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ABSTRACT
This paper presents our work on model checking distributed ap-
plications. We refer to distributed applications as a collection
of communicating processes, regardless of their physical locations
and the communication means. Our work targets applications
written in Java. It relies on the multiprocess support included
in Java Pathfinder (JPF) version 7 which allow for verifying the
bytecode of distributed applications. The basic support for dis-
tributed applications in JPF does not account for communica-
tion between processes. In this work, we address this limitation.
The work is implemented as a JPF extension which models inter-
process communication (IPC) mechanisms. It uses a form of par-
tial order reduction (POR) to explore all possible executions of
a distributed Java application. Moreover, our approach provides
a functionality to check the given distributed application against
possible network failures which can occur at the operating system
or the hardware layer.
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1. INTRODUCTION
With ubiquitous use of networked and mobile devices, distributed
computing is becoming increasingly important. There are several
key factors driving the development of distributed applications
[1]. Some services intrinsically require the use of a communication
network to connect different components, such as massively mul-
tiplayer online games. Distributed computing can also be used to
develop fault tolerant systems where a failure in one process does
not stop the application from completing its task. Distributed
systems can utilize multiple machines to finish tasks faster and
handle larger problems. Finally, distributed applications can use
shared resources to reduce computational requirements on client
devices, e.g. by means of cloud computing.

Distributed applications are hard to develop. These applications
are inherently concurrent. Moreover, they are subject to problems
related to the distributed setting. For instance, they need to deal
with asynchronous failures in external processes and the network,
resulting in unavailability of data and quality of service (QoS)
problems. They might also lack a consistent view of data across
the whole system and might have to adhere to complex protocols.

The most common technique to verify distributed systems is test-
ing. However, since different components of the system may have
different software and hardware requirements, setting up an envi-
ronment to test such applications can be difficult, time consuming
and expensive. In addition, network failures have to be simulated
by instrumenting the system under test (SUT) or replacing oper-
ating system level components such as network libraries.

Model checking is naturally preferred to testing when concurrency
comes into play. Unlike testing that does not have any control over
the scheduling of concurrent processes without SUT modification,
model checking can examine all relevant scheduling sequences in
a systematic way.

Our work to verify distributed applications is based on model
checking. Due to its extensibility, we use Java Pathfinder (JPF) as
the underlying model checker and implement our work as a stan-
dard JPF extension that can be runtime configured. Off the shelf,
JPF includes a specialized Java Virtual Machine (JVM) that can
model multiple Java processes. However, JPF does not provide li-
brary implementations that allow such processes to communicate
via standard network APIs. This paper explains our work that
addresses this limitation.

2. RELATED WORK
Model checking distributed applications is nontrivial. Most exist-
ing model checkers can only be applied to a single process SUT.
One of the proposed techniques to model check distributed Java
applications is centralization. This technique maps separate pro-
cesses of a distributed system into threads executed within the
same process, to capture all possible executions of the resulting
program [2, 3, 4].

Every Java process provides a self-contained execution environ-
ment including an exclusive set of basic runtime resources. Since
centralization captures the entire application within a single pro-
cess, parts that represent different processes share the same re-
sources. In order to preserve the behavior of the original dis-
tributed system, one needs to ensure proper separation of types
in absence of process boundaries enforced by the operating sys-
tem. This is known as a main challenge in applying centralization
approaches which can be achieved at different levels.

Most existing approaches use centralization at the SUT level.
These techniques modify the SUT code to separate types, and
provide their own models of IPC mechanisms. The centraliza-
tion technique proposed by Artho and Garoche [3] models socket
based communication. In the work by Stroller and Liu [2], remote
method invocation (RMI) calls are replaced with local ones that
simulate RMIs. The Barlas and Bultan [5] work focuses on the
environment generation problem for network communication, and
presents a framework, NetStub, that models the Java networking
packages java.net and java.nio.

A major drawback of centralization at the SUT level is that they
do not impose type separation to non-SUT code such as standard
Java libraries. Therefore, different parts of the SUT representing
different processes share the same standard classes which may in-
terrupt the correct behavior of the application. Moreover, since



this approach transforms the structure of the SUT, it cannot sup-
port code that uses the Java reflection API. These problems are
addressed by an alternative approach that performs centralization
at the model checker level, requiring the model checker to directly
support verification of multiple processes. JPF version 7 provides
the basic building blocks for such a support. As an input, it can
accept multiple Java processes. However it lacks IPC models and
process aware scheduling. Our work adds these missing compo-
nents for socket based communication. Moreover, compared to
the approaches based on the centralization at the SUT level, our
IPC model provides a more efficient way to capture thread non-
determinisms. It applies a POR technique which results in smaller
state spaces for distributed applications.

3. JPF CENTRALIZATION
JPF can accept a distributed system as a SUT in its original form
and uses a specialized JVM (referred to as multiprocess JVM ) to
execute multiple processes. The basic support for distributed ap-
plications is achieved through a centralization approach which is
included in JPF version 7 and involves three major steps: separat-
ing types, modeling processes and adding process aware schedul-
ing.

To separate types between processes, a new class loading model
is implemented in JPF which extends the class loading model of
Java. Class loaders are system objects that perform on-demand
lookup of class files at runtime, and transformation of such data
into java.lang.Class instances representing Java types. A Java
type is identified by its fully qualified class name and its class
loader instance. Unlike a normal JVM, JPF supports multiple
instances of system class loaders through its gov.nasa.jpf.vm.

SystemClassLoaderInfo construct. By giving each process its
own system class loader, we can ensure type separation between
processes regardless of classfile location (SUT or system libraries),
which also gives each process exclusive access to static fields. For
further details, the reader is referred to [6].

Processes are modeled in JPF as groups of threads mapping to
the same gov.nasa.jpf.vm.ApplicationContext object. Upon
system initialization, JPF creates a new ApplicationContext in-
stance for each process and stores it within the instance of gov.

nasa.jpf.vm.ThreadInfo that represents the main thread of the
process. Each new thread that is created by the SUT automati-
cally inherits the ApplicationContext of the currently executing
thread. This mechanism ensures the thread-to-process associa-
tion during the entire execution. ApplicationContext encapsu-
lates per-process information such as main class, command line
arguments, system class loader and classpath.

To capture scheduling points in the case of distributed applica-
tions an instance of gov.nasa.jpf.vm.DistributedScheduler-

Factory is used. However, this component does not account for
communication between processes. Basically, it does not create
thread choices upon network interactions involving different pro-
cesses. As part of this work, we extend this component to capture
scheduling points for network API calls.

All three features are controlled by the multiprocess JVM (encap-
sulated by gov.nasa.jpf.vm.MultiProcessVM) which instantiates
process main threads along with their respective Application-

Context and SystemClassLoaderInfo objects. It starts the SUT
execution from an initial state that has a scheduling choice for
each process main thread. The multiprocess JVM also addresses
shutdown semantics of each process by terminating its threads and
executing related process specific tasks such as shutdown hooks.

4. JAVA NETWORKING
Java has several features that make it suitable for developing dis-
tributed applications [1]. It is platform independent, supports
multithreaded programming, and offers an exception handling
mechanism which is useful for developing fault tolerant applica-
tions. Through its standard libraries, Java provides multilevel
support for basic networking constructs such as stream and data-
gram sockets. At a higher level, it provides networking capabili-
ties such as remote method invocations, distributed objects, and
communication with external databases. Finally, Java supports a
rich set of security mechanisms that are essential for distributed
applications, such as user authentication, data encryption and
sandboxing (restricted access to the local file system).

The most commonly used networking API in Java is based on
sockets [1]. A socket represents an endpoint of a communication
channel between two processes. Every socket is identified by two
elements, an IP address and a port number. An IP address is
a unique address to identify a host across a network which is
based on the Internet protocol (IP). A port number identifies the
communication endpoint within a host and is usually associated
with a specific service or protocol.

One of the main types of sockets in an IP network is based on
the transport control protocol (TCP). TCP provides a reliable
communication channel that guarantees the successful delivery
of data packets in order. Java provides support for TCP sock-
ets through classes in the java.net package, such as java.net.

Socket, java.net.InetAddress, and java.net.ServerSocket.
Data is exchanged through TCP sockets via a pair of input and
output streams.

4.1 Client/Server Example
The code in Figure 1 demonstrates a simple example in which a
server and a client communicate using TCP sockets. The Java
program on the left side of the figure represents the server, the
one on the right represents the client. Henceforward, we use s.i
and c.i as a notation to refer to the ith statement of the server
and client, respectively.

A TCP socket in Java can be either passive or active. To establish
a connection, the server creates a passive socket (encapsulated
by java.net.ServerSocket) that is associated with a given port
(s.5), and then it blocks (s.6) until it receives a connection request
from a client.

The client in Figure 1 creates an active socket (encapsulated by
java.net.Socket) which sends a connection request to a server
that is running on the same host and waiting for connections on
the specified port (c.5). If there is no server socket associated with
the given host and port, Java throws a java.io.IOException that
has to be handled in the client code. Otherwise, the server accepts
the connection request from the client and obtains a new active
socket representing the server endpoint of the connection (s.6).
At this point the connection is established, the server and the
client can start to exchange data.

The server and the client receive and send data through their re-
spective socket streams, which are obtained by calling the Socket.
getInputStream() and Socket.getOutputStream() methods (s.7
& c.6). Next, the server attempts to read a request from the client
(s.8). If data has not been sent yet, the server input operation
blocks until the client writes some data (c.7). Once the server re-
ceives the request, it terminates by closing its sockets (s.9 & s.10).
Closing the ServerSocket object avoids new clients from connect-



1  public class Server {
2    public static final int PORT = 10000;

3    public static void main(String[] args) 
4     throws IOException {
5      ServerSocket ssocket = new ServerSocket(PORT);
6      Socket socket = ssocket.accept();

7      InputStream  in = socket.getInputStream();
8      in.read(new byte[10]);

9      socket.close();
10     ssocket.close();
11   }
12 }

1  public class Client {
2    public static void main(String[] args) 
3     throws IOException {
4      InetAddress ipAdd = InetAddress.getLocalHost();

5      Socket socket = new Socket(ipAdd, Server.PORT);

6      OutputStream out = socket.getOutputStream();
7      out.write("request".getBytes());

8      socket.close();   
9   }
10 }

Figure 1: A simple client and server that communicate through TCP sockets.

ing to this server, and closing the Socket object disconnects this
server from the client.

5. JPF-NAS
Our networked asynchronous systems extension (jpf-nas) of JPF
provides the functionality to verify distributed Java applications.
At this stage, jpf-nas supports Java processes that communicate
via TCP sockets, and models the basic networking classes such as
java.net.ServerServer and java.net.Socket. Our implemen-
tation consists of two main components: connection manager and
scheduler. The former maintains communication channels along
the current execution path, and the latter captures scheduling
points upon network interactions.

5.1 Connection Manager
Modeling socket-based communication in JPF requires shared
buffers that are invisible from the SUT. This can be achieved
through the model Java interface (MJI) of JPF. MJI is used to
transfer the execution from the JPF level to the host JVM level
by means of native peers. These classes are completely unknown
to the SUT and execute on top of the host VM. Using a spe-
cific name pattern, JPF associates methods of the SUT classes
to the methods of native peers. Whenever JPF has to execute
a SUT method associated with a native peer method, the execu-
tion is transferred to the host VM which executes the native peer
method.

The connection manager, encapsulated by nas.java.net.

connection.ConnectionManager, exists at the host JVM level.
It maintains communication channels between processes which
are represented by instances of nas.java.net.connection.

ConnectionManager.Connection. The class Connection captures
the following information:

(1) Endpoints - each connection is identified by two endpoints
which represent server and client sockets. To capture endpoints,
each connection stores the references of the corresponding SUT
socket objects and the respective ApplicationContext instances
to identify processes.

(2) Buffers - to capture the communication data, the connection
has two buffers, one buffer stores data sent from the client socket
to the server socket, and the other one stores data sent from the
server socket to the client socket. The buffers are represented by
dynamically growing cyclic queues which store raw bytes.

ConnectionManager

jpf-nas
jpf-core

client s2c c2s state
. . . . . . . . . . . . . . . 

server

server client

receive/send receive/send 

Native
Peer

Native
Peer communication buffers sockets

Figure 2: The list of connections is kept at the host JVM
level.

(3) State - every connection can be in four possible states, pend-
ing (the connection has not been established, and one endpoint is
waiting for the other end to connect), established (the connection
is established and is ready for I/O operations), closed (at least
one socket has been closed, and no more data can be transmit-
ted), and terminated (at least one of the connection socket objects
has been garbage collected without getting closed).

The connection manager maintains a list of connections that were
created along the current execution path. As Figure 2 shows,
the list of connections is maintained at the host JVM level and
therefore, invisible from the SUT. Any communication between
processes requires accessing and (possibly) updating a connection
object which is performed through our native peers. For exam-
ple, to send some data, the sender process writes the data in a
connection object, and the receiver process reads it from there.

Since connections do not exist at the SUT level, JPF does not
include their states when restoring the SUT state. Therefore when
JPF backtracks, the state of the connections may not be in sync
with the SUT. To address this issue, jpf-nas uses a gov.nasa.jpf.

util.StateExtensionListener which has a map from state id to
list of connections. Each time JPF reaches a new state, it creates
a deep copy of the current list of connections and inserts it to the
map. When JPF returns back to a previously visited state, given
the state id, it restores the connection list from the map.



5.2 Scheduler
To capture nondeterministic choices during SUT execution, JPF
uses gov.nasa.jpf.vm.ChoiceGenerator objects that correspond
to state space branches such as scheduling points. For distributed
systems, there are two types of scheduling points: process local
and system global. The first one considers only runnable threads
within the current process as scheduling candidates, whereas
global scheduling points consider all runnable threads regardless
of process association.

A naive way to explore the state space of a distributed system
is to use only global scheduling points for all operations in which
different schedules might result in different program behavior. In
a distributed system, this approach would greatly aggravate the
state space explosion problem. Since different processes can only
observe each other at network interaction points, we restrict global
scheduling points to such operations plus process termination,
and use local schedules for process internal operations such as
lock acquisition or shared field access. This approach ensures to
capture all points in which context switches across processes can
yield different results. For example, to establish a connection, a
server needs to create and block on a ServerSocket object before a
client sends a connection request, or otherwise the connection will
fail. The corresponding ServerSocket.accept call is therefore a
global scheduling point.

To distinguish between local and global scheduling types we
provide the nas.java.net.choice.Scheduler class. This class
extends the JPF SchedulerFactory functionality to create the
ThreadChoiceGenerator objects that capture global scheduling
points. In addition, our scheduler can be used to inject excep-
tions which correspond to failures that occur at the network layer.
Such failures occur outside of the processes but they make pro-
cesses throw exceptions. Therefore, exercising all possible be-
haviors of the processes does not allow for verifying the SUT
against such failures. To capture these failures, our scheduler
creates choice generator objects (encapsulated by Exception-

ThreadChoiceFromSet) which include choices associated with ex-
ceptions such as java.io.IOException and java.net.Socket-

TimeoutException. Such functionality is essential to simulate
network failures without SUT modification. This injection is con-
figurable and is performed by the native peer methods that model
respective network APIs.

5.3 Verifying Client/Server Example
This section explains how jpf-nas verifies the client/server exam-
ple in Figure 1. Applying this extension requires JPF to use the
multiprocess JVM and the distributed scheduler factory (see Sec-
tion 3). The default configuration of jpf-nas includes the following
setting.

vm.scheduler_factory.class =

gov.nasa.jpf.vm.DistributedSchedulerFactory

vm.class =

gov.nasa.jpf.vm.MultiProcessVM

To apply jpf-nas on the client/server example, the following con-
figuration is used.

@using = jpf-nas

target.0 = Server

target.1 = Client

listener +=

,gov.nasa.jpf.listener.DistributedSimpleDot

simpleServerClient_Server__simpleServerClient_Client
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Figure 3: The search graph of the example in Figure 1.
T0 and T1 represent the server and client main threads
respectively.

The first line makes JPF to use the jpf-nas extension. The next
two lines specify the initial classes from the main methods of which
the execution of the server and client processes start. Finally, the
last line makes JPF use our listener DistributedSimpleDot. This
listener extends the SimpleDot listener of JPF and generates a dot

file including the search graph of the SUT. It distinguishes be-
tween local and global scheduling points by using different shapes
(local and global scheduling points are represented by circles and
polygons respectively). Figure 3 shows the automatically gen-
erated search graph from running jpf-nas on the example. The
states S and 6 represent the initial state and the end state re-
spectively. The state labeled with e1 is an error state. Transitions
labeled by T0 are taken by the server process and the ones la-
beled by T1 are taken by the client process. Moreover, the graph
shows the transitions last statements that result in generating new
states.

As was mentioned earlier, different ordering of statements in-
volved in establishing a connection between a server and a client
can have different outcomes. Figure 3 shows how our extension
captures the different orderings of s.6 and c.5. In the start state,
S, both the client and the server main threads are enabled. The
execution path that starts with the client execution leads to an
error state, e1. In this path, since the client sends a connection



request without the server waiting, an exception is thrown. The
other possible execution starts with the server which blocks until
it receives a connection request. To capture this execution, after
the server blocks, the state 0 is created from which only the client
can proceed. After the client unblocks the waiting server by exe-
cuting c.5, jpf-nas creates the state 1 from which both the client
and the server main threads can proceed next. At this state, the
connection is established, and a new connection object is added
to the connection manager.

Figure 3 also presents possible orderings of the I/O operations, s.8
and c.7, captured by jpf-nas. After the connection is established
at the state 1, the server proceeds and executes the read operation,
s.8. Since the client has not written any data yet, the server blocks
and a new state (the state 2) is created from which only the client
is enabled. Next the client proceeds and unblocks the server by
writing a request (c.7). At this point the state 3 is created from
which both processes can continue.

Closing a socket from a process can affect the I/O operations per-
formed by the process at the other end. To capture this effect,
jpf-nas creates scheduling choices upon socket close operations.
That can be seen in Figure 3. The server can proceed from the
state 3 until it gets to the close operation. Before closing the cor-
responding connection in the connection manager, jpf-nas breaks
the transition and creates the state 4 from which both the client
and the server main threads are enabled. The execution followed
by the server from the state 4 allows the server to close its socket
before the client performs any further operations. In this simple
example the client does not perform any I/O operations after this
point. However, if it would, generating a global scheduling point
at the state 4 could capture the effect of the client accessing a
closed socket. The other possible execution which is followed by
the client from the state 4 allows the client to proceed before the
server socket is closed.

To show the effect of the failure injection functionality, we ran
jpf-nas on the same example with the property scheduler.

failure_injection set to true. This setting allows for checking
the code against possible network failures. Figure 4 represents the
resulting search graph including injected failures. As an example,
consider the state 0 at which the server is waiting (s.6) to receive
a connection request from a client. Due to a failure at the net-
work layer, the server can throw a java.io.IOException object.
To capture such a failure, jpf-nas includes a transition which leads
out of the state 0 and corresponds to the server failure. Since our
example does not handle the exception properly, the execution
ends up in the error state e5.

6. CONCLUSIONS
In this paper, we presented our work to model check distributed
Java applications by implementing an extension of JPF, jpf-
nas. This extension models java.net inter-process communica-
tion APIs based on a centralization approach, and optimizes state
space branches with a specialized, process aware scheduler.

As future work we plan to extend our model to support non-
blocking IPC, higher level communication mechanisms such as
remote method invocation (RMI), and abstraction of external pro-
cesses by means of scripts. Our final goal is to apply jpf-nas to
real world distributed Java applications.
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Figure 4: The search graph of the example in Figure 1
including injected failures at the network layer.
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