an index in S .

• α(t) returns a reference to the object that an instruc-
tion operates on.
• proc(Si) is the process or thread that executed transi-

tion ti in S .
• pre(S, i) is the state s of the system before transition

ti was executed.
• max(C(pi), C(pj)) is the maximum of the two clock

vectors C(pi) and C(pj) (the result is a clock vector
where each index contains the maximum of that index
in the two other clock vectors).

Keeping track of clock vectors for both the object and the
process while taking the point-wise maximum of the two
on line 15 of Table 2 essentially means that a process in-
herits the maximum of all clock vectors of objects that it
accesses with each clock vector’s state corresponding to its
state when the process accessed them. Clock vectors are
used to determine if the dependent transition detected on
line 27 was not a transition needed to generate the current
state. If the dependent transition was not needed to gen-
erate the current state, then the two dependent transitions
can be co-enabled and interleaved as on lines 26-32. The
interleaving is done by finding the last dependent transition
and scheduling the current thread to execute from the state
before the last transition that operated on the same object.

Each state stored on the stack in the pseudo-code cor-
responds to a choice generator. Every time JPF creates a
choice generator that corresponds to a POR instruction be-
ing executed, the data structure corresponding to L and C
is stored with it. Each choice generator actually stores two
copies of L and C . One corresponds to the transition being
taken. The other corresponds to the transition not being
taken. To make the algorithm equivalent, but easier to fol-
low, that version of the data structure is calculated when
the transition is actually taken on lines 13-21. A custom
choice generator that allows for new threads to be added to
its current choices was implemented in order to provide the
functionality in lines 30 and 32.

When a thread start or thread terminate instruction are
reached, we perform the same actions as JPF’s original POR
(Lines 41-42). The logic represented in lines 22-44 are cap-
tured by the interactions between schedulers, choice gener-
ators made by the scheduler and the virtual machine. A
custom VM had to be implemented in order to perform the
check on line 26 differently. The method in JPF’s virtual ma-
chine class used to check if there are other enabled threads
that accessed the object at the current state is only used
by the POR, so by overriding this method we were able to
perform the check the way we wanted to without having
to modify classes for individual instructions that check for
POR boundaries.

The clock vector algorithm executes in a very similar man-
ner to JPF’s POR algorithm. The check on line 26 of the
clock vector algorithm is very similar to the check on line
16 of JPF’s POR algorithm. The main difference is that the
clock vector algorithm does not ensure that other threads
are enabled before it does its logic for interleaving on lines
22-34. The way choice generators are made for thread start
and stop is the same.

4. EXAMPLE
The two approaches are illustrated using the following

Figure 1: The JPF search space for the two PORs.

simple program that updates the global variable a:

t0 t1
0 : Thread.start(t1); a = 2;
1 : a = 1;

The search space explored by JPF for this program (omitting
initialization code) is shown in Figure 1. A non-end state is
represented as a box. Each box contains a state label and
the instruction executed that generated the state. Unique
end states are represented as numbered green ovals. The
dashed lines represent edges to states generated by execution
of JPF’s POR and those states were not visited by the clock
vector algorithm.

JPF’s POR algorithm begins by executing Thread0 until
it hits line 0 in the program. This corresponds to lines 0-10
in the algorithm. Lines 13-22 in the algorithm are skipped
because a thread start is not a POR relevant instruction.
Next, in lines 25-27 of the algorithm, a new state is gener-
ated with the started thread. This new state will explore all
enabled threads (line 27) and means JPF created a choice
generator for started thread. This new state corresponds to
state s0 in Figure 1. This new state gets pushed onto the
stack in the algorithm on line 29. Now, the algorithm starts
exploring the next state that is pushed onto the stack in the
last run of the loop, the new state. Thread0 is chosen to
run again on line 6. When Thread0 runs again, it executes
its line 1 in the program. This causes the sharedness to be
updated in line 15, but it jumps back to executing other in-
structions in line 21 because the access to ”a” doesn’t show
it as being shared (line 16). After line 1 of Thread0 is ex-
ecuted, the thread is terminated and state s1 is generated.
Then Thread1 is executed in a similar fashion. Again, no
sharedness is detected on line 16 because Thread0 is not
currently running. At this point, the program is finished,
so JPF backtracks to state s0. In the algorithm, state s2
and s1 are popped of the stack because they’ve exhausted
all available thread in their respective backtracks sets.

Then, the algorithm starts off executing Thread1 from
s0 because Thread0 has already been executed. Line 0 of

Thread1 is a POR relevant instruction. This time, the check
on line 16 passes because the search history recorded ”a”
as being accessed by 2 threads on the previous execution
of the program. This means that this state is saved and
a choice generator is constructed with all running threads
(lines 17-20). This is what generates state s3 in the figure.
The state s4 is generated by choosing Thread0 from the last
choice generator and reaching line 1 in Thread0. Line 1
is a POR-relevant instruction, so the algorithm saves the
program state and executes all possible threads from that
state. States s5, s6, s7, s8 and s9 are generated from threads
terminating in the order they’re executed.

We choose to discover sharing in the same manner as
JPF’s POR when performing the clock vector algorithm.
This means that the clock vector algorithm generates states
s0, s1 and s2 in the same manner as JPF’s POR. The main
difference happens after the backtrack up to state s0. Reach-
ing the PUTFIELD instruction in line 0 of Thread1 triggers
the logic in lines 26-32. In this state, there are no clock vec-
tors or operations on the shared object, so no interleave is
calculated with a previous state. But on lines 38 and 43 a
new state is generated with a choice generator that only ini-
tially contains the currently running thread (Thread1) this
choice generator corresponds to state s3. State s3 is the
state just before line 0 is executed in Thread1.

Then, as Thread1 is executed further, its clock vectors are
updated with the operation on the variable ”a” (lines 13-
21). Thread1 finishes execution to generate state s9. Then,
Thread0 is executed. Line 1 on Thread0 is a POR-relevant
instruction. This means that lines 26-32 of the algorithm
are triggered. L(a) = 1 (the index of the transition that
operated on shared variable ”a”). The clock vector for the
current process Thread0 is <0,0> because no POR-relevant
instructions have been executed in Thread0 yet. The check
on line 28 returns true because Thread0’s state is not de-
pendent on any operations that have occurred in Thread1.
On line 29, it is determined that Thread0 was enabled in
the state before the last transition occurred that operated
on ”a.” This causes Thread0 to be added to the choice gen-
erator that corresponds to state s3 in the diagram. Thread0

then creates a state corresponding to this transition about
to operate on ”a.” This state is not on the graph, but there
is no branching on that state because there are no other op-
erations on ”a” in this branch of the search. Thread0 then
completes execution and this particular run of the example
program terminates.

Next, the algorithm pops all states off the stack generated
before s3. From s3, Thread0 is executed. Thread0 reaches
line 1. The clock vector algorithm again performs the com-
putations on lines 26-32. Because state s3 corresponds to
a state just before Thread1 executes its line 0, there are
no previous dependent operations to interleave with so no
interleaving occurs. A state is generated on lines 38 and
43 with Thread0 as the only choice in the choice generator.
Thread0 is then executed until completion to generate state
s5. Thread1 is then executed to completion with no inter-
leaving because the write to ”a” was already marked when
s3 was created.

Looking at the state space of the example program in
Figure 1 it becomes obvious that JPF’s POR explores an
unnecessary branch. This demonstrates preemptive shar-
ing detection with interleaving guarantees the same ordering
on a variable access occurring at least one more time than

needed. This expands the state space greatly when there are
more accesses to the same variable from even more threads.
This example shows why it is advantageous to perform in-
terleavings based on the history of the search as opposed to
preemptive sharing detection.

5. RESULTS
This sections details the results of running benchmarks

for JPF’s native POR and a clock vector based POR al-
gorithm. Both sets of experiments were run on a machine
with an AMD phenom quad core processor with an approx-
imate 1.8 Ghz speed and 8 GB of RAM. The Java virtual
machine was allocated with 2 GB of memory. The custom
VM for the clock vector POR was only used in experiments
involving the clock vector POR. Two benchmarks are run us-
ing enabled randomization on all scheduling relevant choice
generators. Average run time and average total number of
states is recorded for three samplings from the distribution
from the possible runs for both algorithms. The number of
states varies slightly in the clock-vector POR based on the
sharing detected on the random first run.

Table 3(a) shows the results of increasing the number of
threads while doing various experiments on the cushion vari-
able in the airline benchmark from Mercer and Rungta [5].
The table shows the results of increasing threads as well as
how different values of the cushion variable play out in the
runs. The table is organized such that threads increase from
left to right and down. If the number of threads stays the
same while reading cells in this manner, then the value of
the cushion variable is increasing. The cushion variable in-
creases the depth of the error. From the table it is apparent
that JPF’s native POR always takes longer to run and ex-
plores more states than the clock vector POR. An anomaly
in both algorithms is the fact that the number of states de-
creases in both algorithms when the cushion is increased
with four threads being run.

Table 3(b) shows the results on another benchmark writ-
ten by Mercer and Rungta called reorder [5]. The strategy
when doing these experiments on the reorder benchmark was
to increase the number of setter threads that cause the error
while holding the number of threads that manifest the errors
(checkers) constant at the value of one thread. This strat-
egy was chosen because it would always increase the number
of states explored in the full state space before the checker
thread found the error. As can be seen from the chart, the
clock vector POR performed better in terms of both time
and total number of states visited.

6. RELATED WORK
The dynamic partial order reduction implemented in this

paper is based on a strategy of determining partial orders
through collecting information about the state space as the
search continues. The main other kind of partial order re-
duction is static partial order reductions. In static partial
order reductions (SPOR), the program is analyzed at com-
pile time to determine dependencies between operations [4].
Whereas in dynamic partial order reductions (DPOR) such
as the one in this paper, the program determines depen-
dence based on changes in program state as it is run [2].
There are various methods to do this. One of these methods
uses persistent and sleep sets [2]. A persistent set is a set of
transitions such that all transitions outside the set are inde-

Airline
JPF threads 3 4
Native cushion 4 2
POR runtime(seconds) 6 69.3

total states 9025 307561
threads 4 5
cushion 4 1
runtime(seconds) 75.7 587.7
total states 281105 3966210

JPF threads 3 4
Clock cushion 4 2
Vector runtime(seconds) 3 28
POR total states 2786.7 107112

threads 4 5
cushion 4 1
runtime(seconds) 28.3 154
total states 87214 1050418

Reorder
JPF setters 1 2
Native runtime(seconds) 1 2
POR total states 285 3859

setters 3 4
runtime(seconds) 13.7 100
total states 54555 532101

JPF setters 1 2
Clock runtime(seconds) 1 2
Vector total states 181.33 2222.7
POR setters 3 4

runtime(seconds) 8.7 49
total states 26576 228874

(a) (b)

Table 3: Results from examples. (a) The Airline model. (b) The Reorder model.

pendent of the transitions inside of it [3]. The algorithm in
this paper is derived based on persistent sets [2]. The idea
behind sleep sets is that they are sets of transitions that
are independent with each other (exploring a schedule with
an interleaving of two transitions in a sleep set yields the
same global state). Once one interleaving of the indepen-
dent transitions has been explored, it is not explored again
in the opposite order [3]. The idea behind a DPOR using
the sleep set and persistent set technique is to schedule every
transition in a persistent set for each state and execute those
schedules without repeating any interleavings in a sleep set
more than once. If this sort of exploration is done, then
it is guaranteed that all possible global results for a given
program have been explored [2]. The primary advantage
of a DPOR is that it has more information about the pro-
gram available to it during execution even though it takes
more memory than SPOR. A dynamic partial order reduc-
tion was chosen for this paper because it is more powerful
than an SPOR and JPF gave all of the relevant information
needed in order to perform a DPOR.

7. CONCLUSIONS AND FUTURE WORK
The clock vector based partial order reduction, when im-

plemented in JPF is a more powerful partial order reduction
than JPF’s native POR. Even though it sometimes takes
more memory, the clock vector POR visits fewer states and
finishes execution faster than JPF’s native POR and is there-
fore far more powerful. This is because JPF’s native POR
does not take into account whether or not a thread is shared
before adding it to the choice generator for POR transition
boundaries.

It is believed that JPF adds too many threads to the start
and end CGs for threads, further work needs to be done to
determine which threads do not need to be added. These
changes could yield even better results. Also, additional
data structures could keep track of which threads start other
threads so that when a thread is not enabled on a shared
object access. This could be used to reduce the number
of threads added to the shared object access choice genera-
tor on line 35 of the algorithm. This suggestion is made in
the research containing the clock vector algorithm [2]. Af-

ter these changes are made, a new version of the algorithm
should be published along with a formal proof of the com-
pleteness and soundness of the algorithm. This will give
future users of JPF a better understanding of what JPF’s
POR provides as well as how it works.

8. REFERENCES
[1] J. Esparza and K. Heljanko. Implementing LTL Model

Checking with Net Unfoldings. In M. B. Dwyer, editor,
SPIN, volume 2057 of Lecture Notes in Computer
Science, pages 37–56. Springer, 2001.

[2] C. Flanagan and P. Godefroid. Dynamic Partial-order
Reduction for Model Checking Software. In POPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages,
pages 110–121, New York, NY, USA, 2005. ACM.

[3] P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems - An Approach to
the State-Explosion Problem, volume 1032 of Lecture
Notes in Computer Science. Springer, 1996.

[4] R. P. Kurshan, V. Levin, M. Minea, D. Peled, and
H. Yenigün. Static Partial Order Reduction. In
B. Steffen, editor, TACAS, volume 1384 of Lecture
Notes in Computer Science, pages 345–357. Springer,
1998.

[5] N. Rungta and E. G. Mercer. Hardness for Explicit
State Software Model Checking Benchmarks. In SEFM,
pages 247–256. IEEE Computer Society, 2007.

