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On Data-centric Diagnosis of Aircraft Systems

John Stutz

Abstract—This article discusses results of an investigation is expected to prove useful. But we seek inference systems
into requirements for and problematic aspects of implemering  that are easily adapted to diverse domains without reggirin
a decision theoretic data-centric approach to the problem b detailed knowledge of the internals of any particular syste

data driven fault detection and diagnosis for aircraft and their d tudy. This will limit di tic abilitv. si lack
subsystem, suitable for offline application to Flight Operdional under study. This will fimit diagnostic ability, SInce lack an

Quality Assurance (FOQA) type data. We discuss fundamental internal system model largely precludes inference reggrdi
considerations for this type of approach, aspects of diagro the source of faults. Purely data-centric inference systeam

sis required for a vehicle health management system, somedetect potential faults as anomalies and localize them with
problematic aspects of the domain, and provide a high level oghact to the space of observables. Data-centric inferehc
survey of current anomaly detection techniques, considenig their causedraditionally requires a “supervised learning” aporoach
suitability for diagnosis. Our principle conclusion is that for data- yreq p . 9" app 8
centric diagnosis, going beyond fault detection and localization based on use of labels attached to fault instances preyiousl|
requires a mapping from observable symptoms to diagnoses & identified as such, and included in their training data. When
is not readily available. This suggests a bootstrapping appach  such labeled data does not cover a field, about the best that
involving clustering, outlier detection and expert identfication of can be hoped for are probability distributions over the det o
suspected faults, providing the basis for actual diagnosis previously identified normal modes, known fault labels, and
“unknown fault”. This implies a boot strapping development
I. INTRODUCTION Unknown faults detected and I_ocalized in the hist(_)ric dath w
. o o need to be referred to domain experts for labeling and then
W E are tasked with devising novel decision theoret'ﬁﬁcorporated into the diagnostic model.
_ fault diagnosis algorithms, suitable for offline applica- oyr emphasis on probabilistic inference is a consequence of
tion on heterogeneous fleet scale Flight Operational Qualihe gecision theoretic objective, which requires the pbilba
Assurance (FOQA) type data. This is a discussion of thgs of possible system states, the set of relevant norneal an
problem, with emphasis on the application domain, how f§,;t modes, in order to estimate the consequences of attern
constrains analytic approaches, and how the fault diagnogkcisions. This aspect involves an extension of the usual
task differs from fault detection. focus of diagnostics, from simply determining the presence
The primary data types of immediate interest come undgrq nature of a most likely fault, to determining the relativ
the general heading of flight records, conceptually any Sgropabilities of any plausible faults. These are needed to
quence of observation vectors made over a considerable tiiggimate the consequences, and thus the cost or value of any
Heterogeneity enters as we anticipate diverse combirgdn potential decisions considered in response to the diagnosi
binary, categorical, ordinal and real valued types, p@épt This provides an element of prognosis, but one that lacks
including parsed text records. We currently specifically &4 engineering based model-centric approaches’ accehs to t
clude raw narrative text. We do not require synchronized dgiegictive information implicit in an estimate of a system’
recording, nor regular time intervals, only sufficient inf@-  getajled internal state and potential failure modes. Ratatric
tion that we can reconstruct a current observation vector ﬁﬁ)gnosis will rely largely on historical information assated
any time point in the record. Thus there is a presumption gfih the likely system states, much as medical prognosis has
timely observation updates, particularly that all operatputs traditionally done.
are promptly recorded. We expect to have large quantities ofhjs gecision theoretic approach complicates matters some
data representing diverse nominal operation modes, anth Mhat, requiring our rethinking the application of any diagtic
smaller quantities representing faults that have beeriqusly  5gorithms that return categorical results. Decision tjieo
identified by other means. Not all data sets in which faultgquires estimated state probabilities of alternate hypotheses
presented as nominal sets. Nor will all actual fault typegehagiscards the essential estimates, convolving inferenag an
been previously identified. ~ decision, and concealing the assumptions fundamentatta ea
Regarding the algorithmic aspect, we are implicitly dieett  \we consider data-centric and physics based model-centric
toward data-centric approaches that avoid system modefingapproaches as alternatives for diagnosis. These are the ex-
the order of a traditional physics based engineering mOdﬁEmes along a continuum of emphasis that inevitably in-
Moderate modeling, on the order of using meta-data to inforg|yes both data and models. Model-centric fault diagnosis
the choice of appropriate probability distributions anef, emphasizes the components of a system, their interactiads,
Version as of January 12. 2010 their individual and collective fault modes, as constrdity
3. Stutz is with NASK Ames Research Center. observations of a system instance. Data-centric faultrdiaig
Manuscript not yet submitted emphasizes observational data, preferably dense, rediynda

0000-0000/00$00.0®) 2007 IEEE



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS — PART C:PPLICATIONS AND REVIEWS. VOL. 0, NO, 0, SOMETIME 2005 2

and frequently recorded with respect to (w.r.t. ) systertufai In practice, each of the listed elements involves consliera
rates. The data-centric model may be little more than “complication for design and validation, even for fairly gim
these are the data patterns associated with normal modes @&cision problems. These complications are exacerbated wh
known fault modes, and anything else is an unknown faultdealing with complex and highly reliable systems like aftr
But the criteria for “association” and especially any datahere very rare faults can generate situations in which nor-
preprocessing add additional structure to the often int@ind mal decisions can generate catastrophic outcomes ingplvin
unacknowledged model underlying any data-centric methodextraordinary costs. In particular, the possibility of aokvn

Meaningful metrics for evaluating diagnostic systems wifffault) states largely invalidates any numerical estirnané
vary considerably with application domains and specificsisedecision values.
This is one of the major lessons learned from the DX-09 Thus the full normative Decision Theoretic program is
Diagnostic Competition [1] conducted as part of the 20080t well adapted to full aircraft diagnostic systems. It may
International Workshop on the Principles of Diagnosis.€hebe applicable to subsystems that can be described by a
the specification of generic evaluation criteria provedxinelimited number of well characterized states, each withrclea
pectedly difficult, and in the end was somewhat specific to thensequences for any decision. But as such subsystems are
competition. combined, the full state space size increases multiphiekti

The following section is a brief overview of the basics ofvhile subsystem interactions dilute knowledge of decision
Decision theory, and how it affects our choices for faultgdia consequences.
nosis. Section Il is a similar overview of user requirensent Nevertheless, Decision Theory offers useful ideas and
for aircraft health maintenance systems (HMS), and how thyssons for aircraft scale diagnosis. Particularly ailtis the
affect what we want to achieve. In section IV we reviewefusal todecideon a particular system state, but to keep
some basic diagnostic methods, with emphasis on someafifunder consideration in proportion to their probabilihis
the problematic areas of the aircraft HMS domain. Sectiaiontrasts to the sequential approach to problem solving;twh
V reviews some of the standard approaches to fault detecti@®gt decides what problem has occurred and then seeks a
with discussion of their application to fault diagnosis.eThsolution to that problem. The decision theoretic approaeks
final section VI develops some thoughts on how our task cansolution w.r.t. the probability and cost weighted possibl
be achieved. consequences of decisions, potentially bringing much more

information to the decision.
II. DECISION THEORY A second point, not emphasized above, is the value of DT

Normative Decision Theory (DT) attempts to formalize thgy determining what further information would be of greates
process of making optimal decisions under uncertainty Xy etility in refining knowledge of system state and decision
plicitly quantifying the expected values of alternate dems consequences. Decision theoretic query formulation isteema

[2]. DT is based on Bayesian Probability Theory (BPT), usingf current research [3], [4] that needs to be added to our
BPT to estimate the probabilities of alternate possibleentr repertoire of diagnostic techniques.

states of a situation of interest, and to estimate the likely
outcomes of decisions given a current state. To this estmat
approach, DT adds utility values for the possible alternate
outcomes, and marginalizes over the states and outcomes t&/heeler et al. [5] begin their survey of aircraft health
estimate utility values of alternate decisions. management system’s users’ objectives with the statement

That's the gist of Decision Theory. It is a simple idea, ndhat “One of the most prominent technical challenges to
easily implemented. The problematic areas are found irrabveeffective deployment of health management systems is the
critical underlying assumptions that must be met: vast difference in user objectives with respect to enginger

. Specification ofall potential system states, to the degre@evelopment.”. This reflects both the wide range of user wit

of detail needed to estimate state probabilities frofheir divergent operational objectives, and the curreottsige

I1l. USERREQUIREMENTS

system observables. of systems able to meet many of those objectives.
« Observed data from the current system instance concenAircraft HMS users span a surprisingly wide range of
trates probabilities on a few system states. interests, objectives, and time frames. Some of the prahcip

« Knowledge of all possible consequences and their proplayers and their concerns are:
abilities for any decision that can be made in any system. Flight - Here the emphasis is on safety in operation,

state. by getting critical fault information to the air crew, in
« Numerical utility values for the possible consequences.  good time to respond, without increasing their cognitive
In principle, given the above, one can estimate the proipabil burden. Information overload is a very real danger, and

of alternate outcomes of any decision, by conditioning an th  false or conflicting alarms will severely reduce system
observations of a system instance, and then marginaliziag o acceptance.

the plausible system states. By factoring in outcome values. Maintenance is plagued by problematic fault reports,
and marginalizing over outcomes, one gets the estimategval  from both crew and current HMS, that when investigated
of each decision under consideration, still conditionedton either “cannot be duplicated” or “retest OK”. These
current system observations but irrespective of actuaksys entail large costs in time and effort, and increase risk
state and decision outcome. of maintenance induced faults. An acceptable HMS must
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reducethese. Precise fault location is sought, particularly as such. Otherwise the user bears the cognitive
in distributed system elements like wiring. Ideally an burden of distinguishing between base system and
HMS will provide advice on how to verify faults, what monitoring system faults.

tests are needed to distinguish between alternatives, and Access to auxiliary information - A fielded HMS will be
how to make repairs. Maintenance costs for the HMS  far more effective if it interacts with domain systems in
itself, particularly for updates and their validation, rhus  a manner that provides access to any kind of information

also be minimized. needed to deal with the alarms that it raises. For example,
Logistics seeks to minimize overall cost of operations,  maintenance is confronted with diverse reference sources
primarily in terms of minimizing inspection and main- essential for confirming and repairing any single fault,

tenance frequency and effort, particularly unscheduled and would benefit from one point access to all relevant
maintenance, without increasing risk of failure. Accurate  information.

predictions of remaining useful life are desired, to enable . Ease of use for entire system An inconvenient tool
condition based maintenance. cannot be used efficiently and may simply be ignored.
Fleet Management immediate concerns are operational  Tool developers tend to forget that others invariably find
efficiency, particularly fuel costs. This is also concern  their systems more difficult to use and less responsive to
with minimizing unscheduled maintenance, preferably by  their needs than the developers anticipated.

condition based maintenance, and maximizing service life Most of the above considerations are directed to full health
and reconfigurability. Long term goals are to improvenanagement systems. But all the above emphasize the need
designs and qualifications, and to support business oa¢ a fault diagnosis system that provides both probability
regulatory decisions. and utility estimates to support the traditional detectiom

A number of common themes arise, common to most usel@eation phases. Certainty in diagnosis is rare, and sosed u

L . e of diagnosis in an HMS requires explicit quantification of
Minimize false alarms- This is utterly critical if an HMS uncertainties and consequences.

is to be effective. A moderate false positive rate may
significantly reduce compliance with alarms [6]. Even a IV. DIAGNOSIS IN GENERAL

low false alarm rate will cause extra cognitive l0ading £y ngamentally, fault diagnosis involves three elemergs: d
due to the need to evaluate the alarm while also dealigg tion, |ocalization, and identification. A full HMS syste
with the alarm message. o _adds prognosis, confirmation and correction. Detectioimis s
Maximally specific fault identification - This is essential ply recognition that a fault may exist, usually as an anomaly
for efficient allocation of the resources needed to confirfy system description data. Localization involves deteing
and rectify a fault, and thus central to the concems Qfhere in the subject system a fault resides, to the degrée tha
many users. _ o the diagnosis system allows this, often only as a subset of
Earliest warning of failure - Regardless of their primary gnomalous data values. Identification labels a probabli fau
emphasis, every sector wants the earliest possible warnjfg, manner that isnformative to the diagnostic system’s
of developing problems. _ _ users Prognosis attempts to asses a fault’s future evolution and
Minimize information overload - While human cogni- geyerity. Confirmation of an evaluation is generally dekire
tive capabilities can be much enhanced by training in 8t finally, there is no point to any of the foregoing if no one
operational domain, and are remarkably flexible, we aftempts to correct or alleviate the fault.
limited in the number and the details of alternatives that \joge| centric and data centric diagnostic methods are both
we can simultaneously consider. Too much of either aqd,gjtionally applied to object description vectors or ¢m
our ability to cope degrades, often well before we realizgjceq system vector data. Thus they seek evidence of fiaults
it, as recent results on multitasking demonstrate [7]. 5 vector of observations representing an independenttatsec
— Frequent fault messages, or large blocks of alternaiea single point in time. Vectors are generally consideoeukt
possibilities, can quickly overwhelm our ability toindependent, conditional on the model, so there is no sese o
keep track. Some degree of prioritizing and filteringn evolving state. This vector based view dominates researc
will be needed. to the extent that it is often taken as a fundamental assompti
— Conflicting warnings can induce cognitive dissobut there are alternatives. Several types of Markoviare stat
nance. Since alternatives are inevitable, some basistimators attempt to trace changes in the current systes st
for prioritizing them is essential. Probabilities willw.r.t. a sequence of time-sliced observations, by retgioime
provide the basic criteria, but utilities need to b@r more previous state estimates and factoring in intée-sta
factored in as well. transition probabilities. Most of these vector based tépines
— A fault diagnostic system needs to distinguish beare intended for either real or discrete valued data vectors
tween critical and non-critical faults, in both imme-and require that all attributes be forced into the preferred
diate and long term time frames, and clearly displaype. Satisfactory methods for simultaneously incorpogat
the relevant estimates. categorical with discrete and real numerical data remain a
— Any fault monitoring system is itself a source ofmatter of research [8].
hardware faults, in its sensors and communication There are also sequential approaches for detection and
links. When such faults occur they must be identifiediagnosis in symbolic data streams [9], [10]. These empbasi
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recognition of sequential patterns, in contrast to theiticathl A. Learning Patterns
vector space patte_rns. There are tvyo basic approaches: f“%upervised learning of alassifier using fully labeled
sequence comparison, and windowing to detect anomalQyi, instances, is the preferred mode of learning for data
subsequences in largely normal sequences. A variety of calgntric fault diagnosis systems. Fault type labels aretewdly
gorical similarity measures [11]-[13] are employed to nuees required for fault identification, and if possible, they sltbbe
the differences. The primary application areas are in cdeTpUiniroduced as early as possible. Normal operating modédabe
transaction records, genome and document classificatiost Myij| pe needed for some approaches, since fault modes dan fal
of the transaction oriented work has dealt with data coMpoSgetween normal modes and within the overall normal region.
from a fixed set of a few 10s to 100s of symbols. How to begtagitionally the labeled instances are used to specifgléab
factor numeric data into such a sequential analysis ren@inSiegions in the native data space or alternately, a projected
open question. feature space such as used with Gaussian Process Regression
Extreme model-centric fault diagnosis methods tend {gection V-A2) or Support Vector Machines (section V-A4).
employ an engineering approach, based on a thorough Uire basic idea is that each mode maps to a consistent region
derstanding of the components making up a system, hiwthe data space, modulo some variance, for all relevant
they normally operate and how they can fail, how thegbservation records. Test instances then get the neabedt la
are connected and how those connections can fail, how fioe some specific sense of nearest, or a probability digtdbu
system is controlled and monitored, and thus how both nornmler labels. Classification based approaches are thus well
modes and faults will manifest in the observables. Compledaited to supervised learning. The drawback, of course is i
knowledge of the system is required, at whatever level ditletthe difficulty of obtaining accurately labeled trainingtiaisces,
is desired for diagnosis. This includes all relevant congmin especially fault instances, with suitable coverage anahiifya
failure modes, since failures not modeled cannot normalily the aircraft systems domain.
be identified, even if detected. Efficient propagation of the Given the expected dearth of labeled aircraft operating
effects of failures through the model, for comparison asfainrecords, both normal and faulty, some form of semi-supetvis
observations, is essential [14], as are efficient algomsthrolassification with bootstrapping will likely be needed.i§h
for identifying and rating the most likely faults conditian will involve classification over whatever labeled data igibv
on current observations. Thus model-centric implemeortati able, combined with clustering of unlabeled data. On the
tend to be very focused on specific systems, for which muaBsumption that normal modes are dominant, outliers and
detailed information is required, even when created wititequ small cluster instances will be extracted and subjected to
general methods. expert review. Given labels for these instances, the model

Where computational speed is essential, the model-cenificupdated and reexamined for borderline instances that sti
approach may resort to model compilation [15] or to modé&eed labeling. On attaining a stable configuration, the mode
simplification [16]. Simplification is actually a matter ofcan be used for routine classification. This approach has
balancing tradeoffs between model detail and performagce the operational advantage of requiring only minimal tragni
quirements, and can still require quite sophisticated ringle instance labeling, largely limited to the true faults ane th
Alternately, simplification may be imposed by algorithnin4 ~Nearby normal instances. As with any clustering systenrethe
itations [17] or such hardware limits as memory footprineor may be difficulties due to clusters that do not align well
need to implement on field programmable gate arrays(FPGA&jth the properties of interest, and with small ones that get

Extreme data-centric fault diagnosis attempts to identiﬁllss'mIIatGd into large clusters.
anomalies without requiring detailed knowledge of system
internals. Detailed system knowledge is to be replaced with Models vs. Data

copious quantities of system observation records, innde |n any estimation problem there is a tension between the
to span all normal system operating modes. The immedigfggree to which data can be adjusted to fit the mathematical
objective is then to identify algorithm specific signatureg,ggel implicit in a learning approach, the degree to whigh th
of normal operating modes, on the assumption that faulfyodel can be adjusted to suit the data, and the mismatch which
modes will distinctly differ from normal ones. This allowscgn pe tolerated between them. Additionally, we tend to rely
for fault detection, and fault localization to the extent ofp familiar tools and to interpret any problem in the lightath
identifying what observations diverge from normal patsernihose tools can achieve. This is simply human nature, and not
Fault diagnosis equivalent to that achieved by more mod@lacessarily a problem, if the mismatch is not too great. ésdo
centric methods is not possible from system records aloRgn( to limit what can be learned from any set of observations
At very least, diagnosis requires a user’s vocabulary oh$er gnd so needs to be guarded against.
associated with fault descriptions. Matching models to data is an intellectually more difficult
Data-centric modeling is based on the idea of learnirtgsk, demanding knowledge of a range of techniques and what
from examples. There are a diversity of considerations to beakes them appropriate in different applications. Theesaar
accounted for in defining such a diagnostic system. First andde variety of basic techniques, and an equally wide range
foremost is what one seeks to obtain from diagnosis and wlwdtvariations on each. One gets the impression that it iseasi
one has to base diagnosis upon. Here we discuss some mgjodevise a new variation for each new application, than to
considerations. find an old variation that fits. Chandola et al. [18] has made a
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valuable start in his survey of the field of anomaly detection For distance based models the difference of two counts is
techniques, but such surveys can only provide a high leyabt their numerical difference. That of two ordinals coblel
overview. It remains the responsibility of individual déwgers taken as the difference of their positions in the orderingg®
to determine what will best suit the actual problem at hardl aspecified for categorical differences.
available data. Reals: Continuous or real numbers are the basis of
The cost of adapting models to problem and data come npmerical analysis, and the number of ways to view them
front, in the time and effort needed to determine what the correspondingly large. The variations on the Gaussian No
problem actually is, what data is available to support a-solmal densities are the canonical choice for representingynoi
tion, and how a solution might be obtained. Potential savingumerical observations in Bayesian inference. There argyma
lie in minimizing data conditioning efforts, with conseque more possibilities [20] including numerous specializatiaof
loss of information. The payoff lies in getting estimateatth the Gaussian. Most of these are extremely specific, and so of
address the actual problem, instead of being only incidénta little interest. But others deserve to be much better known,

the problem. particularly those devised for directions and for bounded
domains, where the standard Gaussian is quite inapprepriat
C. Data Types For distance based models there are a variety of distance

Just as analytic methods tend to diverge in regarding systéigasures based on the vector difference. Choice among them
data as either vector valued instance descriptions or teshpdS an open questions, but there are usually no difficulties in
sequences, so they also tend to differ in their handling #feir application to the data.
categorical (names, symbols, labels, &etc.) and numeniiial. Most analytic methods for real number data assume that our
An alternate partitioning is into discrete and continuoalsied Vvalues sample the continuous real number line of mathematic
attributes, which emphasizes the somewhat ambiguousenatiiy fact, we normally use floating point numbers, which allow
of ordinals (orderings, counts, &etc.) as a data type. Dagaly an infinitesimal sampling of the reals. Sensors often
modeling techniques tend to be best adapted to one or tRgort,, and databases often record “reals”, to only a few
other, and may require that one be transformed to the othetigits. And some attribute values, flap angle for instancay m

Categoricals: These, when mutually exclusive and exnormally only vary over a small set of values, despite hagng

haustive, fall directly into the provenance of discretelqaro continuous range of possibilities. Thus any real valuetbatie
bility theory, with well known modeling techniques. Distan requires careful examination of its distribution to detarena
based approaches like the nearest neighbors variantsreeqa®und approach to modeling it.
a scalar magnitude for each component of the difference of Heterogeneous DataHeterogeneous data usually de-
two vectors. For ordinary categorical attributes with naliy notes a mixture of discrete and continuous types. It hasiofte
exclusive values this distance is usually taken as therdifiee  been a problem due to difficulties in combining the several
measure: 1 if values differ and 0 if they are identical. types in a well justified manner. Two preprocessing techesqu

When a categorical attribute’s values are not exhaustier conversion to uniform type are described here.
they can be supplemented with “other” or “unknown” and Binning of continuous values into discrete categories f$-po
the standard techniques used. With non-exclusive labats, sular in some traditions. One such is Naive Bayes classifinati
as one finds in the NASA/FAA Aviations Safety Reportingvhere all attributes are normally modeled by independent
System (ASRS) classifications, the situation is less clsre multinomial distributions. Binning eliminates much of the
the anomaly category set numbers about 60, we have observgarmation in continuous data, retaining only some blocky
up to 12 assigned to a single report, with a mean count ne@nses of nearness and ordering. The multinomial model
2.7. then ignores any residual ordering information. Binning to

A tempting approach to handling this situation is to adoptiform spacing, population, or similar criteria requiras
multiple binary one-vaall models, which can be useful whenpreprocessing step suitable only for static data. Menzies &
just seeking to recover the labels. Deciding how many labéXregio have devised a runtime binning technique suitadne f
to accept could be problematic. The Bayesian equivalentsgeaming data [21]. This generates non-uniform bins, some
to replace each label with a binary attribute indicating thef which may eventually be deleted. Thus the representation
label's presence or absence, and to estimate all label pilebais dynamic, and requires update of their class models, which
ities together. This potentially entails a large increasehie is not difficult in their approach to Naive Bayes. Despite the
attribute space and possible dilution of the labels’ infation inherent information loss, they report good tracking of aept
content. Modeling these as independent attributes mighteo drift and detection of anomalous events in a variety of data
a problem, but a covariant approach should consider a spassts [22].
parameter representation as in section V-A3. A categorical attribute withn mutually exclusive values

Ordinals & Counts: Plain ordinals are discrete yet havecan be projected to afm — 1) dimension real valued space,

a well defined ordering, while counts add a sense of urds an n-vertex regular simplex or hyper-tetrahedron, thus
form spacing. Either may be treated as simple categoricai®serving a uniform unit distance measure. Multiple ladties

with some, often much, loss of information. Counts that a@e transformed independently. For each such attribuge, th
believed to have been generated by a uniform rate procesga space dimension is increased by the number of values
are well represented by the Poisson distribution, with idveless one. The transformed attributes can be seamlesshetherg
derivatives for functions of such rates [19]. into an appropriate density model.
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In preference to forcing our data to fit a model, a probmultivariate Gaussian for reals. SIE uses direct commati
abilistic model can be customized to fit the data. The Naiad pairwise covariance without considering the locatiopeas
Bayes approach, which models discrete valued attributéss inprovided by the multivariate Gaussian. Special distanca-me
pendently, can be extended to handle real valued attritliytessures for correlations have also been devised [25]. TheeFish
marginalizing over subranges centered on the reportable rBingham or Kent distribution for covariant directions oreth
values. This gives probability masses that are fully comme8D sphereS? extends the Gaussian to directional distributions
surate with Naive Bayes' normal multinomial distributions[26].

In addition, covariant attribute subsets can be modeled for
either discretes or reals. This approach was implementedd'n
the AutoClass system of Cheeseman et al. [23]. Covariance 0f
discretes with reals remains a problem. The obvious approac The aircraft operations and maintenance domain involves a
of providing a real distribution conditioned on each combiumber of considerations not often encountered in the stan-
nation of discretes can require a large number of parametdtadrd databases commonly used to exercise and test academic
and so risks overfitting of training data. inference systems. Size alone is one factor, far from the mos
Missing Values:For a variety of reasons, missing valuesignificant. These considerations are not wholly uniquen&o
can occur in raw unprocessed data. Unfortunately most daf& shared with most real world operations domains. Emghasi
analysis models assume that all values are provided, aditiers between domains, but the necessity of adapting feode
in order to proceed, they essentially require that either tko suit domain considerations remains.
missing values be provided or that the attribute be ignored. Transients: In time series data, transient responses to
A pre-analysis data conditioning step may achieve the form#ansitions between normal operational modes can be a prob-
and for some data types this can be done in a reasonaleip. Transients are almost inevitable in electrical system
sound manner, as interpolation or regression. Some Bayesihere inductances generate large voltage excursions when
models will permit marginalizing over the attribute’s pesb circuits are switched on or off. Inertia in mechanical syse
bility distribution conditioned on the other known attrteg, can also induce transient responses. Such transients siéyn ea
but the potential algorithmic costs are high, and may paluexceed the limits bounding normal steady state modes, so can
this approach. Even if allowable, the instance informaiwn fall outside of any steady state model, and are potentially
degraded, and severely so if several attributes have rgissifientified as anomalies. Thus transients need to be esplicit
values. dealt with, either by preprocessing or by explicit modeling

With probabilistic models any missing values can be ex- Wide band prefiltering of time series will smooth down
plicitly modeled, by adding a “missing” value for discreteshort duration transients, but only at the expense of length
attributes and making real attribute densities condifimra ening the inter-mode transition time to the order of the rilte
a “known / unknown” added binary. This works well wherwidth. This may leave transition time vectors hanging betwe
attributes are modeled independently [23], as in Naive Bay&ormal modes, in an anomalous state. However such smoothed
But it increases the parameter space somewhat for indleter-mode transitions might be identified as normal modes
pendently modeled values, and significantly so for covariathemselves, if they are common enough in training data that
models. Additionally, where missing values are common théy deemed normal.
may dominate the resulting statistics, and a more sophtsetic =~ Presence of transients argues for a state inference method
approach may be needed in order to concentrate on thtisat explicitly allows for and accounts for them, and thus
values that are known. one that explicity models some degree of time wise system

Covariance:Most probability distributions are univariate.evolution, in contrast to simple mode switching. This pueles
Any such can be multiplied to form a joint distribution,approaches that treat observation vectors as being indepgn
under the assumption that the corresponding observatiens @onditioned only on the system operating mode, as simple
independent. The several distance based inference apgoaclassifiers tend to do. The full system history should not be
make similar assumptions regarding attribute indeperglenc necessary, but some knowledge of the state estimates over
homogeneity. However there is often much to be learned frasnme range of previous observations may be desirable. This
analysis of attribute covariance. In particular, obseovetthat suggests a Markovian approach to modeling mode transjtions
are strongly influenced by a common causal factor tend loit we are not aware of any such data-centric approaches.
be correlated to some degree. Thus loss of expected sensor Sensor Failure:Aerospace engineering lore suggests that
correlation may be evidence for loss of function somewhei highly engineered systems the sensors are often motg like
in the sensing system. Covariance is used in just this manteifail than the system sensed. So a diagnostic system needs
in the System Invariant Estimator (SIE) of JPL's Beaconebasto be able to identify sensor failures, and to distinguisbhsu
Exception Analysis for Multimissions (BEAM) system [24].failures from faults in the underlying system. Furthermore
Since quite different sensor outputs can become correlatshsors can fail while continuing to report values that are
via the processes they monitor, correlation monitoring cawithin their normal range for the current operating mode,
potentially provide a degree of sensor redundancy withasm sensor failure diagnosis is more than simply out of range
requiring redundant sensors. detection.

The only well known covariant probability distributionsear ~ This implies that no sensor value can be taken as truth.
the multivariate multinomial for discrete attributes aritet Any sensor value must be verified, presumably by comparing

Domain Considerations
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against some other system attributes that tend to confirmmodeled. Thus if we train a subspace localizing algorithm
discomfirm correct sensor operation. The classical apprizac on both individual system and fleet data, alternately for the
3+-fold sensor redundancy, with direct inter compariserd a same operating mode, we expect to find that no individual
choice of a non-extreme value. This is expensive, primarigystem distribution quite matches the fleet distributiohjlev

in terms of the extra sensors, communication links, arflet variances are larger and fleet correlations are snialer
maintenance added to the system being sensed. Howeverttiose for individual systems. Depending on our goals, this
modeling and decision analysis can be fairly straightfedva could be sufficient to require that we use individual system
An alternate approach is to look for correlations betweenstance models for fault analysis. The lesson here is Heat t
multiple sensors. Strong correlations can be assumed it redegree of fleet variation needs to be either proven negégibl
from common causes, particularly if a degree of a corratati@r specifically accounted for, before attempting to use & flee
persists over operating modes. Thus incorporating cdivela wide analysis approach.

into data centric models is of potentially great value for Mode Drift: Any complex systems, particularly those
identifying faulty sensors, despite the consequent irsgean involved with large scale generation and application of eow
model complexity. can be subject to drift in the values of observables assatiat

The probability that sensor faults are more frequent thavith any single operating mode. For aircraft, the most obsio

system faults obliges the diagnostician to differentiatveen causal chains are based on the gradual consumption of fuel,
the two types, and to handle them appropriately. Sensotsfawdnd affect a variety of flight parameters. Any diagnostitesys
do need to be reported, but they are not in themselves feo aircraft flight operations needs to account for modetsirif
critical as system faults usually are. The difficulty liesfirst either allowing for it by incorporating sufficient leeway in
distinguishing sensor from system faults, and second,rfigndia static mode description, or by updating dynamic mode
some way to accommodate sensor faults in system norrdakcriptions. Either way we must deal with the potential
mode models. Even with binary sensors, the combinatorf@oblem that fault modes may fall within the extent of such
explosion of alternate sensor failure patterns preclugésg extended normal mode descriptions, and thus not be detected
to identify each combination of sensor failures as a normal Multiplicity of Modes: Multiple operating modes are
mode. A semi-naive Bayesian approach might work, consiexpected in any non-trivial system, and will be a problem for
ering only independent failures, but even this involves analytic methods that presuppose binary decision problems
enormous expansion of possibilities for each normal mod#fith multi-modal approaches there is always the question of
Nevertheless, a resilient diagnostic system needs to feetablhow many modes are to be allowed, or can be allowed without
reliably estimate system state in the presence of sensarefaj overfitting the estimated model to the training data. This is
so this problem must somehow be overcome. where Bayesian posterior probability estimation is patéidy
Fleet Variation: As diagnosticians, we would prefer touseful, since the cost in prior probability of the additibpa-
deal with fleets of nominally identical aircraft as if indiials rameters required to extend a model will eventually donginat
were largely interchangeable. This would greatly simptifita the increased likelihood gained by better fitting the model t
collection and somewhat simplify modeling, fault detentio the data [23].
and diagnosis. Such an approach may be possible for manyultiple modes with significant mode drift will blur the
subsystems, but less likely so for full aircraft and the mordifference between the two concepts. This will influence how
complex and/or highly stressed subsystems like engines ameldefine both modes and mode drift, possibly on a application
landing gear. There are fundamental and unavoidable reasspecific basis.
for this.

« The more complex a system, the more likely that any two V. DATA CENTRIC DIAGNOSIS
“identical” copies differ in significant ways, even prior to Chandola [18] et al. have made a comprehensive survey
first use. of data driven techniques for anomatletection and we

« Transportation systems operate in a highly variable enféllow their organization here. However diagnosis difféaem
ronment, so can quickly develop quite individual histodetection in significant ways, so our emphasis differs, with
ries, particularly w.r.t. the extreme events that canaméti some additions and deletions. The requirement that a d&gno
faults. algorithm shall detect, localizand identifymost anomalies,

« Flight crew operational activities may vary considerablyreferably with probability estimates for alternative ridie
particularly in stressed situations, despite efforts tmst fications, requires considerable extension of some stdndar
dardize operation. detection techniques and may preclude others.

» Maintenance inspection and repair practices may divergeFault identification is the key difference distinguishinatal
from standards, potentially introducing new faults ogentric diagnosis from traditional data centric fault d#iten.
altering the signature of normal operating modes. Identification requires knowledge of faults, which will Ror

All of the above imply that complex “identical” transporta-mally be obtained from labeled fault instances. Note thalt fa

tion systems, and their major components, will have divergdabels are not necessarily exclusive: In one set of anrbtate
histories, which induce differences in our observations &SRS reports, we found an avera®& fault type labels per
both normal and faulty operating modes. The degree of suidstance, with the maximum exceeding 10. This complicates
differences remains to be evaluated, and their significanmgapting those probabilistic techniques that implicithgame
will depend on how the systems and its operating modes dneutually exclusive and exhaustive” alternatives .
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A. Classification Techniques Thus GPR is better adapted to detection than diagnosis.

s . . ... 3) Bayesian ClassificationThis can take a variety of forms
Classification based diagnosis attempts to learn aclaﬂ;smE1 pending on the type of data and how class models are

tion model from a set of labeled training data instances, Eﬂfathematically defined. Classes are described by protyabil

rr?:JgsSZZS;Lymtet?énd?st?h;ntsé?;scszss \(’)V(':r(':tl; th?jilsetﬁlr;eri m% istributions over the native data space or some projective
the dat P action th fmll\/l wall )3;0 space. Most forms are thus vector based, assume indepen-
€ data space, or some projection thereof. Mutually eREUS o, instances, and mutually exclusive and exhaustiveetas

classes are nprmally assumed, bUt real world labeling m Hese assumptions can be relaxed at the expense of adtitiona
be non-exclusive. Labeled class instances are assumed, l%%tmplication

normal modes and anomalies for diagnosis. But there mUStNaive Bayesian classifiers commonly assume categorical

also be some provision for detecting previously unseen @AM, \ith each attribute in each class modeled by an in-

“Ts' I_?_at(;;\ _az mstadncetlvegt(irs IS Lr_adltlolnal,_fgncti_ ”m:z dependent multinomial distribution. Classes are learngd b

?6}35' I'?h indepen .e? Y uf m_z:\jc ine I(': a?5| ication 1s @n Oaccumulating attribute statistics from a set of labelething

1eld wi ”ma-ny yana lons, of wide app |c.:a} lon. ) instances. Uninformative Dirichlet priors prevent zerolpr
Classification is very often cast asdacision processwith

: . > abilities in the distributions. A class’s likelihood for @st
logical and normally exclusive outputs. Such classifieai® jngiance is then the product of the instance’s attributaesil

of little interest for decision theoretic diagnosis, andrttonly —o1apijities for that class. The class likelihoods aretiplitd

to the extent that variations can generate class proliebilit ), e class probability and then L1 normalized to get theztla
Decision process classifiers will not be discussed her&mxcyapilities conditioned on the current mutually excbesi
where they can be upgraded to generate probabilities. . it class model. However the class likelihoods can alkso b

1) Neural Networks (NN)These have a long history of useéinformative, either for detecting anomalous instances tia
for classification, having been generally applied to muualnot match well with any class [22], or for detecting concept
exclusive classes. Training a neural network as a prolsébili grift in temporal data [21].
classifier for non-exclusive classes requires some vanaif  Nyumerical data is usually incorporated into Naive Bayes by
traditional techniques. It is likely that this would degeadpinning each attribute to a categorical replacement. Whike
the NN's ability to distinguish classes. An NN classifiekhoehorns numericals into the categorical based multialomi
normally has one output per class, and generates a setyffdel, it loses much of the detail inherent in numerical
output weights for each instance tested. These weights Rfering and differences. Binning usually involves a poepr
be treated as likelihoods and normalized into probatfsljtiecessing step, but there are techniques for dynamic single
when mutual exclusivity is assumed. Outliers are detecsed Fass binning, practical because the classes’ corresppndin
instances that have very low weights at all outputs. EXibfici independent attribute statistics can simultaneously ltatepl
Bayesian variants are available [27], but Gaussian Presesgs pins are added or merged, without referring to the origina
have preempted these in several ways. data.

2) Gaussian Processes:Gaussian Process Regression Naive Bayes for categoricals can be extended to covari-
(GPR) assumes a regression functigm) that is a weighted ant multinomial Bayes by considering the joint categorical
sum of many, perhaps infinitely many, basis functigy{s:) = attribute space. Done naively this involves a combinatoria
S°1 w;i(x). The resultingy(x) is linear in thew;, and assum- explosion, the per class parameter count going from the
ing thew; each have a zero mean Gaussian prior probabiligym of attribute value counts to their product. The product
distribution, y(z) is also zero mean Gaussian w.r.t. the space’s size can easily exceed the number of training iostan
training instances. Then, so far as prediction is concernedailable per class, but a class instance count is usualghmu
the only effect of the basis function set is through tNe larger than the number of product cells actually occupied, s
by N covariance matrix. Conversely, any valid covariancsparse parameter representations may allow efficient iemar
matrix corresponds tsomeset of basis functions, admittingmodeling. An implicit uninformative prior eliminates zero
their implicit use. GPR modeling is then largely a matteyalued probabilities. When this approach is possible, @iesy
of specifying the covariance matrix, optimizing w.r.t. anyccess to inter-class differences that are completelilviei
hyperparameters, and then inverting the covariance foiiruseto standard Naive Bayes.
prediction. With numerical data, suitable probability distributiormts-

GPR provides an effective approach to binary classifiermete for integers and continuous for reals, are subsdtitide
and has been extended via Monte Carlo or variational methdade multinomial. Naive models retain the independentiaita
to multi-class problems [28]. It may also be possible to dapproach, while covariant models can group attributes that
multi-classification by applying GPR to the simplex catégoruse the same mathematical model, usually the multivariate
cal expansion of the class symbol, as described in secti@h [VGaussian or similar exponentials. The full attribute co-
via multi-dimensional regression. If so, this could pravid variant Gaussian require®(n?) parameters per class, but
direct approach to representing and predicting non-ek@usunlike the covariant multinomial, all values are instatetith
categories, as points on or within a categorical simplexwHo An independent. attribute Gaussian model needs ory
ever GPR does its separation in the kernel space of the inpligarameters per class. A full covariant Gaussian model eppli
basis functions, which is not directly represented, andsmt the corresponding Mahalanobis distance measure, and so is
accessible for localizing the source of unknown anomaliesn exact representation for any distribution correspandin
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an affine transformed spherical Gaussian. Thus they makeddrone against the rest classifiers could reasonably be taken
excellent model for classes that can be described as noésylikelihoods, and normalized to get an overall distritnuti
distorted point distributions. They are less appropriateriore Deployed as binary classifiers, the methods of [30] could be
complex distributions, where multiple spherical Gaussiamsed to derive class probabilities. Detecting unknownseas
have been used for single class models. might be problematic.

While the Gaussian is the traditional basis of statistical 5) Rule Based ClassificationSupervised rule based clas-
analysis, there are a wide variety of other continuousitistr sification, as decision trees, classification trees or smipa
tions applicable to numerical data modeling. The von Misgrees, has a long and successful history [31], [32]. Thecbasi
distribution may be considered to represent a Gaussian liea is to recursively partition labeled data into sub-ggdn a
distribution over a circular basis, parameterized by active way that maximizes the difference between the two partsllab
and variance. The von Mises-Fisher distribution extends trstatistics. This normally builds a binary tree that terntsa
concept to theS™ hyper sphere with uniform variance, whilein leaves that hold only a single label. Each partitioning is
the Fisher-Bingham allows for covariance ¢ [26]. The usually done on a single attribute, rarely in the same order o
log-normal distribution gives a single bounded Gaussiaiveq parallel branches. Overfitting is a common problem, and most
alent, and the log odds normal a double bounded one. Batlethods apply a post-partitioning pruning step which re@sov
behave very like a standard normal distribution when thermesparsely populated partitions at the expense of havingteav
is several standard deviations or more away from the boundsth mixed labels.
both achieve very large densities as the mean approaches Bhe chief advantage of decision tree classifiers is theghttrai
bound, and both are zero at and beyond their bounds. Tioeward interpretation of the resulting rules. As with most
potential advantages of using such distributions that matparametric methods, construction is slow while applicatio
one’s meta-knowledge of a data set should be obvious, yet the quite fast. There is the usual range of variations among
seem to have been largely ignored in the anomaly detectinplementations, primarily on how to choose which attrébut
field. This may be a matter of excessive choice. Wikipediafe split upon, and where, for each non-terminal branch. Riece
continuous probability distributions page [20] currenlilsts work on minimal trees [33] confirms that often only a fraction
95 alternatives and is not up to date. Most are extremady attributes need be considered.
specialized, but it will worth one’s effort to investigatéigh The downside of standard decision trees is that they make
best fit reasonable expectations about specific data. a decision at each partitioning, and so provide no measure of

Similar considerations apply to discrete numerical dathow strongly any result should be believed, nor any probabil
such as counts or ordinals, where continuous distributioties for alternative results. Without these, any furthéeience
like the Gaussian are generally inappropriate, and castingis conditional on a correct decision, and so is necessarily
categoricals to suit a multinomial model can destroy muduspect. However there are variants that do return pratiesil
information. The Poisson is the canonical distribution fowhile simultaneously minimizing the overfitting problermé|3
counts and should always be considered for such attribut@ggich eliminate the principle caveats.
but there are other alternatives. 6) k-Nearest NeighborK-nearest neighbor is a supervised

4) Support Vector MachinesFor fault detectionone can classification technique that attempts to finesse the reptas
use semi-supervised one-class SVMs, trained on presuntig@lal limitations of the simple mathematical density misde
normal data. With suitable kernels these can learn a complgx substituting a large labeled set of training instances de
boundary around the normal region, and any test casesgallfacto density model. Each subset sharing a label thus defines
outside are declared faults. For fadiagnosisa supervised non-parametric distribution. For each instance to be iflads
approach is needed, for training standard SVMs on labelgtk k nearest neighbors are determined, and their labels used
fault classes. Here the binary separation that is fundaahenb determine the test instance’s class, usually by majoctg.
to standard SVMs becomes a problem. One can either train arhe naive computation time i©(n¢n.), wheren; andn,

SVM for each class, in a one against the rest mode, or traife training and classification data set sizes. Much effast h
on every pair of classes. In both cases the clEssEignment gone into minimizing this. There is the expected variation i
is usually decidedon a winner take all basis, the first bymethods for choosing, measuring distance, and combining
maximum class weight and the second by majority voting. distance and labels to determine a class. Independent pfesim

There are a number of procedures advocated for convertingise, distance measures are degraded by the presence of
the results of SVMs and similabinary decision classifiers jrrelevant attributes or attribute scales that are incsiest
into class probabilities. See the survey by Gebel & Weilgith their relevance. Thus both feature selection and tiespa

[29] for an introduction. They have since adopted a Dirithlenay be an important preliminary aspect of k-Nearest Neighbo
distribution based approach [30]. A problem with this is thg|gssification.

need forO(n?) binary classifiers, where n is the number of
known normal and fault classes to be identified. i i )

Relevance Vector Machines are an SVM inspired variant dg: Nearest Neighbor Detection Techniques
signed specifically to return probabilities. To achieves tiiey Nearest Neighbor based anomalyletection techniques
forego the standard SVMs’ guarantee of optimality modu® thare non-parametric in the sense of not needing additional
choice of kernel function, while remaining binary classdie parameters to specify a model. The training data provides th
trained on labeled data. The probabilities resulting frose model, as an implicit density distribution over the paranet
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space, and thus is the parameterization. The assumptibatis br must later learn a mapping from clusters to mode labels.
Normal data instances occur in dense neighborhoods, whiléne former might be achieved by partitioning data w.r.t. to
anomalies occur far from their closest neighbof$ere are mode and clustering within each mode to get “pure” clusters.

two general techniques: This is akin to classification with extended classes repmtese
« Use the distance to thit" nearest neighbor. by a sum of distributions. The latter might be achieved using
« Compute the relative density near an instance. a probabilistic clustering, and associating a distributaver

Conceptually these are roughly equivalent: the distance Tfde labels with each cluster. A new instance’s mode proba-
thek*" nearest neighbor defines a local hypersphere containfiijties are then computed as the cluster probability wiigh
only k training instances, and thus maps directly to a loc§HM ©over the mode distributions. In essence, this defines
hyper-density. Implementations differ considerably, iown & Multivariate mode probability distribution over the data
to specify k, how distances or densities are computed, hGRace that is similar to that implicit in a k-nearest neigisbo
distances or densities are used to score an anomaly, and rithm. . .
the naive necessity for comparing each test instance dgaind " data space location based clustering, a common model
all training instances can be finessed [18]. A standard modgfines clusters as noisy points in a possibly extended data

for using nearest neighbor is to seek anomalies by comparﬁ%ace'df”md assigns mstan(r:]esdt_o the nearedst cluzter_, mOdl.“O
a data set against itself. This is &(/N2) operation, hence some distance measure. The distance need not be isotropic,

the emphasis on efficient techniques [35]. and variants 1on the Mahanalopus are poputar(z, u, %) -

For anomalydiagnosisin a supervised mode, the obvious\/((xl_“)E (¢ —p)), where 'E the ct:1luste|r ;entgr ard is
extension is to combine a k nearest neighbor classifier for n ec ustgr covariance matrix. The Ma anajobus ggelmnalte
mal modes and known anomalies, witlkd nearest neighbor the Eucll_dean d|stz_;1nce as— I, aI'Iows f20r simple mdepen-
distance or density based outlier detector to catch unknO\%nlt_ attnl:;]ute Scf‘l'gg wheh d': diag ]EU) » OF 1;or_ covariant
anomalies. As the operating mode shifts from superviseg@ing whenx = iag(0)Cdiag(o) for correlation matrix
through semi-supervised to unsupervised, the classiffgcas C.. The Gaussian radial basis function is a populgr variation,
takes on increasing importance. But since diagnosis rexq,uir"v't_h da(w, 4, %) = . ewp(_dM(x.’“’.E)/m' Non_’nahzed 10 .
at the very least, knowledge of a mapping from symptoms Wit mass, these give the Multivariate Gaussian probgbilit

. . . . . — —n/2 —-1/2
labels, the objective of unknown anomaly detection will be gmodel: P(z|p, X)) = (2m) /% det(X) ™/ *dg(z, 1, ¥), and a

locate anomalies for identification by domain experts. probabilistic interpretation of class membership [23].

D. Classical Statistical Techniques

C. Clustering Classical frequentist statistics suffers from the assionpt
Clustering is normally done in an unsupervised mode that randomness is a property of nature that afflicts nurakric
group instances that are collocated in the native or a prjecdescription of nature, and that the concept of probability i
data space. Thus it seeks to find natural classes, w.r.t. ty relevant to such random variables. Conceptually, a ran
instance descriptions and a similarity measure. This isldn @om variable is an abstraction of a measurement process, and
field, with a wide variety of clustering techniques develdpeany set of observed values are a sample from a conceptually in
for many application areas. Berkhin’s survey [36] of cluistg finite population. Thus probabilities are deemed to be lnny-
for machine learning lists about 50 named programs. Poputatative frequencies representing results of a samplingegss
variations are Self-Organizing Maps (SOM), K-Means Clustethat generates random variables. Sampling processes hee to
ing, and Probabilistic Clustering via Expectation Maxiation described by sampling distributions, mathematical florgti
(EM) optimization. For unsupervised anomalgtectiondata that model the process by defining relative frequencies.w.r.
is first clustered and then instances are examined for édher to some parameters.
degree of cluster membership in any cluster or high member-Given a sampling distribution with known parameters we
ship in small or sparse clusters. In a semi-supervised mochn compute likelihoods for any set of observations. Lagkin
only normal mode data is clustered, then suspect instangeswledge of one or more parameter values, they are to
are tested, those not falling within a cluster being conside be estimated from a statistic, e.g. sample mean or variance,
anomalies. computed as a function of the sample values. All such Stist
Unsupervised clustering generates clusters that are aptirare themselves random variables, but a useful statistidc mus
w.r.t. the clustering algorithm and the data used. Unlegh bdhave its own known sampling distribution, typically a fuioct
algorithm and data are carefully matched, the clusters mafjthe degree of freedom remaining in the sample. Only in such
have little correspondence to any properties of interegt. Sases is it possible to interpret the significance of a mealsur
pervised clustering can make use of instance labels initighin sample’s statistic. This is expressed in terms of confidence
data to identify an attribute subset, or perhaps a projectiat intervals, as the frequency, over many repeats of the data
is optimal to a particular task, modulo the clustering aitipon.  collection process, that the computed intervals wouldudel
This can be done via cross-validation or application of th&e true value. In strict formality, nothing can be said relijzg
Bayesian Information Criteria on training data. Supemyisghe probability of correctness for any particular valuegoeen
clustering on data so selected has given excellent reS#ls [ that the true value lies within the confidence interval cotadu
Clustering for diagnosismust either take note of modefrom any given sample, although confidence intervals aemnoft
labels in the clustering, thus acquiring a flavor of clasatfan, informally interpreted so.
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The object of inference is generally to determine the degrekassifier, applied to the resulting basis and instance hgjg
of support that a set of observations provides to alternatees a good job of matching expert fault assignments for
hypothesis, logical statements regarding the nature of timermediate size fault types, but less so for very common
system observed. In this, classical statistics is cripgdgd or rare types [41].
the assumption that probabilities are solely a property of Generating the projection usually has high computational
random variables. Hypothesis being either true or falsey thcost. Applying a fixed projection to new instances is com-
cannot be random variables. The classical approach is themparatively quick. But some information is inevitably lost i
consider each hypothesis in turn, choosing a statisticdaat reducing the data dimension. Standard dimension reduction
be computed from both the observations and from a referenteehniques concentrate on identifying and retaining thmido
distribution representing many repeats of the data cadiect nant component’s variations. This can pose problems fdt fau
process, assuming the hypothesis is true. If the obsendgtection and diagnosis in well engineered systems. Lol fau
statistic falls in a sufficiently unlikely spot on the digtwition, probabilities mean low fault frequencies and data vanesio
the hypothesis is rejected at some degree of confidence. Toginated by the normal operating modes. Thus there is a
degree of confidence is essentially the frequency with whidanger that evidence for faults will be discarded with the
repeated experiments would generate more likely values rafise. A fault pattern will need to be both distinctly ditéeit
the statistic. The numerical degree deemed to justify tiglec from nearby normal modes, and present in significant quantit
varies considerably between different fields, giving it éa@ie to remain separable in the reduced dimension represemtatio
arbitariness. Failure to reject a hypothesis does not intplySo these approaches currently seem inappropriate for fault
acceptance, merely that the current data is not incompatidletection and diagnosis in the aircraft operations domain.
at the stated degree of confidence, and says little if angthin
about its standing w.r.t. other hypothesis. VI. PROPOSEDDIRECTIONS

Given the above, and a viable alternative in Bayesian infer-In taking a strongly data-centric approach we avoid the
ence techniques, there seems little point in pursuing tiredb necessity of expressing a deep and inevitably specific under
methods of classical statistics as a basis for appliedenfs®. standing of the system under study, while foregoing thetgbil
The reader who finds this judgment too harsh should study Etd.diagnose at that level. We are in some senses reduced to the
Jaynes’ development of probability as the extension ofdégi role of medical diagnosticians of two centuries ago, whdaou
uncertain situations [38]. Jaynes’ earlier paper on “Canfee put names to many common problems, and provide effective
Intervals vs Bayesian Intervals”, reproduced in Rosertkrartreatment, without having a fundamental understanding of
[39], provides a deep analysis of the problems inherenteén tthose problems’ causes. But we have the advantages of often
classical approach to parameter estimation. For a reagonadxtensive sensor sets, diverse sensor types returningdifigan
balanced exposition of the motivation and application ahboresults, potentially long term records tracking probleraede
approaches to inference in scientific applications, seg@ye opment, machines able to record and organize such data, and
[40]. algorithms able to monitor and correlate details acrosseent

Despite rejecting the methods of classical statistics,ilit wdata sets. Given efficient use of these, a data-centric d&ign
not do to reject the body of its work. A great many vergystem could be quite sensitive to developing problemstand
capable people devoted their careers to wringing usefultees identifying known anomaly patterns, even if it knows nothin
out of the only method available to them, and there is mudf the diagnosed system’s internals.
of value in what they achieved. In particular, the classical However the key element to achieving this will be efficient
development of sampling distributions provides the liketids use of expert knowledge to help organize our understanding o
that are the hart of Bayesian inference. See Chandola’egurand provide diagnostic labels for, the fault patterns disced
[18], section 7, for an overview and references to the Gtassi in our data. Operational data of the sort that we envisiongJsi
Statistics based anomaly detection literature. such as FOQA records, cannot provide either. Annotated oper
ational data sets, identifying fault types to a degree bléttor
diagnosis, will be relatively rare since their generat®nastly
in terms of annotation effort. Thus efficient use of annotati

This encompasses a variety of techniques that attempteffort dictates that it be concentrated on previously detkc
project high dimension data to a low dimension space, whieult suspects. So we will seek anomaly detection methaats th
preserving most of the data’s variation, in order to faaiét identify candidate sets for expert analysis. Where anadtat
application of other techniques. Thus these are basicaly pdata sets already exist, they should inform our evaluation o
processing techniques. Principal Component Analysis (PCéetection techniques, keeping in mind that they only identi
is the canonical example, with a number of variations, arsbme possible fault types. This stage is a focused knowledge
very suitable for location based technigues. Non-negatigapture effort to obtain the annotated fault instances el
Matrix Factorization (NMF) is another approach, producinuild operational fault classifiers. Once such data is aléel
non-negative basis and weights interpretable as an aelditive have a variety of techniques for detecting and diagnosing
representation. With a large set of ASRS incident narrafiveknown fault types, and potentially identifying new unknown
NMF applied to reducing a bag-of-words parsing has genéault candidates, in both archived and runtime operatiata.d
ated reduced basis vectors that clearly and consisterdlypgr  Probabilistic classification will be fundamental to applyi
words into reasonable domain concepts. A simple supervisgata-centric diagnosis in operations. An important fadtor

E. Dimension Reduction
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improving on current approaches will lie in making maximune] D. Luchinsky, V. Osipov, V. Smelyanskiy, D. Timucin, SJckun,

use of available meta-data regarding data generatiorgazoll

tion, recording and prior processing. The idea is to model th

effects of the data creation process, in a fairly generic thay

will be easily adaptable to specific data sets, so as to éxtrac , o _
[17] D. Gorinevsky, S. P. Boyd, and S. Poll, “Estimation ofulfa in

maximum information for our diagnostic inference.
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