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Abstract—Distributed prognostics architecture design is an 

enabling step for efficient implementation of health 

management systems. A major challenge encountered in 

such design is formulation of optimal distributed prognostics 

algorithms. In this paper, we present a distributed GPR 

based prognostics algorithm whose target platform is a 

wireless sensor network. In addition to challenges 

encountered in a distributed implementation, a wireless 

network poses constraints on communication patterns, 

thereby making the problem more challenging. The 

prognostics application that was used to demonstrate our 

new algorithms is battery prognostics. In order to present 

trade-offs within different prognostic approaches, we present 

comparison with the distributed implementation of a particle 

filter based prognostics for the same battery data.  
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1. INTRODUCTION 

Computational complexity has always been one of the 

stumbling blocks for sophisticated prognostic algorithms 

that have the ability to manage the uncertainties in system 

health management. Distributed prognostics running on a 

network of inexpensive embedded devices can serve as an 

enabling technology for implementing efficient and viable 

health management systems that involve complex interaction 

of hybrid elements and subsystems. In such a scenario, 

multiple sensors monitor various components, subsystems 

and hierarchically the entire system. The measurements 

taken from these sensors are then processed by suitable 

diagnostic algorithms to determine the current health of the 

system, while the prognostic algorithms determine the future 

health conditions. A centralized architecture for such a 

health management system has several disadvantages such 

as: (a) increased amounts of sensor data collected for more 

refined analysis (e.g., high frequency vibration data from 

rotating machinery) that overwhelms the computing power 

of a single processing unit (b) increasingly more complex 

algorithms – intensive in terms of memory as well as 

computation speed – which hamper performance and (c) 

vulnerability to loss of complete functionality in case of a 

crash of the central processor/monitor. Clearly, for such 

increasingly multi-tasking and complex health management 

systems, efficient distributed architectures need to be 

designed where multiple smart sensor devices monitor 

different parts of a system and collaborate when 

computation intensive algorithms or large amounts of data 

are involved that cannot be handled efficiently by a single 

processor/node. The advances in smart sensor technology 

that combine the power of embedded computing devices 

with sensors and wireless transmission technology have 

made the design and implementation of such systems 

feasible and cost-efficient. 

 

An important design problem of such systems is formulation 

of efficient and robust distributed health management 

algorithms that can take advantage of the distributed 

architecture. Gaussian process regression (GPR) based 

prognostics algorithms form an important class of health 

management solutions, since it is possible to model any kind 

of system behavior using a suitable mixture of Gaussian 

processes in a Bayesian inference framework. They offer the 

flexibility to incorporate prior knowledge about the 

underlying processes in a convenient and intuitive manner. 

However, they are computation and memory intensive 

algorithms and hence may benefit by distributed 

implementations in order to meet resource constraints for 

onboard deployment on aerospace systems with large 

amounts of sensor data.  

 

In this paper, we present a distributed prognostics algorithm 

based on GPR. The target platform in our design is a 

wireless smart sensor network that has, of late, gained 

immense importance for deployment in various fields. The 

results are evaluated on a battery prognostics application. 

Besides presenting details of the distributed GPR based 

prognostics system, we present a comparison of the 

performance and robustness results with a particle filter 

based implementation of the prognostics.  

2. RELATED WORK  

A significant body of work dealing with distributed 

implementation of prognostic algorithms does not exist. This 

is because the field of prognostics is still maturing. 

However, a few efforts have been made recently. For 

example, in [1] the authors briefly outline a distributed 
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prognostics system architecture where tasks are distributed 

at a very high level, such as identifying the different system 

modules and where they fit into a given system using 

prognostics. In [2] a distributed network of smart sensor 

elements integrated using a knowledge-driven environment 

is presented which will perform health management at 

various levels of hierarchy including sensor, process, and 

system levels. This network will be used as an element of 

the prototype intelligent rocket test facility being 

implemented at NASA Stennis Space Center. In [3] a 

hardware multi-cellular sensing and communication network 

(a smart ―skin‖) is presented where the external structure 

with embedded sensors would detect and react to impacts 

caused by projectiles.   

 

Distributed prognostics architecture have been explored 

earlier as shown in ([5], [6]), where the prognostics 

algorithms were based on particle filters. GPR based 

prognostics algorithms form an important class of regression 

techniques that are used in many applications and has been 

applied to the prognostics problem as well [4]. Efficient 

implementations of GPR have been explored for other 

applications but have not been investigated in the context of 

prognostics and health management ([7], [8]). Most of these 

methods suggest clustering of datasets into independent 

groups and applying GPR on them individually while 

averaging the results from the separate clusters to obtain the 

final result. However, these methods are not very suitable 

for applications where the datasets involve time series 

commonly encountered in prognostics applications. In this 

paper, we propose a new efficient distributed GPR algorithm 

without compromising on performance.  

3. DISTRIBUTED PROGNOSTICS ARCHITECTURE  

In this section we provide a brief overview of our distributed 

health management architecture. Further description of this 

architecture can be obtained in ([5], [9]). The architecture is 

comprised of a network of smart sensor devices that monitor 

the health of various subsystems or modules. The health 

management system includes various tasks of which the 

most important are sensing, diagnostics and prognostics 

operations. The sensors collect component signals and 

monitor them using low-weight diagnostics algorithms and 

collaborate when heavy weight computations – such as 

complex prognostics – are required. Prognostics operations 

are triggered based on user defined thresholds. An example 

of such a distributed prognostics system is shown in Figure 

1. 

 

 
Figure 1. Overview of distributed prognostics system 

architecture. (Adapted from figure 1 in [5]). 

 

The sensor devices consist of a sensor or a set of sensors and 

a communication device, i.e., a wireless transreceiver or 

wired communication capabilities besides an embedded 

processing element. We call these multifunctional devices 

Computing Elements (CEs). Though in many instances 

wired sensor network may be preferable, in this paper we 

focus on wirelessly connected devices which provide 

enhanced flexibility. There are two main operating modes 

for the CE: diagnostics and prognostics ([5]). The CEs are 

arranged in clusters and monitor and hierarchically manage 

the health of the whole system. The main mode of operation 

for a CE is sensing and diagnostics where it monitors a 

given sub-system or component through a low weight 

diagnostics algorithm. During this monitoring, if a CE 

detects a critical condition, it raises a flag to start the 

prognostics mode. In this mode the CEs form a cluster that 

collaboratively performs the prognostics task. The 

prognostics task is expected to be computationally 

expensive involving complex algorithms as well as increased 

data. The increase in data is due to increase in the frequency 

of component signal sampling for more accurate prognostic 

estimates. In many cases, if the CE does not have enough 

computational resource to perform the overheads of the 

distributed system management, the base station performs 

these tasks which include as scheduling, synchronization, 

load distribution and so on.  

 

In the prognostics mode it is not necessary that all CEs 

within a cluster participate in the prognostics task. This is 

because the diagnostics operations continue uninterrupted in 

the prognostics mode and some of the CEs  may lack the 

necessary computing power to support the additional new 

task. To ensure that a participating CE can support such 

multi-tasking efficiently the prognostics algorithms need to 

be distributed efficiently. 

 

In many cases the sensor capabilities of the CEs may not be 

utilized at all, i.e., they could act as monitors for the rest of 
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the system - schedule tasks, detect failures and initiate 

recovery, provide access to resources such as an external 

database and so on. These CEs are specially designated as 

base stations. The base station is also, typically, connected 

to a more power computing resource (to aid in collection 

and storage of system data) which in our case was a PC.  

 

Figure 2 shows, in detail, the typical execution flow in our 

health management architecture. As mentioned earlier, each 

CE monitors different components or subsystems such as 

battery health, actuator faults, health of electronic 

components and so on. It can also be responsible for 

diagnostic monitoring of a sub-system comprising multiple 

components. For further details on the architecture, the 

reader is referred to [9].  

 
Figure 2. Flow diagram for diagnostics and prognostics 

operations in the distributed architecture. (Adapted 

from figure 2 in [9]). 

 

4. GPR BASED BATTERY PROGNOSTICS 

In this section, we first provide an overview of the 

prognostics application which in our case is a battery 

prognostics application. Following that, details of the GPR 

based regression and prediction technique is presented. 

 

Overview of Battery Prognostics Application 

The application domain towards which this work is geared is 

battery health monitoring. Batteries form a core component 

of the power supply system for many machines, and their 

degradation often leads to reduced performance, operational 

impairment and even catastrophic failure. Thus, robust RUL 

estimation algorithms for batteries are an important research 

domain in prognostics. The battery aging data used in the 

experiments were collected from second generation 18650-

size lithium-ion cells (i.e., Gen 2 cells) that were cycle-life 

tested at the Idaho National Laboratory under the Advanced 

Technology Development (ATD) Program. The battery 

model used in the particle filter based prognostic algorithm 

is shown in figure 3. The parameters of interest are the 

double layer capacitance CDL, the charge transfer resistance 

RCT, the Warburg impedance RW and the electrolyte 

resistance RE, whose values change with various aging and 

fault processes. It was observed that a high degree of linear 

correlation existed between the C/1 capacity (capacity at 

nominal rated current of 1A) and the internal impedance 

parameter RE+RCT. For further details, the reader is referred 

to [11]. 

 

Figure 3. Lumped Parameter Model of a Battery. 

 

Overview of GPR 

GPR is a probabilistic technique for nonlinear regression 

that computes posterior degradation estimates by 

constraining the prior distribution to fit the available training 

data [10]. It provides variance around its mean predictions 

to describe associated uncertainty in the predictions.  

 

A Gaussian Process (GP) is defined as a collection of 

random variables any finite number of which has a joint 

Gaussian distribution. A GP f(x) is completely specified by 

its mean function m(x) and co-variance function k(x, x‘) 

defined as: 
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The index set X  is the set of possible inputs, which 

need not necessarily be a time vector. However, in the case 

of prognostics application, this set of points is a time vector.  

 

Given prior information about the GP and a set of training 

points },...,1|),{( nifx ii  , the posterior distribution over 

functions is derived by imposing a restriction on prior joint 

distribution. This condition specifies that only those 

functions that agree with the observed data points be 

considered while the rest are eliminated. These functions can 

be assumed to be noisy, as in real world situations we have 

access to only noisy observations rather than exact function 

values i.e.  )(xfyi , where   is additive IID 

N(0,
2

n ). Once a posterior distribution is obtained it can be 

used to assess predictive values for the test data points. The 

following equations describe the predictive distribution for 

GPR [13]. 
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A crucial ingredient in a Gaussian process predictor is the 

covariance function that encodes the assumptions about the 

functions to be learnt by defining the relationship between 

data points. The covariance structure also incorporates prior 

beliefs of the underlying system noise. GPR requires a prior 

knowledge about the form of covariance function, which 

must be derived from the context if possible. Furthermore, 

covariance functions consist of various hyper-parameters 

that define their properties. Setting right values of such 

hyper-parameters is yet another challenge in learning the 

desired functions. Although the choice of covariance 

function must be specified by the user, corresponding hyper-

parameters can be learned from the training data using a 

gradient based optimizer such as maximizing the marginal 

likelihood of the observed data with respect to hyper-

parameters [10].     

 
GPR was used to regress the evolution of internal 

parameters of the battery with time. The relationship 

between these parameters and the battery capacity was again 

learned from experimental data. As stated earlier, battery 

capacity was linearly related to the internal parameter 

values, and when regressed through GPR, almost constant 

confidence bounds were obtained for this relationship. We 

regressed the internal parameters with time and transferred 

the predicted values to the capacity domain to express 

capacity decay with time. 

 

5. DISTRIBUTED GPR 

 
One of the most computationally expensive steps in a GPR 

algorithm is the Cholesky decomposition. Since Cholesky 

decomposition is a very popular matrix factorization 

method, various efficient distributed methods have been 

developed. However, a major drawback of most of these 

distributed methods is the use of extensive inter-processor 

communication. As shown in details in [12], communication 

overhead can increase very quickly for most distributed 

Cholesky decomposition schemes. Though a few new 

schemes for more efficient communication patterns have 

been explored, they are not suitable for wireless sensor 

network. In our case, since the target platform is a wireless 

network, use of such distributed schemes is not possible and 

hence other forms of distributed GPR have to be 

investigated. Note that, in a wireless sensor network 

communication overhead contributes to overall increase in 

power consumption as well and hence it is even more 

important to have optimized communication load. 

 

An interesting approach to distributed GPR implementation 

is the clustering of the dataset into multiple group and 

application of GPR to each of them individually [7]. Thus, 

once this clustering is performed, the data is sent to the 

different CEs which then apply GPR locally. The most 

common approach of clustering in such cases is spatial 

clustering [8]. However, such an approach would not work 

for prognostics application. In prognostics, prediction of 

remaining useful life will have to be made from regression 

of training data, and hence spatial clustering would not be 

able to encompass the temporal behavior of the data and 

crucial information may be lost. Such loss of information 

would lead to increase in uncertainty bounds of the 

prediction and in general degradation in performance.  

 

Thus, in our new proposed method, we present a different 

clustering method. Instead of clustering the data using 

spatial proximity, we sample the dataset uniformly to 

generate multiple clusters containing equal data points. GPR 

would then be applied to these clusters individually. At the 

end of the individual GPR routines, instead of weighted 

averaging as proposed in [7], we perform a simple 

averaging. Since the different clusters were generated using 

uniform sampling, all of the clusters would statistically have 

equal weights and hence all the prediction results have equal 

importance. However, an important consideration in such a 

clustering scheme to work is assuring that no information is 

lost while splitting up the dataset. This can be achieved by 

ensuring the Nyquist sampling rate is applied. Thus, if the 

highest frequency of the target application is fH and the 

dataset is clustered into m groups, the dataset on which GPR 

is being applied should have been sampled at a rate of fS, 

where fS is as follows 

 

fS≥2*m*fH      (2) 

 

Once, the clustering is complete, the relevant sensor data is 

transmitted to the CEs. Each CE then applies GPR to the 

data individually. Thus each CE may have its own 

covariance matrix and set of hyper-parameters distinct from 

the rest.  

 

6. EXPERIMENTS AND RESULTS 

 
The distributed GPR based algorithm was evaluated using 

MATLAB based simulation. In addition, distributed 

implementation of particle filter based battery prognostics is 

also presented in order to compare the two approaches. An 

overview of the particle filter based implementation is given 

below. 

 

Overview of Distributed Particle Filter based Prognostics 

Particle filters (PFs) are based on Bayesian learning 

networks and essentially implement a recursive Bayesian 

filter using Monte Carlo (MC) simulations. The system is 
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represented as a state which at any given instant is estimated 

in terms of a finite number of particles (points)  representing 

sampled values from the unknown state space, and a set of 

associated weights denoting discrete probability masses. The 

evolution of the state over time is expressed by generation 

and recursive update of the particles from a nonlinear 

process model that describes the progression in time of the 

system under analysis, a measurement model, a set of 

available measurements and an a priori estimate of the state 

probability distributed function (pdf). Figure 4 shows the 

algorithmic flow of a PF system.  

 

 
Figure 4. The flow of a particle filter system. 

 

As shown in figure 4, an important step in a particle filter 

step is resampling. Without it the variance of the particle 

weights quickly increases, thereby causing degradation in 

inference because the effective number of particles used for 

the state representation decreases. Unfortunately, all the 

steps in a PF except resampling can be easily distributed 

over independently executing CEs. The resampling step 

essentially consists of combining all the particles after a 

state update and redrawing particles from the same 

probability density based on some function of the particle 

weights such that the weights of the new particles are 

approximately equal. This could lead to overheads in 

communication when implemented serially, since all the 

particle values – which are typically large (minimum of 100 

for most applications) – from different CEs performing the 

other steps concurrently have to be collected and 

redistributed again. 
 
In [6], a distributed implementation of the resampling 

scheme – called parameterized resampling – was proposed 

which lead to an efficient distributed PF based prognostics 

algorithm. In this approach, the communication load was 

reduced by performing resampling locally at each CE for 

most iterations and resampling globally (across all CEs) 

after every few iterations. In order to ensure the statistical 

invariance of the particle population after resampling, the 

following conditions were imposed: 

(1) Each CE operates on a statistically significant number 

of particles, i.e. Nn >> 1, where Nn denotes the number 

of particles for CEn, (ΣNn = N). Without loss of 

generality for all CEs Nn = N/M, where M is the 

number of CEs. 

(2) Any given CEn has a particle population representing 

the full state pdf. To ensure this, we perform a 

parametric approximation of the state pdf at the global 

resampling step. A mixture of Gaussians is fitted to the 

particle population of each CE using a least squares 

method. 

For further details please refer to [6]. 

 
Results 

As mentioned in section 4, the application data was a battery 

aging data collected from INL. The INL battery data 

contained aging information – battery capacity values – from 

week 0 till week 68. The initial few points of the dataset 

were used for learning purposes after which battery capacity 

prediction was performed. Figure 5, shows the prediction for 

RE+RCT with time at three different prediction points (32, 48 

and 52 weeks) using the distributed implementation of GPR 

based prognostics on 2 CEs. The plot also includes a 95% 

confidence bound. The mean values from this RE+RCT 

evolution curve was used to predict the battery capacity.  

From figure 5 it may be observed that the predictions at 

week 32 failed to follow the actual trend. Thus, when this 

trend was used for the capacity prediction, it led to incorrect 

EOL predictions i.e., the EOL was predicted to be far later 

than the actual value. As more data was used for learning, 

the predictions became better as can be seen with the 

predictions at weeks 48 and 52. The corresponding EOL pdf 

is shown in figure 6.  The actual failure as shown by the data 

was at week 64.4563 while the mean value of the predicted 

EOL using GPR was at week 66.5.  

 

Figure 5. Distributed GPR based RE+ RCT prediction 

with 95% confidence bounds at weeks 32, 48 and 52. 
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Figure 6. Distributed GPR based EOL predictions for 

battery capacity at week 52. 

 
 

 
 

Figure 7. Distributed particle filter based EOL 

predictions for battery capacity at week 52. 

 

 

The tracking and prediction performance for the distributed 

particle filter based battery prognostics is shown in figure 7. 

The squares represent the real data. The prediction was 

made in week 52 and the dashed line represents the mean PF 

prediction (week 62.5) with the cyan patch showing the 

uncertainty bounds.  

 

The execution time measurements were performed on the 

distributed GPR implementations using MATLAB 

simulations as well. The distributed implementation 

execution time using 2PEs was observed to be 1.313 secs 

while for the execution time using a single PE was observed 

to be 1.7805 secs.  

 

 

 

7. CONCLUSIONS 

 
In this paper, a new distributed GPR based prognostics 

algorithm targeted towards wireless sensor networks has 

been presented. A proof-of-concept demonstration of this 

new algorithm has also been shown in details. The results, as 

demonstrated in figures 5 and 6, show that although the PF 

results are marginally better in terms of narrower uncertainty 

bounds and predicting the EOL earlier than the actual 

failure, the GPR performance is satisfactory.   

 

Future work involves implementation of the proposed new 

algorithm on sensors in order to evaluate the algorithms 

more thoroughly as well as explore other challenges posed 

by such detailed implementations. Exploring other methods 

of distributing the tasks as well different network 

architectures for more optimized performance is an 

important direction of future research as well. 
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