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ABSTRACT
To explore the state space of programs with complex user-
defined data structures, most symbolic execution engines use
the lazy initialization algorithm. Symbolic Pathfinder (SPF)
is the symbolic execution engine for the Java PathFinder
(JPF) model checker; SPF too contains an implementation
of the lazy initialization algorithm. A number of exten-
sions to the original lazy initialization algorithm have since
been published. One such extension is the lazier# algo-
rithm which demonstrated dramatic performance gains over
the other algorithms. There is, however, no open-source im-
plementation of the lazier# algorithm available. This work
is an implementation of the the lazier# algorithm within the
Symbolic PathFinder framework. In addition, this work de-
scribes the implementation of two heap bounding techniques
in SPF, namely k-bounding and n-bounding. The purpose of
this paper is to discuss the nature of the improvements, im-
plementation details, usage and performance test results.

1. INTRODUCTION
Symbolic execution is an automated program analysis tech-

nique that explores program execution paths using symbolic
input values in lieu of concrete inputs [2, 9]. Symbolic exe-
cution constructs a path condition consisting of constraints
over symbolic inputs that characterizes a program execution
path. Off-the-shelf decision procedures and SMT solvers
are used to check the satisfiablity of the path condition.
The set of path conditions computed by symbolic execution
is used to enable various verification, analysis, and testing
tasks. Initially, symbolic execution largely focused on check-
ing properties of programs with inputs of primitive types,
such as integers and booleans; this was partly due to the
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extensive support provided by the solvers for checking sat-
isfiability of constraints over these types. In order to sym-
bolically execute object-oriented programs that are typical
of Java, it is important to handle non-primitive types such
as user-defined data structures and arrays. Several recent
projects generalized the core ideas of symbolic execution to
enable it to be applied to programs with more general user-
defined types, including references and arrays [1, 3, 5, 7, 8,
12].

Symbolic Pathfinder (SPF) is the symbolic execution ex-
tension for the Java PathFinder model checker (JPF) [10,
11]. In order to handle symbolic execution of programs
with complex data structures, it contains an implementa-
tion of the lazy initialization algorithm [8]. Whenever a
symbolic object is first read along a path during symbolic
execution, lazy initialization in SPF creates the following
concrete choices for the object: (i) null, (ii) new instance of
the object, and (iii) references to objects of the same type
that were lazily initialized along the same execution path.
Lazy initialization can often lead to a path explosion prob-
lem due to the concretization of the choices

Lazier algorithms that surpass lazy initialization delay ob-
ject initialization deeper into the symbolic execution tree [3,
5]. This work is an implementation of the lazier# algorithm
within SPF to more efficiently analyze programs with com-
plex data types. This work also includes an implementation
of k-bounding and n-bounding to better control termination
in symbolic execution. The k-bound limits the length of the
reference chains generated by lazy initialization, and the n-
bound limits the total number of symbolic objects created
by lazy initialization.

The paper is organized as follows: it first presents an
overview of the lazier# algorithm and its implementation
in SPF, and then gives a description of the implementation
of the k-bounding and n-bounding techniques. Finally the
paper compares the performance of the SPF implementation
of the lazier# algorithm with that of lazy initialization using
the same k and n bounds. That is followed by a discussion
that compares our empirical results with those published
in [3, 5]. The paper ends with a discussion on the related
work, conclusion and an overview of future work.

2. LAZIER#
Deng et al. [3] introduced the lazier# algorithm and im-

plemented it as a part of the Bogor/Kiasan framework to
improve the performance of generalized symbolic execution.



1: procedure load(object r, field f)
2: if r is initialized then
3: if f has a reference type then
4: assign f a new reference
5: end if
6: if f has a primitive type then
7: assign f a new symbol
8: end if
9: end if

10: if r is non-null then
11: nondeterministically assign to r′:
12: an initialized version of r
13: an existing location
14: return read(r′, f)
15: end if
16: if r is uninitialized then
17: nondeterministically assign to r′:
18: a non-null version of r
19: the value null
20: return read(r′, f)
21: end if
22: return r.f
23: end procedure

Figure 1: The lazier# initialization algorithm.

The generalized symbolic execution technique generates a
concrete representation of connected memory structures us-
ing only the implicit information from the program itself. In
the original lazy initialization algorithm, symbolic execution
explores different heap shapes by concretizing the heap at
the first memory access (read) to an un-initialized symbolic
object. At this point, a non-deterministic choice point of
concreate heap locations is created that includes: (a) null,
(b) an access to a new instance of the object, and (c) aliases
to other type-compatible symbolic objects that have been
concretized along the same execution path [8]. The number
of choices explored in lazy initialization greatly increases
the non-determinism and often makes the exploration of the
program state space intractable.

The Lazier# algorithm reduces non-determinism by push-
ing certain non-deterministic choices further into the execu-
tion tree. In the case of a memory access to an uninitialized
reference location, by default, no choice point is created.
Instead, the read returns a unique symbolic reference repre-
senting the contents of the location. The reference may as-
sume any one of three states: uninitialized, non-null, or ini-
tialized. The reference is returned in an uninitialized state,
and only in a subsequent memory access is the reference
concretely initialized.

Fig. 1 presents the algorithm for the Lazier# initializa-
tion in a load operation for an object. There are three byte-
codes in Java that perform a load operation: getfield, get-
static, and aload. The load operation in Fig. 1 takes as in-
put an object reference r and field index f as parameters. If
r is initialized, then the algorithm returns the field value r.f .
If r is non-null, then r is either initialized or replaced with an
alias, creating a non-deterministic choice point. If r is unini-
tialized, then r is either set to non-null, or replaced with the
null reference also creating a non-deterministic choice point.

Besides loads and stores, other operations may change the

state of r. For example, a conditional operator may attempt
to determine whether a reference is null or not. In such
cases, lazier# initialization makes a non-deterministic choice
about the nullity of the reference and applies the appropriate
constraint to the path condition before continuing execution.

To illustrate the differences in the results computed by the
lazy and lazier# algorithms, consider the example shown in
Fig. 2. The swap method, shown in Fig. 2(a), swaps the
first two nodes in a list and returns a reference to the head
of the list. The (partial) symbolic execution trees for the
lazy and lazier# algorithms are shown in Fig. 2(b) and (c)
respectively. Each node in the tree reflects the change to
the symbolic state corresponding to symbolic execution of
the code the line number shown to the right of the tree.
Symbolic execution in JPF is performed at the bytecode
level, so we show multiple steps corresponding to a single
source line when necessesary.

The left branch of each symbolic execution tree reprsents
the case where the field next is null. The right branches
in each tree reflect the changes to the heap resulting from
symbolic execution of the code inside the if statement. The
lazier# algorithm computes a single heap representation cor-
responding to the five heap configurations computed by lazy
initialization by using intermediate symbolic references that
delay creation of non-deterministic choices.

2.1 Implementation of Lazier# Semantics
The InstructionFactory class in JPF implements the

concrete semantics of Java bytecode; while the SymbolicIn-

structionFactory is used to implement the symbolic exe-
cution semantics of Java bytecode. The SymbolicInstruc-

tionFactory inherits from the InstructionFactory class
in JPF. The symbolic execution semantics are implemented
in bytecodes that are required for symbolic execution, e.g.,
conditional branch bytecodes, to override the concrete se-
mantics. Similarly, we have implemented a LazierInstruc-

tionFactory that inherits from the SymbolicInstruction-

Factory; it overrides the bytecodes relevant to implementing
the lazier# algorithm. The main bytecodes that are rede-
fined in the LazierInstructionFactory are the load and
store operations of complex data structures, e.g., getfield,
putfield and conditional branch statements that check for
null, e.g., ifnull.

In SPF, the symbolic values of variables are stored as at-
tributes attached to the concrete values used by all JPF
bytecodes. The attributes serve as signals to the relevant
bytecodes to trigger symbolic execution specific behavior.
During lazy initialization in SPF, the symbolic complex data
structure references are assigned a symbolic value in their
corresponding attribute at the start of the method. Once
the object is concretized, the attribute for the correspond-
ing object is set to null. In our lazier# implementation ini-
tialization, we add two different attribute types: Symbolic
Reference and Symbolic Location symbols in order to distin-
guish between the phases of initialization as shown in Fig. 1.
We also extended the HeapChoiceGenerator in order to sup-
port generating choices based on the lazier# algorithm.

The lazier# initialization algorithm requires renaming sym-
bolic variables as they reach different stages of initialization.
For example, a symbolic reference turns into a symbolic lo-
cation. In order to handle initialization of symbolic loca-
tions without re-writing existing constraint equations, we
created a listener to watch the stack for outdated symbols.



Class Node{
  Node next;
  ...
  Node swap(){
1:    if (next != null){
2:      Node t = next;
3:      next = t.next;
4:      t.next = this;
5:      this = t;
       }
6:    return this;
  }
}
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next : null next : n1

...
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Figure 2: Comparison of lazy and lazier# algorithms.

The listener scans bytecode operand attributes for outdated
symbols and renames them prior to bytecode execution.

3. BOUNDING
SPF currently supports bounding the search by a user-

defined depth. This bound enables the search to terminate
in the presence of unbounded loops. There is, however, a
need for different bounding mechanisms in the presence of
complex data structures. For example, we may want to
guide the search towards longer reference chains. While
certain heap properties may be controlled via preconditions
written into the test program, it is cumbersome to make pre-
conditions that apply only to the input heap as generated
by lazy initialization, especially in the presence of destruc-
tive heap updates. Also, since the search depth includes
choice generators for conditionals in addition to heap ini-
tializations, it is difficult to ensure even coverage of object
references for a given depth bound.

In order to better facilitate checking programs with com-
plex data structures there are two forms of bounding related
specifically to controlling input heap structures: k-bounding
and n-bounding. First used in Kiasan [3], k-bounding limits
the length of reference chains produced by lazy initializa-
tion. At the beginning of the program, all static locations
and reference parameters are initialized to depth zero. As
program execution proceeds, accesses to objects at locations
of depth m (from the root of the heap) generate lazy initial-
izations to locations at depth m + 1. This continues until
some maximum depth k is reached.

To illustrate the process of k-bounding for k = 2. Suppose
we have an object A at depth 0, which contains a reference
field. Note that depth 0 represents the root of the heap.
To access the location referenced by that field in A, lazy
initialization creates (i) a new object B at depth 1, (ii) an
alias to A, and (iii) a null reference as illustrated in Fig. 3.
If a subsequent operation needs to initialize a reference field
of object B, we have similar choices as before: (i) create a
new object C at depth 2, (ii) two aliases to objects A and B,
and (iii) a null reference. Since object C is instantiated at
depth 2 which matches the k-bound, the reference fields of
C cannot be instantiated to the new choice. Fields of object
C can only be initialized to aliases or the null reference.

The k-bound applies to the symbolic input heap, hence,

A0
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new

A0

 null

A0

alias

B1 N
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A0 B1
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Figure 3: Example demonstrating k-bounding

the object depths remain fixed from the time of initializa-
tion, even if subsequent operations move them to shallower
portions of the heap. For example, suppose a sequence of
operations swaps objects B and C from Fig. 3. The depth
associated with node C remains 2 despite the node’s appar-
ent position at depth 1. Any remaining reference fields in
object C will be subjected to initialization rules for depth
2. k-bounding is useful for ensuring complete exploration
of all heap shapes up to a given initialization depth. This
even coverage provides a convenient way of comparing the
efficiency of different lazy initialization algorithms.

In contrast to k-bounding, n-bounding trades complete-



ness of coverage for greater heap depth. n-bounding limits
the total number of lazily initialized symbolic objects. n-
bounding will explore much longer chains in a given amount
time than k-bounding, at the expense of completeness.

The two bounding techniques are complimentary and can
be used in tandem to adjust for intermediate depth/breadth
tradeoff levels. Note that k-bounds and n-bounds apply
only to the input heaps presumed to exist at the start of
the method, and do not limit the size of static or dynamic
memory structures created by the method itself. In other
words, these bounds do not apply to static objects created
prior to method start-up, objects created by the new opera-
tor, or objects eliminated by garbage collection. Thus, the
total number of active heap nodes may appear to exceed
or fail to reach specified bounds. If limitations on absolute
heap size are desired, they may be enforced by means of
method pre/post conditions.

3.1 Implementation of Bounding
To implement k-bounding in SPF, additional depth in-

formation is stored in an attribute object attached to the
corresponding ElementInfo class of the object. Note that
information about objects are stored in JPF within the El-

ementInfo class. For bounding, a listener monitors the total
number, or depth, of initialized objects in any instance of a
HeapChoiceGenerator. Recall that the HeapChoiceGenera-

tor creates the points of non-determinism for the lazy initial-
ization algorithm. We have implemented the corresponding
choice generators for the lazier# algorithm as well.

Both k-bounding and n-bounding ignore heap structures
larger than the specified bounds by treating them as if they
are infeasible. If a bytecode attempts to access an object
along an execution path that exceeds the search bounds,
the state is marked as ignored and the JPF virtual machine
backtracks to the previous choice generator.

4. RESULTS
In this section we present results of our Lazier# algorithm,

k-bounding and n-bounding techniques. All our experiments
are conducted on a 1.83GHz Intel Core 2 Duo processor and
2GB RAM. JPF v7 was used as the software platform, and
the Lazier# implementation was based on the jpf-absinth

implementation of the Symbolic PathFinder1.

Method k
Time States

LZ LS LZ LS

TreeMap put
1 0:02 0:02 148 46
2 0:13 0:02 6622 446
3 0:19 0:09 25795 10504

TreeMap get
1 0:01 0:01 40 64
2 0:04 0:03 1654 958
3 1:07 0:25 79045 27569

BST insert
1 0:01 0:01 27 25
5 0:05 0:04 303 145
7 4:39 1:09 7113 1705

BST findMin
1 0:01 0:01 15 19
2 0:03 0:03 143 143
3 1:01 01:04 2373 2123

Table 1: k-bounding results

1jpf-absinth is a fork of jpf-symbc
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Figure 4: Treemap.put execution time

Method n Time States Paths

TreeMap put

2 0:03 258 14
3 0:09 1750 28
4 0:40 17058 64
5 3:54 222535 152
6 23:34 3630321 360

BST findMin

2 0:01 19 2
3 0:02 80 4
4 0:05 320 9
5 0:24 1234 23
6 2:11 4698 65

Table 2: n-bounding results

Methods from java.util.TreeMap and BinarySearchTree

[13] are used in the k-bounding experiments. For these ex-
periments, the n-bound and search depth parameters are set
to a value of one million in order to ensure that the k-bound
is indeed the limiting factor. All methods were executed
using preconditions specified by [4], over k-bounds of 1,2,
and 3. Table 1 shows the results of the experiments for the
dependent variables of execution time, states explored, and
number of valid terminal paths.

Figure 4 shows run-time for our implementation vs. the
Kiasan implementations of Lazy and Lazier# initialization
as reported in their paper. Since we cannot make claims
about efficiency given that both the implementations are
run on different machines, it is noteworthy that the trend
of our implementation parallels that of Lazier# rather than
that of the lazy initialization algorithm.

For the bounding experiments, each bound is isolated by
setting the other bound to a large value that is unreachable
in the experiment sets. Table 2 contains the results of n-
bounds analysis of the put method in the TreeMap class and
the findMin method in the BinarySearchTree (BST) class.

In all k-bounding experiments, the number of paths ex-
plored matches exactly with those that were reported in [4].
Since the correct k-bounding path results were established
analytically [5], we have a reasonable degree of confidence
in the correctness of the lazier# implementation when used
in conjunction with k-bounding.

In the n-bounding experiments, path counts for the put

method in the TreeMap class match the published results in



[4]. However, path counts for BinarySearchTree.findMin

appear to differ from the published figures by one, i.e., our
path count for n = 6 matches the count in [4] for n = 5. We
are still investigating the cause for this discrepancy, which
is curious considering results from other n-bounding exper-
iments seem to match perfectly.

We also conducted some analysis of the lazy initialization
implemented within SPF. However, the results did not cor-
relate well with the published figures, and a number of tests
failed to complete due to some bug in the current imple-
mentation in jpf-absinth. Since we have not established the
cause of the difficulties, those figures are not included in this
work. We are working on fixing the errors within the lazy
initialization implementation.

5. RELATED WORK
Generalized symbolic execution [8] extends traditional sym-

bolic execution to reason about open systems that manipu-
late dynamically allocated data, i.e., user-defined types. It
implements a lazy initializatin algorithm that delays mate-
rialization of heap objects until a field in the object is first
read. In [3], Deng et el. introduce k-bounded symbolic ex-
ecution and present a lazier initialization algorithm, imple-
mented as part of the Bogor/Kiasan framework. This lazier
algorithm delays initialization of reference fields longer than
the lazy algorithm in generalized symbolic execution by di-
viding lazy initialization into two steps. The first step oc-
curs when an uninitialized reference type variable is read,
at which point the variable is initialized to null or a fresh
symbolic reference value. In the second step, this branch is
split at the point when a field of the symbolic reference is
accessed, i.e., read or written. At this point, the symbolic
reference is non-deterministically replaced by choosing an
existing type-compatible object or a fresh symbolic object.
This approach delays the non-deterministic choice of objects
in the lazy initialization algorithm, and in some case, the
delay may be indefinite. In [5], Deng et al. introduced an
even lazier algorithm, lazier# – the algorithm implemented
in this work. Lazier# addresses the fact that the lazier al-
gorithm optimistically assumes most variables are nonnull,
by introducing an intermediate step that creates a new type
of symbolic value which abstracts null as well as any ob-
ject of the appropriate type. This has the effect of delaying
the first branch point until a field in the symbolic value is
accessed.

Recent work introduces a front-end analysis before sym-
bolic execution to determine constraints on heap shapes up
to a given bound to prune the number of instantiations con-
sidered in lazy initialization [6]. As a result, symbolic exe-
cution does not explore redundant isomorphic heap shapes.
The front-end analysis has a high cost but yields significant
reductions and is complementary to the lazier# algorithm.

6. CONCLUSIONS AND FUTURE WORK
This paper presents an implementation of the lazier# al-

gorithm in SPF. The lazier# algorithm uses fully symbolic
objects to delay instantiating heap objects deep into the pro-
gram execution. The result is that the algorithm generates
many fewer states and explores many fewer paths as shown
in a set of benchmark examples. The paper further describes
the implementation of two distinct methods for bounding
symbolic execution in SPF. The first method, n-bounding,

caps the number of new instances in the symbolic heap. The
second method, k-bounding, caps the depth of heap objects
initialized in any single reference chain. JPF’s annotation
framework is used to implement both bounding techniques.
Future work is to extend this notion of fully symbolic ob-
jects to a complete symbolic heap that does not initialize
concrete heap objects. That is to say, objects are no longer
instantiated but rather are represented as constraints similar
to path constraints in symbolic execution.
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