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Abstract. Artificial Neural Networks (ANNs) are employed in many areas
of industry such as pattern recognition, robotics, controls, medicine, and de-
fence. Their learning and generalization capabilities make them highly desir-
able solutions for complex problems. However, they are commonly perceived
as black boxes since their behavior is typically scattered around its elements
with little meaning to an observer. The primary concern in safety critical
systems development and assurance is the identification and management of
hazards. The application of neural networks in systems where their failure
can result in loss of life or property must be backed up with techniques to
minimize these undesirable effects. Furthermore, to meet the requirements of
many statutory bodies such as FAA, such a system must be certified. There
is a growing concern in validation of such learning paradigms as continual
changes induce uncertainty that limits the applicability of conventional vali-
dation techniques to assure a reliable system performance. In this paper, we
survey the application of neural networks in high assurance systems that have
emerged in various fields, which include flight control, chemical engineering,
power plants, automotive control, medical systems, and other systems that
require autonomy. More importantly, we provide an overview of assurance
issues and challenges with the neural network model based control scheme.
Methods and approaches that have been proposed to validate the perfor-
mance of the neural networks are outlined and discussed after a comparative
examination.

1 Introduction

Since the 1980s, artificial neural networks have evolved from biologically
inspired layered networks connected by neurons into various categories of
computational models with different algorithms and a large variety of ar-
chitectural designs. They have been widely adopted in many applications as
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function approximators and classifiers for over 30 years. Typical applications
include function approximation, pattern recognition, image recognition, AI
applications, and control. Over the past decades, applications of neural net-
works have emerged in many industrial fields, performing challenging tasks
in medical experiments, flight control, automotive industry, robotics, power
plants, etc. In many of these applications, neural networks have outperformed
traditional computational approaches, with their compelling adaptive capa-
bilities in learning and reacting to changing environments to accommodate
novel situations, noise, and even failures. For systems that often operate in
an evolving environment and thus requires a high level of self-adaptation, the
employment of neural networks for online adaptation to accommodate sys-
tem faults and recuperate against environmental changes has revolutionized
the operation of real-time automation and control applications. However, the
majority of neural networks are commonly treated as black boxes and their
performance heavily relies on empirical validation. Since many of these indus-
trial applications are in high assurance areas, the lack of in-depth information
about the neural network learning coupled with its inherent nonlinearity has
posed a great challenge for high assurance applications.

High assurance systems are those that require a warranted high level of
robustness in system performance and a guaranteed set of critical properties
including reliability, availability, safety, security, as well as other important
qualitative attributes. Convincing evidence of adequately meeting the high
assurance requirements must be provided when these systems are used in
environments where failure can cause substantial financial loss or even loss of
life. Hence, without a doubt, high assurance systems are of extreme impor-
tance in high profile missions, safety critical operations, and military appli-
cations. Examples include avionics, space exploration missions, power plant
control, weapon control, life support in medical applications, etc.

Research communities, avionics in particular, have addressed the need for
high assurance systems as well as the challenging issues they entail in terms of
system verification, validation, and certification. The United States Federal
Aviation Administration (FAA) has issued a series of certification processes
for quality assurance of software used in aircraft (most notably the DO-178B
standard (8)), which heavily rely on software verification and validation meth-
ods and theories. Verification and validation (V&V) is considered a crucial
path towards certification in order to obtain proven reliability, availability,
and safety for high assurance systems. For traditional software systems that
are designed, developed, and deployed according to the common software life-
cycle and well certified development models, empirical testing is considered
an imperative and quite effective means to verify and validate a software.
These tests take various forms such as coverage testing, requirements test-
ing, regression testing, stress testing, etc. However, testing of safety-related
software has been found to be a main driver for software costs (e.g., (10)).

The adoption of neural networks in an increasing number of high assurance
systems has raised growing concern regarding their performance assurance.
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Most traditional V&V methods are rendered inapplicable and/or ineffective
for neural networks. This is simply because, unlike any traditional software,
the structure of these novel computational models can evolve over time; and
as a consequence, their performance, even validated, would remain subject to
unforeseen changes, potentially causing instability and uncertainty in system
operations. One of the most critical application areas for neural networks is
control. The wide employment of neural networks in control started in 1990’s
with the advances of adaptive control theory (e.g., (3; 50)) and the rise of dy-
namic learning models. Many of these control applications are high assurance
systems as they are designed/required to tolerate system failures and respond
to these failures promptly in order to continue operation and preserve system
stability and integrity. For example, as one of the most promising real-time
automation and control applications, an adaptive flight control system must
be designed to achieve adaptability through judicious online learning, aiding
the adaptive controller to recover from operational damage (sensor/actuator
failure, changed aircraft dynamics due to broken aileron or stabilator, etc.).
Some of these conditions are severe enough to be considered “failure” mode
conditions that significantly affect system performance. The National Aero-
nautics and Space Administration (NASA) conducted a series of experiments
evaluating adaptive computational paradigms (neural networks, AI planners)
for providing fault tolerance capabilities in flight control systems following
sensor and/or actuator failures1. Experimental success suggests significant
potential for further development and deployment of adaptive controllers
(24; 5).

In this paper, we survey the application of neural networks in high as-
surance systems that have emerged in various fields, with a strong focus on
control applications which include flight control, chemical engineering, power
plants, automobile control, medical systems, and other systems that require
autonomy. Section 2 provides a comprehensive list of neural network applica-
tions in these domains. Section 3 presents an overview of the assurance issues
and challenges with the neural network model based control scheme. Methods
and approaches that have been proposed to validate the performance of the
neural networks are also outlined and discussed after a comparative examina-
tion. Section 4 concludes the paper with a summary and some observations
of how future research could improve upon the existing body of applications
and studies of neural networks in high assurance systems.

2 Application Domains

In the following, we will have a closer look at several important industrial
areas, where neural networks have been applied. This selection is certainly
1 For the NASA IFCS (Intelligent Flight Control System) project see
http://www.nasa.gov/centers/dryden/research/IFCS/index.html and sev-
eral chapters in this book.

http://www.nasa.gov/centers/dryden/research/IFCS/index.html
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not complete (for other areas, e.g., business see (29)) and it puts some focus
on the application of neural networks for control. Other literature surveys
include (28; 30), or (9).

2.1 Aircraft Control

One of the most prominent applications of neural networks is its use in
damage-adaptive aircraft control. NASA’s IFCS project (as discussed ear-
lier) has been able to demonstrate that a manned aircraft can be successfully
controlled using a neural network in the presence of (simulated) damage to
the aircraft that change its aerodynamic behavior. Details will be presented
in several chapters of this book. There are many different approaches to
network-based adaptive control for aircraft, e.g., (39) for autonomous heli-
copters or (7). Different control architectures as well as different kinds of
neural networks (e.g., Multilayer Perceptrons (MLP), Sigma Pi, Adaline net-
works, Radial Basis Functions (RBF), or Dynamic Cell Structures (DCS))
have been used for this task. In some approaches, the neural network will
actually try to learn the dynamics model of the damaged aircraft; other ap-
proaches rely on control-augmentation, i.e., the neural network is trained to
produce an additional control signal to counteract the effects of the damage.
Very tight timing requirements set this application of neural networks aside
from other applications: the neural network training algorithm must be ca-
pable to adjust within a few seconds. Otherwise, the damaged aircraft can
get into an unrecoverable unstable state and will crash.

In this book, individual chapters will discuss important aspects of these
kind of applications ranging from a more controls theoretic perspective to
results and lessons learnt of the practical project with flight tests. Because of
the high safety-criticality of aircraft control systems (in particular for manned
aircraft), V&V is of particular importance and will be discussed in this book.

2.2 Automotive

With the advent of digital engine and drive-train control, neural networks
have been used in this area, for example, to adapt toward different fuel quality
or different driving styles. (20) describes an early drive-train control, which
uses a neural network. More recently, advanced technology is being used to
reduce fuel consumption, e.g., with a neural network based controller for the
Toyota Prius (43), or to improve environmental impact by, e.g., network-
based recognition of misfiring in diesel engines (12). Most applications in
this area (for an overview see, e.g., (17)) are somewhat safety-critical and
are supposed to work reliably in a wide range of situations. Factory recalls,
due to software problems can be extremely costly, so a substantial effort is
made toward verification and validation. In our book, we have two chapters
devoted to neural networks in automotive applications. Other applications



Application of Neural Networks in High Assurance Systems: A Survey 5

are concerned with the effective production of cars, e.g., by using neural
networks to optimize the welding process (37).

2.3 Power Systems

The electric power industry is central for each country, as it has to reliably
provide electric power to the customers, facing vastly increasing demands,
aging infrastructure, and unforeseen natural events (e.g., lightning strikes,
down power lines due to icing). Neural networks have been applied to various
problems in design and development of power systems ever since the 1990’s.
Existing bibliographical studies of neural network applications to power
systems outline five main application areas for neural networks in system
operation and control: load forecasting, fault diagnosis, economic dispatch,
security assessment, and transient stability. As a result of this literature re-
view, a classification of publications on neural network applications to power
systems between 1992 and 2004 is presented by Bansal (4). This article further
discusses trends of adoption of this technology. Another classification of publi-
cations can be found in (18) for neural network applications to power systems
(covering 2000 to 2005). Both analyses clearly show the growing interest as
well as the success in applying neural networks to solve various problems in
this domain. It is also noted that although the adoption has been popular,
the variety of used neural network architecture remains limited: multi-layer
perceptrons, Hopfield networks, and Kohonen neural networks are the three
major models that have been employed in power systems.

Neural network applications in power systems have been well studied with
a strong focus to improve its prediction accuracy. The economic value of
employing neural networks for prediction, load forecasting, and economic
dispatching in particular, is reinforced by their successful applications in areas
like short-term electric demand forecasting or combustion optimization with
reduced NOx emissions. Two major conferences were held in late 90’s, the
1998 American Power Conference (1) and the 1999 International Business
Forecasting Conference, featuring the findings and practices of neural network
applications in these areas. An exemplary application of neural networks to
nuclear power systems with an assessment of economic benefits is given by
Lisboa (31). Neural networks are applied together with an expert system
in a staged approach to retrieve useful information from a gigantic amount
of data generated from inspections of the reactor core control assemblies
(RCCAs). Approximately 800MBytes of data is produced per core inspection.
By extracting out the 5% of data that contains the meaningful information
using a neural network based approach, the inspection time is greatly reduced
and as a result, the Duke Power Company could save a substantial cost
estimated at $28,000 per inspection and projected to save “$361k in the next
5 years”2.
2 http://www.nuc.berkeley.edu/thyd/ne161/rtse/dukerods.html

http://www.nuc.berkeley.edu/thyd/ne161/rtse/dukerods.html
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In addition to forecasting, system control and operations also benefit from
neural network applications. In power generation, neural networks can be
used to estimate certain process variables to model a dynamic and often non-
linear process (e.g., pulverized fuel flow to the boiler) that otherwise cannot
be measured or computed directly. Unlike linear modeling techniques (e.g.,
Kalman Filters), neural networks can approximate linear functions as well
as any nonlinear functions and provide an accuracy at any required level
with high cost efficiency. For this reason, more and more neural networks are
adopted by power stations in dynamic environments for detecting and diag-
nosing faults and gaining transient stability. Neural networks are also used
in the control and monitoring of steam turbines, as their proper operation
strongly influences the overall power plant efficiency. Siemens, for example,
is using neural networks for the estimation of the blade temperature (49; 36).

2.4 Medical Systems

It is obvious that many medical software applications are highly safety-
critical; failures in the software can cost human lives. A prominent ex-
ample is the Therac-25, a radiation therapy device, where faulty software
caused several (fatal) accidents (38). The noisy and statistical nature of most
medical data and measurements seem to be ideally suited for the applica-
tion of neural networks. The earliest and most widely used neural network
based system in health care is Papnet, which has been developed by Neuro-
medical Systems, Inc. in the 90’s. There is a number of studies that this soft-
ware improves detection rates for cervical cancer from Papnicolau stained
smear slides. However, the cost-effectiveness of this application was never
satisfactory (31).

An example of a hybrid decision support system in health care is GLADYS
(GLAsgow system for the diagnosis of DYSpepsia)3, developed by the Glas-
gow Southern General Hospital with support from the University of Glas-
gow’s Department of Public Health. GLADYS uses a Bayesian model for the
diagnosis of several conditions related to dyspepsia. It uses statistical rep-
resentations to encode knowledge of clinical staff in a structural form that
can be updated numerically and is used to process uncertain knowledge in a
consistent manner.

Questar4 (54) is a sleep analysis package, developed initially by the En-
gineering Department at Oxford University and marketed by Oxford Instru-
ments. It was awarded a British Computer Society medal in 1996 and gained
FDA approval in 1997. The purpose of this software is to automate sleep
staging into awake, rapid eye movement (REM) or light sleep, and deep
sleep as accurately as an expert user, but on a continuous scale and with a
much faster sampling rate of 1Hz. It does this by combining three electrical
3 http://students/dcs.gla.ac.uk/students/lamkc/CPI.html
4 http://www.eng.ox.ac.uk/World/Research/Summary/B-Neural.html

 http://students/dcs.gla.ac.uk/students/lamkc/CPI.html
http://www.eng.ox.ac.uk/World/Research/Summary/B-Neural.html
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measurements, electro-encephalogram (EEG), electro-oculogram (EOG) and
electro-myogram (EMG), which measure mental activity, eye movement, and
muscular activity, respectively.

Another health care project developed at Oxford University is a software
monitor for intensive care patients. are very high. As a result, a The demand
for intensive care beds is very variable and costs for intensive care are ex-
tremely high. Thus, the decision to whether or not to admit a critical patient
into intensive care can have substantial impact. Such a decision can be sup-
ported with the aid of a statistical advisory system, e.g., the commonly used
Apache II (Acute Physiology and Chronic Health Evaluation II, Glasgow
University) (25),

In the same domain of management and intensive care for critically ill
patients, several software packages using rigorous statistical methods and
neural networks for knowledge discovery are used in European hospitals. A
Bayesian model of clinical data has been used to test the hypothesis that
Cerebral Partial Pressure does indicate the presence of sub-clinical damage
by trending during the first 24 hours following admission (31). This indicates
that careful monitoring of this highly invasive measurement can improve the
management of patients, who “talk and die” (35).

The original Apache II monitor processes five standard physiological mea-
surements (EEG, systolic blood pressure and oxygen saturation, breathing
rate, and temperature) and produces alarms based on novelty of the data.
Thus, it is an example of a data based system where the available signals
define a nominal state, which is not of interest. The challenge is to accu-
rately and robustly determine deviations in this multivariate data stream.
The problem becomes harder due to the low density in the input space and
the necessity to accommodate different states of the patient during recovery
and robustness against artifacts (e.g., sensor displacement).

A web-based advisory system using neural networks has been developed
for the automated interpretation of myocardial perfusion images5. Another
system, also developed at Lund University, is used for acute myocardial in-
farction (AMI) detection. It was tested on a data base of approximately
1,000 electro cardiograms (ECGs) from patients with AMI and approximately
10,000 control ECGs. In this application, the neural network system was
found to be more sensitive and has a higher discrimination accuracy than
benchmark ECG software, or expert cardiologists.

2.5 Other Applications

The Sharp LogiCook (54) was the first microwave oven that used neural
network technology. It was originally developed at Oxford University6. Based
5 http://www.weaidu.com/software/index.html
6 http://www.eng.ox.ac.uk/World/Research/Summary/B-Neural.html or
http://www.scit.wlv.ac.uk/~cm1822/acnl7.htm

http://www.weaidu.com/software/index.html
http://www.eng.ox.ac.uk/World/Research/Summary/B-Neural.html
http://www.scit.wlv.ac.uk/~cm1822/acnl7.htm
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upon user input (food or liquids), the optimum cooking time was obtained
from an analysis of the proportional, integral and derivative humidity profiles
using a neural network. The software is also capable of dealing with different-
sized portions and can detect dangerous conditions.

An industrial area where neural network control has been successfully ap-
plied for a long time is a steel rolling mill. Here, accurate control of tem-
perature of the strip and the rolling force are critical for the quality of the
product. Based upon a prototype, developed for Hoesch (Dortmund, Ger-
many), Siemens has deployed this technology world wide since then. (45)
claims efficiency gains of 30% due to better accuracy in rolling force mod-
eling with prediction improvements leading to savings of $200K in material
costs annually. In this application, the neural network’s capability to handle
non-linear data has been beneficial.

In the Airline business operation area, BehavHeuristics, Inc. (started in
1986 and later part of Airline Automation Inc.) uses reinforcement learning
to predict no-shows in air-flights, thus maximizing the passenger load through
controlled overbooking. Their Airline Marketing Tactician (AMT) (22) was
an early success for neural networks.

The Boeing Company’s NIRS (Neural Information Retrieval System) (48;
23), is probably still the largest scale manufacturing application of neural
networks. It uses a binary Adaptive Resonance Theory network (ART1),
to cluster binary templates of aircraft parts. The systems arranges them
in a complex hierarchical network covering over 100,000 items. These are
then grouped into thousands of self-organized clusters. Substantial savings in
manufacturing costs (several $M per year) have been reported.

3 Toward V&V of NNs in High Assurance Systems

3.1 V&V of Software Systems

Any subsystem and component of a high assurance application must undergo
a rigorous process in order to make sure that all requirements regarding safety,
performance, and reliability are met. This refers to any hardware component
as well as to software. Since most neural network based applications are
ultimately implemented as a software program, we will focus on software
components only.

In any software development lifecycle, there are, in addition to activities for
the design and implementation of the software, activities to ensure that the
final software is working as expected. Traditionally, we distinguish between
verification and validation: Verification is often informally described as “Are
you building the right thing?”, whereas validation can be paraphrased as
“Are you building the thing right?”. It is also obvious that different V&V
activities are performed at different stages of the software lifecycle. Figure 1
shows a simplified version of the software development stages and related
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Fig. 1 Verification and validation activities during software development (“V-
shape”). Verification activities are marked by dashed lines, validation by dotted
arrows

V&V activities (see e.g., (42)). Several observations can be made, which will
be helpful to tackle V&V issues for network based systems:

• Verification tasks are performed on the left side of the “V” and thus
are mainly performed during earlier stages of the development process,
whereas validation tasks (mainly testing) relate the finished products (on
the right side of the “V”) with the corresponding artifact on the left side.
Ultimately, in the system qualification (or acceptance) testing, the entire
system is to be tested against the requirement specifications.

• It is well known that the removal of faults can be orders of magnitude
more expensive in later stages than in an early development phase (42).
In particular for safety-critical applications, costs for V&V are the main
cost drivers for software (e.g., (10)).

• Verification activities can be loosely grouped into design-time V&V and
code V&V. In particular, when complex algorithms like neural network
learning algorithms or multivariate optimization algorithms are used, this
distinction is important and we will discuss it in detail below.

• Traditional V&V ends when the software is deployed. However, if the soft-
ware is to work in unknown or changing environments, or has to react
toward unforeseen events, additional activities are necessary in order to
ensure that the software is working correctly. Such techniques range from
simple exception handling and dynamic performance monitoring to run-
time verification and certification (e.g., (46). Techniques for recovery from
failures include reconfiguration or code repair (e.g., via self healing code
(13)).

Virtually all software for high assurance applications is developed according
to a specific software process. Usually such processes are highly standardized
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(e.g., according to IEEE or ANSI). (2) gives an overview of several traditional
ANSI standards. Usually, a Software V&V process is an integral component
of a software development process. A V&V process describes which tests are
to be carried out, which activities for verification are to be performed, and
how the tests and their results are documented.

In many safety-critical application areas, all systems (and also the soft-
ware) have to go through a certification process. This often highly standard-
ized process has the goal to demonstrate to a certification board that all
required steps have been carried out and that due diligence has been applied
to make sure that the system under consideration adheres to all safety and
performance requirements.

Probably the best-known certification standard is DO-178B (8), which is
the standard prescribed by the FAA for all safety-critical software to be used
in civil transport aircraft in the US. It is a very detail-oriented and resource-
consuming process, so certification is a major cost driver for safety-critical
software.

As discussed earlier, existing standards, however, cannot be used as is
for the V&V of neural networks. In the following, we will discuss a number
of V&V issues, which prevent the use of current certification standards for
neural network applications.

3.2 V&V Issues and Gaps for NN-Based Applications

Different scientific and engineering communities use different notations and
nomenclature. This can lead to substantial misunderstandings like the fol-
lowing examples:

”non-deterministic”. In computer science (CS), the notion of non-determi-
nistic piece of code is always attached to a program “execution with one
or more choice points where multiple different continuations are possible
without any specification of which one will be taken”7 . Practical imple-
mentations of non-determinism thus usually use random number gener-
ators. In general, a specific state (or computation sequence) cannot be
reproduced, making testing of such software extremely difficult.

In engineering disciplines, a system is usually coined non-deterministic
if it is non-Markovian, i.e., that the system state xt cannot be totally
described by xt−1. Rather, the entire history (e.g., the entire flight since
take-off) needs to be taken into account, i.e., xt can only be calculated
given x0,x1, . . . ,xt−1. With all the history present, the state xt can be
exactly reproduced. Thus, this notion is not based upon any random num-
ber generators.

Virtually all adaptive control systems are non-Markovian, but de-
terministic (in the CS sense). Since some forms of neural network algo-
rithms start with randomly initialized weights (e.g., standard multi-layer

7 http://en.wikipedia.org/wiki/Non-deterministic_algorithm

http://en.wikipedia.org/wiki/Non-deterministic_algorithm
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perceptrons), the opinion that neural networks (and thus neural-networks
based adaptive controllers) are nondeterministic (in the CS sense)
persisted.

“Neural Network”. Many architectures for adaptive control systems have
been developed using neural networks (e.g., (40; 47; 7)). The research area
of neural networks, in general, has traditionally been put into the vicinity
of artificial intelligence. Hence, the notion of a neural network is often
attached to terms like ”AI”, ”brain-like”, ”bio-inspired” possibly leading
to confusion and low confidence, when considered within a safety-critical
environment.

Technically speaking, the neural networks in the adaptive controllers
have been purely used as multivariate non-linear function approximators;
the “learning” is (in most cases) a recursive least-squares optimization
algorithm. Described in these terms, a lot of “hype” about potential and
”dangers” of neural networks can be avoided.

An adaptive control system or other NN based software in a high assurance
application is handled like any other highly safety-critical piece of software:
it must undergo rigorous V&V and the software must be certified. However,
most traditional techniques for V&V as prescribed in these standards cannot
be used on an online neuro-adaptive system because this system

• has to deal with a dynamically changing, unknown, non-linear plant model.
Typically, damages to an aircraft (e.g., a stuck rudder) introduces biases,
non-linearities and unknown interactions (e.g., correlations between the
different aircraft axes). Moreover, most aerospace analysis techniques are
restricted to the linear case.

• is a system, which contains non-linear functions and approximators. Ex-
cept for the most primitive kinds of neural networks, neural networks
use nonlinear activations functions and can, in principle, approximate any
smooth function.

• is adapted using a complicated algorithm. In most cases, the neural net-
work is being trained using some kind of machine learning algorithm. Such
algorithms usually are variants of a recursive multivariate (quadratic) nu-
merical optimization routine.

3.3 V&V Approaches for Neural Networks

In the following, we will discuss V&V approaches for neural networks and
systems, containing neural networks, in particular neuro-adaptive controllers.
This area can be roughly subdivided into the following categories, concerning
techniques that

• specifically subdivide V&V activities into algorithm V&V and code V&V.
In particular, theoretical results, obtained during algorithm V&V (e.g.,
Lyapunov stability proofs) must be used to guide and augment code V&V.
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• focus on the analysis of the neural network architectural design (e.g., num-
ber of hidden layers, number of hidden nodes),

• consider neural networks as function approximators or data classification
tools,

• help the human reader to understand the inner workings of the neural
network (e.g., by rule-extraction or representation as a Fuzzy System),

• focus on the specifics and characteristics of the learning (training)
algorithm,

• analyze the selection and quality of the data used for adaptation, and
• provide means for the dynamic (i.e., during operation) monitoring of the

performance of the adaptive component.

Obviously, the techniques and approaches in each of these categories heavily
overlap and have synergistic effects. Moreover, the various techniques range
from mathematical theorem and proof (e.g., universal function approxima-
tion of a MLP), statistical methods, methods from design of experiments,
testing, simulation, and dynamic analysis and monitoring of the behavior
and performance of the neural network. The term “dynamic” here indicates
that the monitoring occurs during the actual operation of the neural network
based system after deployment.

In many cases, certain performance and safety aspects of the neural net-
work are necessary in order to analyze the larger system. A typical example
is a neural-networks based adaptive controller. In order to show (eventual)
stability of the controller using Lyapunov stability theory, assumptions about
the neural network (e.g., on bounds of the error) are required. Such proofs
can be pretty involved. In several chapters of this book such stability proofs
are discussed. Other examples can be found, for example, in (47).

3.3.1 NN as Function Approximator

Traditional literature describes adaptive computational paradigms, neural
networks in particular, with respect to their use, as function approximators
or data classification tools. Validation on these systems is usually based on
a train-test-re-train empirical procedure. Some bibliographic references also
propose methods as part of the training algorithm of neural networks for
validation (55; 6). The ability of interpolating and/or extrapolating between
known function values is measured by certain parameters through testing.
This evaluation paradigm can be reasonably effective only for pre-trained
adaptive systems, which does not require online learning and adaptation and
remain unchanged in use.

3.3.2 V&V for NN Design

In (11), Fu interprets the verification of a neural network to refer to its cor-
rectness and interprets the validation to refer to its accuracy and efficiency.
He establishes correctness by analyzing the process of designing the neural
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network, rather than the functional properties of the final product. Peterson
presents another similar approach in (41) by discussing the software devel-
opment process of a neural network. He describes the opportunities for ver-
ification and validation of neural networks in terms of the activities in their
development life cycle, as shown in Figure 2.

Statement of Goals and Constraints

Independent Network Validations

Specify Network Characteristics

Evaluate Constructed Network

Evaluate Generalization Capability

Verify the Training Process

Train the Network

Design Network Architecture

Verifying Data

Collecting Data

Verify Feasibility of Neural Network Model

Fig. 2 The development cycle of a neural network

As we can see from Figure 2, there is a focus on V&V of adaptive sys-
tems based on the training data. Verification of the training data includes
the analysis of appropriateness and comprehensiveness. However, in online
learning mode, this technique may not be appropriate due to its real-time
training aspects. Data are collected in such a way that the training is com-
pleted under intensive computational requirements. An applicable approach
for verifying the data is novelty detection.

3.3.3 V&V for NN Training

Verification of the training process typically examines the convergence prop-
erties of the learning algorithm, which is usually pre-defined by some criteria
of error measure. In (21), K.J. Hunt et. al. investigate all different methods
for error estimation techniques and make detailed comparison among them.
Nonetheless, effective evaluation methods of interpolation and extrapolation
capabilities of the network and domain specific verification activities are still
based on empirical testing (26). Literature addressing the problem analyt-
ically is very scarce. In the field of function approximation theory, MLP
networks have been proven to be universal approximators for being able to
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achieve any given accuracy provided a sufficient number of hidden neurons
(19). The mathematical analysis and proof can be seen as another effort for
validating the learning process as it can provide theoretical proof for the ca-
pabilities of function approximation. The weakness of such analytical proof is
that it remains impractical for online adaptive learning systems as the system
function evolves.

Most recently proposed techniques on V&V of neural networks are based
on empirical evaluation through simulation and/or experimental testing using
statistical methods such as K-fold cross-validation, bootstrapping, repeated
random sampling, etc. There also exists some approaches to V&V of dynamic
neural networks by modifying the training algorithms. In an attempt to solve
the dilemma of plasticity and stability for neural networks, S. Grossberg (14;
15) derives a new paradigm, referred to as the Adaptive Resonance Theory
(ART-1/2/3). Within such a network, there are two components charging
seen and unseen data respectively. The Validity Index network presented by
Leonard et. al. in (27) is an example of modification to the network training
algorithm for V&V of the neural networks. When tested, the validity index
in a Radial Basis Function neural network provides a confidence interval
associated with each network prediction for a given input.

3.3.4 Dynamic Monitoring

For online neural networks that are adopted in adaptive control applications,
static V&V methods for neural network design and training fall short to war-
rant online performance assurance due to the dynamic nature of the network.
Because not all conceivable situations can be validated upfront, it is almost im-
possible to guarantee the assurance of reliable performance and safety. In or-
der to validate the online adaptation performance, dynamic monitoring tools
can be used that work during the actual execution of the software. Such tools
that can dynamically monitor the quality of the neural network and its internal
parameters have been proposed, mainly focusing on the learning performance
and prediction performance. A few major approaches are listed below.

• Online Learning Performance Analysis.
Lyapunov stability theory based monitors are proposed for the Dynamic
Cell Structure (DCS) Networks in Yerramalla et. al. (56; 57) and Chapter 6
of this book. The proposed online monitoring system is composed of several
dynamic stability monitors. Each monitor is essentially a Lyapunov-like
function that is designed to analyze and capture unstable behavior from a
particular aspect of online learning. These monitors provide an observation
of how well a set of associated neural centers of the online neural network
are being overlaid over corresponding relative elements of the presented
training data set.

Schumann and Liu (52; 53) propose another estimate for online learn-
ing performance by calculating the parameter sensitivity in the context
of flight controllers. In an online adaptive system, the internal control



Application of Neural Networks in High Assurance Systems: A Survey 15

parameters are changing while the system is in operation. The sensitiv-
ity of a parameter with respect to changes is computed as the probability
p(o|P ,x) for network output o, given parameters P , and inputs x. Assum-
ing a Gaussian probability distribution, the parameter sensitivity can be
obtained as the variance σ2

P . Such measures can provide useful information
to improve neural network design and learning paradigms.

• Network Prediction Confidence Estimation.
The Validity Index tool proposed by Liu et. al. (32; 34) calculates reliabil-
ity measures for the output of a DCS network, which has been used for the
Gen-I IFCS controller. Following the definition of Validity Index (VI) in
RBF networks by Leonard et. al.(27), the validity index in DCS networks
is defined as an estimated confidence measure of a DCS output, given the
current input. The VI can be used to measure the accuracy of the DCS
network fitting and thus provides information for future validation activi-
ties. By examining the statistical properties of the best matching neuron
and its neighbors that are activated during learning and prediction, the
validity index tool takes into account the topology-based learning struc-
tures and produces a quality metric for the output. Details can be found
in (33).

Schumann et. al. (51) developed the Confidence Tool using a Bayesian
statistical approach to estimate the quality of learning and the accuracy
of estimation. Considering all inputs and outputs of the neural network as
statistical variables with a given probability density function (e.g., Gaus-
sians), the algorithm determines the variance σ2 as a quality metric on
the output. This tool has been developed for the IFCS adaptive flight
controller and has been test-flown on a manned F-15 NASA aircraft.

4 Conclusions

This chapter serves as our attempt to provide an overview of applications
of neural networks, where failure is not an option. Such high-assurance ap-
plications can be found in many domains, most prominently in aerospace,
automotive industry, medical applications, and power industry. Here, the use
of neural networks provides substantial benefits with respect to performance,
accuracy, and/or handling of unforeseen situations. However, the algorithms
implementing neural networks can be very complex, in particular the training
algorithms, which adjust the neural network’s parameters based upon given
data. These training algorithms, most often variants of non-linear multivari-
ate quadratic optimization algorithms, are at the core of many neural network
based applications. Because these applications, which have been discussed
above, are safety-critical i.e., failures or erroneous behavior can ultimately
claim human lives, the software that implements the algorithmic learning of
neural networks has to undergo rigorous verification and validation (V&V)
before deployment. In this chapter we discussed that traditional V&V for
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safety-critical code is not sufficient for neural-network based applications, in
particular for those applications where the neural network is trained in an
online fashion during operation.

The presented overview also serves the purpose of structuring the field, as
well as illustrating the widespread application potential of neural networks
in safety-critical applications and the issues in terms of their V&V that had
to be addressed by the research community.

The remaining chapters of this book are ordered in a similar way. Chap-
ters 2 and 3 discuss theoretical and design-time analysis on semi-global
boundedness and margins of adaptive control and assessment of network
complexity.

The next several chapters are devoted to applications of neural networks
for adaptive aircraft control. One chapter focuses on the development of a
damage-adaptive flight controller all the way through manned flight tests.
The other one presents approaches for stability and convergence of adaptive
flight control, a central challenge for V&V of such controllers. Some neural
network architectures change their architecture and size, while they are being
trained. Using such networks in an adaptive controller poses substantial chal-
lenges for V&V. This chapter deals with dynamic allocation in such neural
network architectures.

The next chapter is centered around the automobile: it describes the use
of an immune-system approach to help with the localization of faults in au-
tomotive engines. Moving yet to another element, the subsequent chapter
discusses the design of a neuro-adaptive controller for a submarine.

In most mechanical systems, friction between moving components is a ma-
jor issue. Our chapter describes how neural networks can be used to provide
accurate friction control. Due to the transition between slipping and sticking
this problem is highly nonlinear. The final two chapters discuss how neural
networks can improve the efficiency of processes (blending of crude oil) and
fuel cells.

We hope that the wide range of applications and methods described in the
book illustrate the potential of neural networks in safety-critical and high-
assurance applications and help the reader to be more aware of issues and
approaches and to drive the advances of V&V of such systems to ultimately
make them safe and reliable.

References

1. American Power Conference. Proceesings of the American Power Conference
1998, vol. 60, 2 vol. set (1998)

2. American National Standards. Software Engineering Standards. IEEE, Wiley
and Sons (1984)

3. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading
(1994)



Application of Neural Networks in High Assurance Systems: A Survey 17

4. Bansal, R.C.: Overview and literature survey of artificial neural networks appli-
cations to power systems (1992–2004). Journal - Institution of Engineers India.
Electrical Engineering Division (86), 282–296 (2006)

5. The Boeing Company. Intelligent Flight Control: Advanced Concept Program.
Technical Report (1999)

6. Boyd, M.A., Schumann, J., Brat, G., Giannakopoulou, D., Cukic, B., Mili, A.:
Validation and verification process guide for software and neural nets. Technical
report, NASA Ames Research Center (2001)

7. Calise, A., Rysdyk, R.: Nonlinear adaptive flight control using neural networks.
IEEE Control Systems Magazine 21(6), 14–26 (1998)

8. DO-178B: Software Considerations in Airborne Systems and Equipment Cer-
tification (1992), http://www.rtca.org

9. DTI. DTI final report: Evaluation of parallel processing and neural computing
application programmes. Assessment Paper 38 URN 99/922 (1999)

10. Ebert, C., Parro, C.H., Suttels, R., Kolarczyk, H.: Improving Validation Ac-
tivities in a Global Software Development. In: Proc. ICSE 2001, p. 545. IEEE,
Los Alamitos (2001)

11. Fu, L.: Neural Networks in Computer Intelligence. McGraw Hill, New York
(1994)

12. Getman, A., Zhou, H., Jammalamadaka, S.: An automated network for de-
tecting diesel engine misfire. In: Proc. IJCNN 2007, pp. 3017–3021. IEEE, Los
Alamitos (2007)

13. Ghosh, D., Sharman, R., Rao, R.H., Upadhyaya, S.: Self-healing systems —
survey and synthesis. Decision Support Systems 42(4), 2164–2185 (2007)

14. Grossberg, S.: Adaptive pattern classification and universal recoding: I. Parallel
development and coding of neural feature detectors. Biological Cybernetics 23,
121–134 (1976); Reprinted in Anderson and Rosenfeld (1988)

15. Grossberg, S.: Competitive learning: From interactive activation to adaptive
resonance. Cognitive Science 11(1), 23–63 (1987)

16. Gupta, P., Guenther, K., Hodgkinson, J., Jacklin, S., Richard, M., Schumann,
J., Soares, F.: Performance Monitoring and Assessment of Neuro-Adaptive Con-
trollers for Aerospace Applications Using a Bayesian Approach. In: Guidance,
Navigation and Control (GNC) Conference, AIAA 2005-6451 (2005)

17. Gusikhin, O., Rychtyckyj, N., Filev, D.: Intelligent systems in the automotive
industry: Applications and trends. Knowl. Inf. Syst. 12(2), 147–168 (2007)

18. Tarafdar Haque, M., Kashtiban, A.M.: Application of neural networks in power
systems: A Review. Transaction on Engineering, Computing and Technology
(6), 53–56 (2005)

19. Hornik, K.M., Stinchcombe, M., White, H.: Multilayer Feedforward Networks
are Universal Approximators. Neural Networks 2, 359–366 (1989)

20. Hrycej, T.: Neural-network-based car drive train control. In: Proc. 42nd IEEE
Vehicular Technology Conference, vol. 2, pp. 1042–1045 (1992)

21. Hunt, K.J., Sbabaro, D., Zbikowski, R., Gawthrop, P.J.: Neural Networks for
Control Systems—A Survey. Automatica 28(6), 1707–1712 (1996)

22. Hutchison, W.R., Stephens, K.R.: The airline marketing tactician (AMT): A
commercial application of adaptive networking. In: Proc. First IEEE Interna-
tional Conference on Neural Networks, vol. 2, pp. 753–756. IEEE, Los Alamitos
(1987)

http://www.rtca.org


18 J. Schumann, P. Gupta, and Y. Liu

23. Irwin, D.: The industrial Electronics Handbook. Technology & Engineering
(1997)

24. Jorgensen, C.: Feedback linearized aircraft control using dynamic cell struc-
tures. In: World Automation Congress (ISSCI), Alaska, pp. 050.1-050.6 (1991)

25. Knaus, W.A., Draper, E.A., Wagner, D.P., Zimmerman, J.E.: Apache II: a
Severity of Disease Classification System. Critical Care Medicine 13, 813–829
(1985)

26. Lawrence, S., Tsoi, A.C., Back, A.D.: Function approximation with neural net-
works and local methods: Bias, variance and smoothness. In: Australian Con-
ference on Neural Networks, pp. 16–21 (1996)

27. Leonard, J.A., Kramer, M.A., Ungar, L.H.: Using radial basis functions to
approximate a function and its error bounds. IEEE Transactions on Neural
Networks 3(4), 624–627 (1992)

28. Lisboa, P. (ed.): Current Applications of Neural Networks. Chapman and Hall,
Boca Raton (1992)

29. Lisboa, P., Vellido, A., Edisbury, B. (eds.): Neural Network Applications in
Business. World Scientific, Singapore (2000)

30. Lisboa, P., Ifeachfor, E., Szczepaniak, P. (eds.): Artifical Neural Networks in
Biomedicine. Springer, Heidelberg (2000)

31. Lisboa, P.: Industrial use of safety-related artificial neural networks. Contract
Research Report 327/2001, Liverpool John Moores University, Liverpool (2001)

32. Liu, Y., Yerramalla, S., Fuller, E., Cukic, B., Gururajan, S.: Adaptive Con-
trol Software: Can we guarantee safety? In: Proc. of the 28th International
Computer Software and Applications Conference; Workshop on Software Cy-
bernetics (2004)

33. Liu, Y., Cukic, B., Jiang, M., Xu, Z.: Predicting with Confidence—An Improved
Dynamic Cell Structure. In: Advances in Neural Computation, vol. 1, pp. 750–
759. Springer, Heidelberg (2005)

34. Liu, Y.: Validating A Neural Network-based Online Adaptive System. PhD
thesis, West Virginia University, Morgantown (2005)

35. Marshall, L.F., Tool, B.M., Bowers, S.A.: The National Traumatic Coma Data
Bank Part 2: Patients who talk and deteriorate: Implications for treatment.
Journal of Neurosurgery 59(2) (1983)

36. Mathur, A., et al.: Turbine Back Pressure Identification and Optimization with
Learning Neural Networks. Advances in Instrumentation and Control (45): 1,
229–236 (1990)

37. Ramı́rez Mendoza, R.A., Morales-Menéndez, R., Cantú-Ortiz, F.J.: Neural nets
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