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ABSTRACT
Model checkers like Java PathFinder (JPF) often have to
combat the state space explosion problem. One solution
adopted to tackle this problem is to abstract away parts
of the system, e. g., to model complex library classes at a
higher level of abstraction. The model classes have the same
interface as the actual library classes but exhibit reduced be-
haviour and state. Writing such model classes is both error
prone and time consuming. In this paper we propose a tool
that can automatically derive a model class from the original
class. To achieve this goal, the tool uses different algorithms,
including slicing and value generation, each yielding a model
class with different behaviour and state.
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1. INTRODUCTION
Model checkers, such as Java PathFinder (JPF), are affected
by the notorious state space explosion problem. Most Java
applications rely on external libraries. When model checking
these applications, the dependence on external libraries in-
tensifies the state space explosion problem. These library
classes may contain many fields that are not relevant to
the verification effort, yet contribute to the size of the state
space.

One approach used to mitigate this problem is to model li-
brary classes and force the model checker to use them instead
of the actual library classes. Library models have the same
interface as the actual libraries, so the model checker can
use them in place of the original classes. One strategy for
modeling library classes is to partition library classes’ fields
into those that are relevant and irrelevant to the application
properties being checked. The main idea is to remove irrel-
evant fields and behavior related to them from the library
classes, while retaining the relevant fields and behavior re-
lated to their state.

The JPF model checker [9] employs library models, along
with native peers, to tackle the state space explosion prob-
lem. Many extensions of JPF use library models: jpf-
concurrent [8] models the Java Concurrency Utilities; jpf-
awt [4] provides model classes for the Java AWT/Swing li-
braries; net-iocache [1] provides models for the networking
capabilities.

One of the main drawbacks of the model class approach is

that the model classes are usually written by hand. This
is a tedious and error prone task. Developers should first
identify the classes that are needed to verify an application,
then they should determine which methods they need to
implement. Finally the behaviour of the model class has to
be defined, as well as its state. A tool to free the developer
from the burden of writing model classes would be useful.

In our previous work [2, 7], we have developed tool support
for automated model generation. The tool presented in [2]
generates minimal models for the library classes needed by
an application. The generated models are minimal in the
sense that they contain only the methods needed by the ap-
plication. Moreover these methods are modeled as empty
stubs, with no behaviour. The developer may then add
the desired behaviour using the stubs as a starting point.
The approach in [7] employs the side-effects analysis to an-
alyze the data interactions between the application under
test and the libraries. The side-effects analysis is capable of
determining methods that have no side-effects on the data
of interest; such methods can be safely modeled with empty
stubs. For other methods, the analysis calculates whether
some data may be modified, e. g., whether an array or an
integer field has been written to. However, the analysis may
not be able to distinguish between adding or removing from
an array or between incrementing or decrementing an inte-
ger value. In [5] a tool called jpf-nhandler is described.
This tool addresses the problem of delegating on-demand
and automatically native calls during a JPF run. The pur-
pose of this tool is complementary to the purpose of the tool
presented in this paper that deals only with model classes,
whereas jpf-nhandler deals only with native calls.

In this paper, we propose and evaluate two additional ap-
proaches for model generation, based on slicing and value
generation (using default or random values). These algo-
rithms generate models with behaviour derived from the
original class. The behaviour that is generated is specified
by giving to the tool a set of fields that are relevant for the
analysis. The two algorithms differ in how they handle the
dependencies on unwanted fields.

The paper is organized as follows. The next section presents
an example used throughout the description of the algo-
rithms. Sections 3 and 4 present definitions and describe
the two algorithms. Finally we analyze a case study and
draw our conclusions.



Listing 1: Example application
1 import java.io.ByteArrayOutputStream;
2

3 public class ByteArrayOutputStreamCount {
4

5 public static void main(String [] args) {
6 ByteArrayOutputStream baos =
7 new ByteArrayOutputStream ();
8

9 baos.write(’h’);
10 baos.write(’e’);
11 baos.write(’l’);
12 baos.write(’l’);
13 baos.write(’o’);
14

15 baos.write(new byte[]
16 {’w’,’o’,’r’,’l’,’d’}, 0, 5);
17

18 int count = baos.size ();
19

20 String s = baos.toString ();
21

22 System.out.println(s);
23 System.out.println(count);
24 }
25 }

2. MOTIVATING EXAMPLE
Consider the application given in Listing 1. This simple
application writes some characters to a ByteArrayOutput-

Stream, retrieves the count of the written bytes and then
prints it along with the string representation of the stream
contents. Suppose that the property we want to check is
that the variable count never goes below zero. To do so we
can use JPF’s NumericValueListener.

Using the standard library version of ByteArrayOutput-

Stream, JPF can correctly verify that the count variable
does not go below zero. However, to verify this property,
only parts of the ByteArrayOutputStream class, related to
the state of the field count are needed. The updates to the
internal buffer of the output stream could be ignored, since
the string that is returned by the toString method is not
relevant to this analysis.

Listing 2 contains the source code of the standard library
version of some methods of class ByteArrayOutputStream.
The method write is the one used directly by the applica-
tion. The other two private methods are called by write

and can modify the state of the object. Methods toString

and size are the other two that are used in the example
application. Figure 1 shows the control flow graph (CFG)
of the write method. The CFG nodes represent statements
and the edges represent the control flow between the state-
ments. For checking the example’s sample property, state-
ments affecting the buffer buf are not relevant. For instance,
on line 15 of Listing 2 we have a method call that can only
modify buf. Thus this statement is not relevant for the anal-
ysis of the value of count, since count does not depend on
buf.

Next, we describe our algorithms used to generate model
classes with reduced behaviour and evaluate if these models

Listing 2: Source code of part of the standard library
version of ByteArrayOutputStream class.

1 public class ByteArrayOutputStream
2 extends OutputStream {
3

4 private int count;
5 private byte[] buf;
6

7 public synchronized void write(
8 byte b[], int off , int len) {
9 if ( (off < 0) || (len < 0) ||

10 (off > b.length) ||
11 ((off + len) - b.length > 0) ) {
12 throw new IndexOutOfBoundsException ();
13 }
14 ensureCapacity(count + len);
15 System.arraycopy(b, off , buf , count , len);
16 count += len;
17 }
18

19 public synchronized int size() {
20 return count;
21 }
22

23 public synchronized String toString () {
24 return new String(buf , 0, count);
25 }
26

27 // other methods ...
28 }

enable the property verification for the application under
test.

3. DEFINITIONS
The state of a class C is the set of its static and non-static
fields FC . In this paper we also refer to the relevant state of a
class, a set RC ⊆ FC of fields we are interested in preserving
in the models. For example, consider the ByteArrayOutput-
Stream class and the analysis introduced in Section 2. For
the purpose of the analysis, we are interested in the count

field. In this case, the relevant state of the class consists
only of the count field. Since it is expensive to model check
classes with a large state space, we are interested in dealing
with a relevant state that is as small as possible.

A model class of a class C is a class with the same fully
qualified name as C. C may be for instance a class from the
standard library. The two classes, the model and the original
one, have the same public interface, i.,e., they have the same
public, protected and package method signatures. However
the implementation of these methods may differ. Ideally, to
enable reductions during model checking, the model class
would have fewer fields and behaviors compared to the orig-
inal class.

A statement is said to affect a variable (a field or a variable
local to a method) if it has a read or write dependency on
it. This includes assigning a new value to the variable (write
dependency) or calling a method on the object referenced
by the variable (read dependency), since side effects of the
method may modify it. A statement affects a variable of
mutable type (i.,e., not a primitive type or a String) also if
the variable is used as a parameter in a method call (read



dependency), since the called method may modify it. Note
that, in the context of this paper, saying that a statement
affects a variable does not imply that it will modify it but
means that a statement may possibly modify it. For instance
we can call an instance method that does not modify the
object on which is called. In the algorithms that will be
defined in the next section, such statements are considered
to be affecting the variable that references the object, even
if they do not actually modify it.

The analysis presented in this paper is thus a may analysis,
which safely overapproximates the results and may consider
some statements as relevant, even though at run-time the
statements may not be. In addition because the analysis is
intra-procedural, it considers methods invocations as poten-
tially relevant. This is a sound approach but can be made
more precise by adding the inter-procedural analysis later.

4. ALGORITHMS
In this section we describe two algorithms that are used to
generate model classes. The first one, slicing based, tries
to remove fields and statements that do not affect relevant
fields. However, due to various dependencies, this algorithm
may retain statements that have dependencies on irrelevant
fields, thus forcing the tool to generate models containing ir-
relvant fields as well. The second algorithm tries to overcome
the limitations of the previous one by combining a slicing
approach with value generators: dependencies on irrelevant
fields are replaced with dependencies on local variables, that
can be generated in a variety of ways.

Both approaches generate models that are tied to proper-
ties being checked. If the set of relevant fields changes when
a different property is verified, the model class should be
generated from scratch. However, with our tool generating
model classes form scratch is a quick process. Moreover, for
specific libraries (like Swing/AWT) the models can be gen-
erated based on a class of properties. For instance, we can
generate models based on GUI components’ logical prop-
erties excluding their look-and-feel. These models can be
reusable across a wide array of property checks.

4.1 Slicing Based Approach
Program slicing [6] is a technique that automatically decom-
poses a given program, based on the specification of a slicing
criterion, into parts that affect the slicing criterion and the
parts that do not. The result of the slicing operation is
a program containing the statements that affect the slicing
criterion.

In our context, the slicing criterion is a set of user-defined
fields deemed relevant based on domain-specific information
or properties being checked. If a statement affects (directly
or indirectly) some part of the relevant state then it has to
be kept, otherwise it can be sliced away. In this way we can
create model classes that exhibit a behaviour restricted to
relevant state and similar to that of the original class.

Slicing is performed by analyzing the control flow of a
method and the data dependencies between its statements
[3]. To compute method slices we employ data flow analysis
[3]. In this kind of analysis the control flow graph (CFG) of a
method is used to propagate abstract information along ex-

Figure 1: CFG for write method

if ( (off < 0) || (len < 0) ||
(off > b.length) ||
((off + len) - b.length > 0) ) )
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System.arraycopy(b, off , buf , count , len)D

count += len E

ecution paths. In particular, we use backward flow analysis,
which considers all the edges of the CFG reversed.

The algorithm proceeds as follows. Flows are initialized as
empty sets at the exit points of the method and are prop-
agated backwards along the CFG edges. If a node v of the
CFG affects some part of the relevant state or one of the
variables in its incoming flow, then it is marked as relevant.
Moreover, the variables on which it has read dependencies
are added to its outgoing flow. A fixed point computation is
used to calculate a transitive closure of all information flows.

Based on analysis results, all the statements that are not
marked as relevant can be removed, since they do not affect
the relevant state. In fact the statements that affect the
relevant state are all marked, since they (a) affect directly
some part of the relevant state or (b) affect variables that
are used in other statements affecting the relevant state in
the execution path. Moreover, if after this pruning there
are empty branching statements, they are removed.

The drawback of this approach is that it can include in the
model statements involving irrelevant state. For instance,
suppose a statement, which is marked as relevant, has a data
dependency on an irrelevant field f . Hence f will be added
to the outgoing flow of the statement, with the result of
having all the predecessors in the CFG that affect f marked
as relevant. In order to get a model class that compiles,
these irrelevant but necessary fields have to be added to the
model class.

4.1.1 Example
Consider the example introduced in Section 2 and in par-
ticular the method write, shown in Listing 2. Its CFG is
shown in Figure 1.

The algorithm applied to this method proceeds as follows.
The incoming flow of nodes B and E is empty, since they are
the entry points of the backward flow analysis. Both nodes
are marked as relevant: node E because it affects count,
which is part of the relevant state, node B because it is a
throw statement. Since statement E has a read dependency
on len, its outgoing flow includes it. The incoming flow of



node D consists of the len local variable. Both len and
count are integers, they are passed by value to the method
arraycopy. This means that the method call cannot modify
them. Since the statement does not affect the relevant state
nor any variable in its incoming flow, it is not marked as
relevant. Its outgoing flow is the union of all incoming ones.
Hence it is made up by the sole len variable. Statement C
is a method call on the object instance itself. Since it may
modify it, the statement is marked as relevant. Finally, node
A is marked as relevant because nodes C and B are control
dependent on it.

After the data flow analysis, we can remove the statements
that are not marked as relevant. The modeled method is
then

public synchronized void write(
byte b[], int off , int len) {

if ( (off < 0) || (len < 0) ||
(off > b.length) ||
((off + len) - b.length > 0) ) {

throw new IndexOutOfBoundsException ();
}
ensureCapacity(count + len);
count += len;

}

Notice that this model method has no dependencies on ir-
relevant fields. Conversely, consider the method toString

from Listing 2. In this case the value returned by the method
depends on the irrelevant field buf. In order to have a com-
pilable model class, we have to include this field. Note how-
ever that this buffer may not be updated by other modeled
methods, like write.

4.2 Combined Approach
This approach to model generation mixes the previous one
with value generators, in order to overcome the limitations of
the slicing based approach. The goal is to keep the behaviour
associated with relevant fields while removing dependencies
on irrelevant fields.

The algorithm proceeds as follows. First, each method of
the original class is sliced. The slicing criterion is the same
for the slicing based approach: a statement is kept only if
it affects, directly or indirectly, some part of the relevant
state. When a statement is found relevant, we check if it
contains references to an irrelevant field. In this case, we
replace the reference to the irrelevant field with one to a
local variable. The value assigned to the local variable can
be either a default value or a value generated randomly at
runtime. The type of this variable is the same as the replaced
one. Thus, dependencies on irrelevant fields are removed.

4.2.1 Example
Consider again the example from Section 2. The algorithm
proceeds in the same way as the slicing based approach for
method write, producing the same result. The difference
between the two algorithms lies in how the dependency on
buf in method toString is handled. The slicing based algo-
rithm was forced to introduce an unwanted dependency on
field buf. The compbined approach can either a) insert a
dependency on a local default value (that can be configured
arbitrarily)

public synchronized String toString () {
byte[] defaultBuf = new byte []{0, 0, 0, 0};
return new String(defaultBuf , 0, count);

}

or b) insert a statement that generates random values at
runtime.

public synchronized String toString () {
byte[] rndBuf = Generator.genByteArray ();
return new String(rndBuf , 0, count);

}

The string returned by this method is unrelated to what was
put in the stream. However, the return value is not relevant
to the property being checked for the example in Section 2.

4.3 Limitations
The approaches described in this section have some limita-
tions. Not all the information at our disposal is used. For
instance, the information that can be gathered by points-
to and side-effects analyses is ignored. Moreover the slicing
analysis is limited to a single method at a time, i.e., it is
an instance of intra-procedural analysis. None of the algo-
rithms deals with chains of field accesses. For instance, if
rel is a relevant field, the statement rel.f1.f2 is not con-
sidered relevant.

4.4 Implementation
The algorithms we described are implemented in a tool
called modgen1. The tool is built on top of Soot2. It is com-
posed of several modules, divided in two families: model
generation modules and output modules. The former mod-
ules implement the algorithms described in this paper, shar-
ing a common interface. The output modules allow the user
to choose between several output formats: decompiled Java
source, Java bytecode, and Jimple, an intermediate bytecode
representation. The modules are glued together by a Groovy
configuration infrastructure, that provides ease of configu-
ration through a dedicated Domain Specific Language.

5. CASE STUDY
In this section we analyze the behaviour of the JPF model
checker using models generated by the various algorithms.
The application under test is the one shown in Listing 1.
We verify that the value of variable count (line 18) is al-
ways greater or equal than 0. To perform this check we use
NumericValueListener. We run JPF with the original li-
brary class and then with the models generated by the two
algorithms described in this paper.

Original class. JPF correctly detects that the value taken
by count never goes below zero. This is what we expect,
since it represents the number of elements pushed in the
stream during the execution of the application. The draw-
back of using the original class is that it includes behaviour
irrelevant for the analysis. JPF executes all the statements,
including the ones that affect only the field buf. These state-
ments do not influence the outcome of the analysis. Hence
we would like to skip them.

1https://bitbucket.org/cecca/modgen
2http://www.sable.mcgill.ca/soot/



Slicing based approach model. Running the slicing based
algorithm produces a model whose code includes all the
statements affecting count but not all the ones affecting buf.
For instance the statements inserting elements in the buf ar-
ray are excluded from the model. However the ones that use
the array to build the string representation of the stream are
included.

This leads to a problem when we run JPF with this model.
The execution of the system under test proceeds until
line 20, where there is a call to the toString method. The
model of this method tries to build a string from the buf

array contents. However the array was never updated, so
we get an ArrayIndexOutOfBounds exception, since it is a
zero-length array.

Thus the attempt to verify the property fails with this
model, since JPF stops, printing the exception. Note that if
the system under test did not include lines 20-23 or if side-
effects analysis was used to stub out the toString method,
everything would have worked correctly. This shows the
main flaw in the models generated by this approach: as long
as an application depends only on the fields that are part
of the relevant state, everything works fine. As soon as the
application relies on the value of a field that is not part of
the relevant state, the fact that that field was not updated
in the model is likely to make the verification process fail.

Combined approach model. The model generated by the
combined algorithm has some desirable features: it contains
all the statements affecting the count variable and none of
the ones affecting buf. When a statement depends on buf,
this dependence is replaced with one with a default value.
Take for instance the toString method. Instead of depend-
ing on the buf field, it depends on a byte array filled with
zeroes. This means that the string returned by the method
is meaningless. However for the analysis performed, that in-
volves only the value assigned to count, the string returned
by toString is irrelevant.

Running JPF with this model produces the correct result
for the verification of the property: the count variable never
goes below zero. The advantage of running this model class
instead of the original one was that JPF does not execute
the statements that modify the buf array.

The tool has been applied to some classes of the
Swing framework, namely javax.awt.JTextField,
javax.awt.JToggleButton and javax.awt.JTabbedPane.
These classes were missing support in the jpf-awt exten-
sion. Using our tool we were able to generate models for
these classes using the various approaches described in this
paper. An analysis of the performance and effectiveness of
such models is on our future work list.

6. CONCLUSIONS AND FUTURE WORK
In this paper we proposed two algorithms to automatically
generate model classes for model checkers. The first al-
gorithm generates models using slicing. This yields model
classes that implement the behaviour associated with all the
relevant fields. However the algorithm may introduce depen-
dencies on irrelevant fields that can lead to problems during

the actual usage of the model class.

The second algorithm is a combination of slicing and value
generation. The generated model classes include the be-
haviour associated with relevant fields. Dependencies on ir-
relevant fields are replaced with dependencies on local fields
with a default value or values generated at random at run-
time.

One direction of future work is to combine slicing with other
kinds of analysis, like side-effect analysis. This may pro-
duce more accurate models since more information about
the code is used. For example, methods that have no side-
effects on relevant fields can be safely modeled with empty
stubs. Another improvement can come from the usage of
inter-procedural analysis. This kind of analysis will make
it possible to distinguish between method calls that really
affect the relevant fields.

Moreover, the tool can be adapted to generate model classes
“on-demand”: instead of generating the models statically be-
fore the verification process, the model generator could run
as a JPF extension, intercepting accesses to missing model
classes and generating them on the fly.

Furthermore, more case studies are needed to evaluate the
performance of the algorithms. Finally, we plan to use the
algorithms to extend existing model classes used in JPF ex-
tensions like jpf-awt.
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