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On Data-centric Diagnosis of Aircraft Systems
John Stutz

Abstract—This article discusses results of an investigation
into requirements for and problematic aspects of implementing
a decision theoretic data-centric approach to the problem of
data driven fault detection and diagnosis for aircraft and their
subsystem, suitable for offline application to Flight Operational
Quality Assurance (FOQA) type data. We discuss fundamental
considerations for this type of approach, aspects of diagno-
sis required for a vehicle health management system, some
problematic aspects of the domain, and provide a high level
survey of current anomaly detection techniques, considering their
suitability for diagnosis. Our principle conclusion is that for data-
centric diagnosis, going beyond fault detection and localization
requires a mapping from observable symptoms to diagnoses that
is not readily available. This suggests a bootstrapping approach
involving clustering, outlier detection and expert identification of
suspected faults, providing the basis for actual diagnosis.

I. I NTRODUCTION

W E are tasked with devising novel decision theoretic
fault diagnosis algorithms, suitable for offline applica-

tion on heterogeneous fleet scale Flight Operational Quality
Assurance (FOQA) type data. This is a discussion of the
problem, with emphasis on the application domain, how it
constrains analytic approaches, and how the fault diagnosis
task differs from fault detection.

The primary data types of immediate interest come under
the general heading of flight records, conceptually any se-
quence of observation vectors made over a considerable time.
Heterogeneity enters as we anticipate diverse combinations of
binary, categorical, ordinal and real valued types, potentially
including parsed text records. We currently specifically ex-
clude raw narrative text. We do not require synchronized data
recording, nor regular time intervals, only sufficient informa-
tion that we can reconstruct a current observation vector at
any time point in the record. Thus there is a presumption of
timely observation updates, particularly that all operator inputs
are promptly recorded. We expect to have large quantities of
data representing diverse nominal operation modes, and much
smaller quantities representing faults that have been previously
identified by other means. Not all data sets in which faults
occurred will have been identified as such, and these may be
presented as nominal sets. Nor will all actual fault types have
been previously identified.

Regarding the algorithmic aspect, we are implicitly directed
toward data-centric approaches that avoid system modelingon
the order of a traditional physics based engineering model.
Moderate modeling, on the order of using meta-data to inform
the choice of appropriate probability distributions and priors,
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is expected to prove useful. But we seek inference systems
that are easily adapted to diverse domains without requiring
detailed knowledge of the internals of any particular system
under study. This will limit diagnostic ability, since lackof an
internal system model largely precludes inference regarding
the source of faults. Purely data-centric inference systems can
detect potential faults as anomalies and localize them with
respect to the space of observables. Data-centric inference of
causestraditionally requires a “supervised learning” approach
based on use of labels attached to fault instances previously
identified as such, and included in their training data. When
such labeled data does not cover a field, about the best that
can be hoped for are probability distributions over the set of
previously identified normal modes, known fault labels, and
“unknown fault”. This implies a boot strapping development:
Unknown faults detected and localized in the historic data will
need to be referred to domain experts for labeling and then
incorporated into the diagnostic model.

Our emphasis on probabilistic inference is a consequence of
the decision theoretic objective, which requires the probabili-
ties of possible system states, the set of relevant normal and
fault modes, in order to estimate the consequences of alternate
decisions. This aspect involves an extension of the usual
focus of diagnostics, from simply determining the presence
and nature of a most likely fault, to determining the relative
probabilities of any plausible faults. These are needed to
estimate the consequences, and thus the cost or value of any
potential decisions considered in response to the diagnosis.
This provides an element of prognosis, but one that lacks
an engineering based model-centric approaches’ access to the
predictive information implicit in an estimate of a system’s
detailed internal state and potential failure modes. Data-centric
prognosis will rely largely on historical information associated
with the likely system states, much as medical prognosis has
traditionally done.

This decision theoretic approach complicates matters some-
what, requiring our rethinking the application of any diagnostic
algorithms that return categorical results. Decision theory
requiresestimated state probabilities of alternate hypotheses
regarding system state. A conventional unqualified diagnosis
discards the essential estimates, convolving inference and
decision, and concealing the assumptions fundamental to each.

We consider data-centric and physics based model-centric
approaches as alternatives for diagnosis. These are the ex-
tremes along a continuum of emphasis that inevitably in-
volves both data and models. Model-centric fault diagnosis
emphasizes the components of a system, their interactions,and
their individual and collective fault modes, as constrained by
observations of a system instance. Data-centric fault diagnosis
emphasizes observational data, preferably dense, redundant,
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and frequently recorded with respect to (w.r.t. ) system failure
rates. The data-centric model may be little more than “...
these are the data patterns associated with normal modes and
known fault modes, and anything else is an unknown fault.”.
But the criteria for “association” and especially any data
preprocessing add additional structure to the often implicit and
unacknowledged model underlying any data-centric method.

Meaningful metrics for evaluating diagnostic systems will
vary considerably with application domains and specific users.
This is one of the major lessons learned from the DX-09
Diagnostic Competition [1] conducted as part of the 2009
International Workshop on the Principles of Diagnosis. There
the specification of generic evaluation criteria proved unex-
pectedly difficult, and in the end was somewhat specific to the
competition.

The following section is a brief overview of the basics of
Decision theory, and how it affects our choices for fault diag-
nosis. Section III is a similar overview of user requirements
for aircraft health maintenance systems (HMS), and how they
affect what we want to achieve. In section IV we review
some basic diagnostic methods, with emphasis on some of
the problematic areas of the aircraft HMS domain. Section
V reviews some of the standard approaches to fault detection
with discussion of their application to fault diagnosis. The
final section VI develops some thoughts on how our task can
be achieved.

II. D ECISION THEORY

Normative Decision Theory (DT) attempts to formalize the
process of making optimal decisions under uncertainty, by ex-
plicitly quantifying the expected values of alternate decisions
[2]. DT is based on Bayesian Probability Theory (BPT), using
BPT to estimate the probabilities of alternate possible current
states of a situation of interest, and to estimate the likely
outcomes of decisions given a current state. To this estimation
approach, DT adds utility values for the possible alternate
outcomes, and marginalizes over the states and outcomes to
estimate utility values of alternate decisions.

That’s the gist of Decision Theory. It is a simple idea, not
easily implemented. The problematic areas are found in several
critical underlying assumptions that must be met:

• Specification ofall potential system states, to the degree
of detail needed to estimate state probabilities from
system observables.

• Observed data from the current system instance concen-
trates probabilities on a few system states.

• Knowledge of all possible consequences and their prob-
abilities for any decision that can be made in any system
state.

• Numerical utility values for the possible consequences.
In principle, given the above, one can estimate the probability
of alternate outcomes of any decision, by conditioning on the
observations of a system instance, and then marginalizing over
the plausible system states. By factoring in outcome values,
and marginalizing over outcomes, one gets the estimated value
of each decision under consideration, still conditioned onthe
current system observations but irrespective of actual system
state and decision outcome.

In practice, each of the listed elements involves considerable
complication for design and validation, even for fairly simple
decision problems. These complications are exacerbated when
dealing with complex and highly reliable systems like aircraft,
where very rare faults can generate situations in which nor-
mal decisions can generate catastrophic outcomes involving
extraordinary costs. In particular, the possibility of unknown
(fault) states largely invalidates any numerical estimates of
decision values.

Thus the full normative Decision Theoretic program is
not well adapted to full aircraft diagnostic systems. It may
be applicable to subsystems that can be described by a
limited number of well characterized states, each with clear
consequences for any decision. But as such subsystems are
combined, the full state space size increases multiplicatively,
while subsystem interactions dilute knowledge of decision
consequences.

Nevertheless, Decision Theory offers useful ideas and
lessons for aircraft scale diagnosis. Particularly critical is the
refusal to decide on a particular system state, but to keep
all under consideration in proportion to their probability. This
contrasts to the sequential approach to problem solving, which
first decides what problem has occurred and then seeks a
solution to that problem. The decision theoretic approach seeks
a solution w.r.t. the probability and cost weighted possible
consequences of decisions, potentially bringing much more
information to the decision.

A second point, not emphasized above, is the value of DT
in determining what further information would be of greatest
utility in refining knowledge of system state and decision
consequences. Decision theoretic query formulation is a matter
of current research [3], [4] that needs to be added to our
repertoire of diagnostic techniques.

III. U SERREQUIREMENTS

Wheeler et al. [5] begin their survey of aircraft health
management system’s users’ objectives with the statement
that “One of the most prominent technical challenges to
effective deployment of health management systems is the
vast difference in user objectives with respect to engineering
development.”. This reflects both the wide range of users with
their divergent operational objectives, and the current shortage
of systems able to meet many of those objectives.

Aircraft HMS users span a surprisingly wide range of
interests, objectives, and time frames. Some of the principal
players and their concerns are:

• Flight - Here the emphasis is on safety in operation,
by getting critical fault information to the air crew, in
good time to respond, without increasing their cognitive
burden. Information overload is a very real danger, and
false or conflicting alarms will severely reduce system
acceptance.

• Maintenance is plagued by problematic fault reports,
from both crew and current HMS, that when investigated
either “cannot be duplicated” or “retest OK”. These
entail large costs in time and effort, and increase risk
of maintenance induced faults. An acceptable HMS must
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reducethese. Precise fault location is sought, particularly
in distributed system elements like wiring. Ideally an
HMS will provide advice on how to verify faults, what
tests are needed to distinguish between alternatives, and
how to make repairs. Maintenance costs for the HMS
itself, particularly for updates and their validation, must
also be minimized.

• Logistics seeks to minimize overall cost of operations,
primarily in terms of minimizing inspection and main-
tenance frequency and effort, particularly unscheduled
maintenance, without increasing risk of failure. Accurate
predictions of remaining useful life are desired, to enable
condition based maintenance.

• Fleet Management’s immediate concerns are operational
efficiency, particularly fuel costs. This is also concern
with minimizing unscheduled maintenance, preferably by
condition based maintenance, and maximizing service life
and reconfigurability. Long term goals are to improve
designs and qualifications, and to support business and
regulatory decisions.

A number of common themes arise, common to most users:

• Minimize false alarms - This is utterly critical if an HMS
is to be effective. A moderate false positive rate may
significantly reduce compliance with alarms [6]. Even a
low false alarm rate will cause extra cognitive loading
due to the need to evaluate the alarm while also dealing
with the alarm message.

• Maximally specific fault identification - This is essential
for efficient allocation of the resources needed to confirm
and rectify a fault, and thus central to the concerns of
many users.

• Earliest warning of failure - Regardless of their primary
emphasis, every sector wants the earliest possible warning
of developing problems.

• Minimize information overload - While human cogni-
tive capabilities can be much enhanced by training in an
operational domain, and are remarkably flexible, we are
limited in the number and the details of alternatives that
we can simultaneously consider. Too much of either and
our ability to cope degrades, often well before we realize
it, as recent results on multitasking demonstrate [7].

– Frequent fault messages, or large blocks of alternate
possibilities, can quickly overwhelm our ability to
keep track. Some degree of prioritizing and filtering
will be needed.

– Conflicting warnings can induce cognitive disso-
nance. Since alternatives are inevitable, some basis
for prioritizing them is essential. Probabilities will
provide the basic criteria, but utilities need to be
factored in as well.

– A fault diagnostic system needs to distinguish be-
tween critical and non-critical faults, in both imme-
diate and long term time frames, and clearly display
the relevant estimates.

– Any fault monitoring system is itself a source of
hardware faults, in its sensors and communication
links. When such faults occur they must be identified

as such. Otherwise the user bears the cognitive
burden of distinguishing between base system and
monitoring system faults.

• Access to auxiliary information - A fielded HMS will be
far more effective if it interacts with domain systems in
a manner that provides access to any kind of information
needed to deal with the alarms that it raises. For example,
maintenance is confronted with diverse reference sources
essential for confirming and repairing any single fault,
and would benefit from one point access to all relevant
information.

• Ease of use for entire system- An inconvenient tool
cannot be used efficiently and may simply be ignored.
Tool developers tend to forget that others invariably find
their systems more difficult to use and less responsive to
their needs than the developers anticipated.

Most of the above considerations are directed to full health
management systems. But all the above emphasize the need
for a fault diagnosis system that provides both probability
and utility estimates to support the traditional detectionand
location phases. Certainty in diagnosis is rare, and sound use
of diagnosis in an HMS requires explicit quantification of
uncertainties and consequences.

IV. D IAGNOSIS IN GENERAL

Fundamentally, fault diagnosis involves three elements: de-
tection, localization, and identification. A full HMS system
adds prognosis, confirmation and correction. Detection is sim-
ply recognition that a fault may exist, usually as an anomaly
in system description data. Localization involves determining
where in the subject system a fault resides, to the degree that
the diagnosis system allows this, often only as a subset of
anomalous data values. Identification labels a probable fault
in a manner that isinformative to the diagnostic system’s
users. Prognosis attempts to asses a fault’s future evolution and
severity. Confirmation of an evaluation is generally desired.
And finally, there is no point to any of the foregoing if no one
attempts to correct or alleviate the fault.

Model centric and data centric diagnostic methods are both
traditionally applied to object description vectors or time-
sliced system vector data. Thus they seek evidence of faultsin
a vector of observations representing an independent object or
at a single point in time. Vectors are generally considered to be
independent, conditional on the model, so there is no sense of
an evolving state. This vector based view dominates research
to the extent that it is often taken as a fundamental assumption,
but there are alternatives. Several types of Markovian state
estimators attempt to trace changes in the current system state,
w.r.t. a sequence of time-sliced observations, by retaining one
or more previous state estimates and factoring in inter-state
transition probabilities. Most of these vector based techniques
are intended for either real or discrete valued data vectors,
and require that all attributes be forced into the preferred
type. Satisfactory methods for simultaneously incorporating
categorical with discrete and real numerical data remain a
matter of research [8].

There are also sequential approaches for detection and
diagnosis in symbolic data streams [9], [10]. These emphasize
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recognition of sequential patterns, in contrast to the traditional
vector space patterns. There are two basic approaches: full
sequence comparison, and windowing to detect anomalous
subsequences in largely normal sequences. A variety of cate-
gorical similarity measures [11]–[13] are employed to measure
the differences. The primary application areas are in computer
transaction records, genome and document classification. Most
of the transaction oriented work has dealt with data composed
from a fixed set of a few 10s to 100s of symbols. How to best
factor numeric data into such a sequential analysis remainsan
open question.

Extreme model-centric fault diagnosis methods tend to
employ an engineering approach, based on a thorough un-
derstanding of the components making up a system, how
they normally operate and how they can fail, how they
are connected and how those connections can fail, how the
system is controlled and monitored, and thus how both normal
modes and faults will manifest in the observables. Complete
knowledge of the system is required, at whatever level of detail
is desired for diagnosis. This includes all relevant component
failure modes, since failures not modeled cannot normally
be identified, even if detected. Efficient propagation of the
effects of failures through the model, for comparison against
observations, is essential [14], as are efficient algorithms
for identifying and rating the most likely faults conditional
on current observations. Thus model-centric implementations
tend to be very focused on specific systems, for which much
detailed information is required, even when created with quite
general methods.

Where computational speed is essential, the model-centric
approach may resort to model compilation [15] or to model
simplification [16]. Simplification is actually a matter of
balancing tradeoffs between model detail and performance re-
quirements, and can still require quite sophisticated modeling.
Alternately, simplification may be imposed by algorithmic lim-
itations [17] or such hardware limits as memory footprint ora
need to implement on field programmable gate arrays(FPGAs).

Extreme data-centric fault diagnosis attempts to identify
anomalies without requiring detailed knowledge of system
internals. Detailed system knowledge is to be replaced with
copious quantities of system observation records, intended
to span all normal system operating modes. The immediate
objective is then to identify algorithm specific signatures
of normal operating modes, on the assumption that faulty
modes will distinctly differ from normal ones. This allows
for fault detection, and fault localization to the extent of
identifying what observations diverge from normal patterns.
Fault diagnosis equivalent to that achieved by more model-
centric methods is not possible from system records alone.
At very least, diagnosis requires a user’s vocabulary of terms
associated with fault descriptions.

Data-centric modeling is based on the idea of learning
from examples. There are a diversity of considerations to be
accounted for in defining such a diagnostic system. First and
foremost is what one seeks to obtain from diagnosis and what
one has to base diagnosis upon. Here we discuss some major
considerations.

A. Learning Patterns

Supervised learning of aclassifier, using fully labeled
data instances, is the preferred mode of learning for data
centric fault diagnosis systems. Fault type labels are eventually
required for fault identification, and if possible, they should be
introduced as early as possible. Normal operating mode labels
will be needed for some approaches, since fault modes can fall
between normal modes and within the overall normal region.
Traditionally the labeled instances are used to specify labeled
regions in the native data space or alternately, a projected
feature space such as used with Gaussian Process Regression
(section V-A2) or Support Vector Machines (section V-A4).
The basic idea is that each mode maps to a consistent region
in the data space, modulo some variance, for all relevant
observation records. Test instances then get the nearest label,
for some specific sense of nearest, or a probability distribution
over labels. Classification based approaches are thus well
suited to supervised learning. The drawback, of course, is in
the difficulty of obtaining accurately labeled training instances,
especially fault instances, with suitable coverage and quantity
in the aircraft systems domain.

Given the expected dearth of labeled aircraft operating
records, both normal and faulty, some form of semi-supervised
classification with bootstrapping will likely be needed. This
will involve classification over whatever labeled data is avail-
able, combined with clustering of unlabeled data. On the
assumption that normal modes are dominant, outliers and
small cluster instances will be extracted and subjected to
expert review. Given labels for these instances, the model
is updated and reexamined for borderline instances that still
need labeling. On attaining a stable configuration, the model
can be used for routine classification. This approach has
the operational advantage of requiring only minimal training
instance labeling, largely limited to the true faults and the
nearby normal instances. As with any clustering system, there
may be difficulties due to clusters that do not align well
with the properties of interest, and with small ones that get
assimilated into large clusters.

B. Models vs. Data

In any estimation problem there is a tension between the
degree to which data can be adjusted to fit the mathematical
model implicit in a learning approach, the degree to which the
model can be adjusted to suit the data, and the mismatch which
can be tolerated between them. Additionally, we tend to rely
on familiar tools and to interpret any problem in the light what
those tools can achieve. This is simply human nature, and not
necessarily a problem, if the mismatch is not too great. It does
tend to limit what can be learned from any set of observations,
and so needs to be guarded against.

Matching models to data is an intellectually more difficult
task, demanding knowledge of a range of techniques and what
makes them appropriate in different applications. There are a
wide variety of basic techniques, and an equally wide range
of variations on each. One gets the impression that it is easier
to devise a new variation for each new application, than to
find an old variation that fits. Chandola et al. [18] has made a
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valuable start in his survey of the field of anomaly detection
techniques, but such surveys can only provide a high level
overview. It remains the responsibility of individual developers
to determine what will best suit the actual problem at hand and
available data.

The cost of adapting models to problem and data come up
front, in the time and effort needed to determine what the
problem actually is, what data is available to support a solu-
tion, and how a solution might be obtained. Potential savings
lie in minimizing data conditioning efforts, with consequent
loss of information. The payoff lies in getting estimates that
address the actual problem, instead of being only incidental to
the problem.

C. Data Types

Just as analytic methods tend to diverge in regarding system
data as either vector valued instance descriptions or temporal
sequences, so they also tend to differ in their handling of
categorical (names, symbols, labels, &etc.) and numericaldata.
An alternate partitioning is into discrete and continuous valued
attributes, which emphasizes the somewhat ambiguous nature
of ordinals (orderings, counts, &etc.) as a data type. Data
modeling techniques tend to be best adapted to one or the
other, and may require that one be transformed to the other.

Categoricals: These, when mutually exclusive and ex-
haustive, fall directly into the provenance of discrete proba-
bility theory, with well known modeling techniques. Distance
based approaches like the nearest neighbors variants require
a scalar magnitude for each component of the difference of
two vectors. For ordinary categorical attributes with mutually
exclusive values this distance is usually taken as the difference
measure: 1 if values differ and 0 if they are identical.

When a categorical attribute’s values are not exhaustive,
they can be supplemented with “other” or “unknown” and
the standard techniques used. With non-exclusive labels, such
as one finds in the NASA/FAA Aviations Safety Reporting
System (ASRS) classifications, the situation is less clear.There
the anomaly category set numbers about 60, we have observed
up to 12 assigned to a single report, with a mean count near
2.7.

A tempting approach to handling this situation is to adopt
multiple binary one-vṡ-all models, which can be useful when
just seeking to recover the labels. Deciding how many labels
to accept could be problematic. The Bayesian equivalent is
to replace each label with a binary attribute indicating the
label’s presence or absence, and to estimate all label probabil-
ities together. This potentially entails a large increase in the
attribute space and possible dilution of the labels’ information
content. Modeling these as independent attributes might not be
a problem, but a covariant approach should consider a sparse
parameter representation as in section V-A3.

Ordinals & Counts: Plain ordinals are discrete yet have
a well defined ordering, while counts add a sense of uni-
form spacing. Either may be treated as simple categoricals
with some, often much, loss of information. Counts that are
believed to have been generated by a uniform rate process
are well represented by the Poisson distribution, with several
derivatives for functions of such rates [19].

For distance based models the difference of two counts is
just their numerical difference. That of two ordinals couldbe
taken as the difference of their positions in the ordering, or as
specified for categorical differences.

Reals: Continuous or real numbers are the basis of
numerical analysis, and the number of ways to view them
is correspondingly large. The variations on the Gaussian Nor-
mal densities are the canonical choice for representing noisy
numerical observations in Bayesian inference. There are many
more possibilities [20] including numerous specializations of
the Gaussian. Most of these are extremely specific, and so of
little interest. But others deserve to be much better known,
particularly those devised for directions and for bounded
domains, where the standard Gaussian is quite inappropriate.

For distance based models there are a variety of distance
measures based on the vector difference. Choice among them
is an open questions, but there are usually no difficulties in
their application to the data.

Most analytic methods for real number data assume that our
values sample the continuous real number line of mathematics.
In fact, we normally use floating point numbers, which allow
only an infinitesimal sampling of the reals. Sensors often
report,, and databases often record “reals”, to only a few
digits. And some attribute values, flap angle for instance, may
normally only vary over a small set of values, despite havinga
continuous range of possibilities. Thus any real valued attribute
requires careful examination of its distribution to determine a
sound approach to modeling it.

Heterogeneous Data:Heterogeneous data usually de-
notes a mixture of discrete and continuous types. It has often
been a problem due to difficulties in combining the several
types in a well justified manner. Two preprocessing techniques
for conversion to uniform type are described here.

Binning of continuous values into discrete categories is pop-
ular in some traditions. One such is Naive Bayes classification,
where all attributes are normally modeled by independent
multinomial distributions. Binning eliminates much of the
information in continuous data, retaining only some blocky
senses of nearness and ordering. The multinomial model
then ignores any residual ordering information. Binning to
uniform spacing, population, or similar criteria requiresa
preprocessing step suitable only for static data. Menzies &
Orregio have devised a runtime binning technique suitable for
streaming data [21]. This generates non-uniform bins, some
of which may eventually be deleted. Thus the representation
is dynamic, and requires update of their class models, which
is not difficult in their approach to Naive Bayes. Despite the
inherent information loss, they report good tracking of concept
drift and detection of anomalous events in a variety of data
sets [22].

A categorical attribute withn mutually exclusive values
can be projected to an(n − 1) dimension real valued space,
as an n-vertex regular simplex or hyper-tetrahedron, thus
preserving a uniform unit distance measure. Multiple attributes
are transformed independently. For each such attribute, the
data space dimension is increased by the number of values
less one. The transformed attributes can be seamlessly merged
into an appropriate density model.
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In preference to forcing our data to fit a model, a prob-
abilistic model can be customized to fit the data. The Naive
Bayes approach, which models discrete valued attributes inde-
pendently, can be extended to handle real valued attributesby
marginalizing over subranges centered on the reportable real
values. This gives probability masses that are fully commen-
surate with Naive Bayes’ normal multinomial distributions.
In addition, covariant attribute subsets can be modeled for
either discretes or reals. This approach was implemented in
the AutoClass system of Cheeseman et al. [23]. Covariance of
discretes with reals remains a problem. The obvious approach
of providing a real distribution conditioned on each combi-
nation of discretes can require a large number of parameters,
and so risks overfitting of training data.

Missing Values:For a variety of reasons, missing values
can occur in raw unprocessed data. Unfortunately most data
analysis models assume that all values are provided, and
in order to proceed, they essentially require that either the
missing values be provided or that the attribute be ignored.
A pre-analysis data conditioning step may achieve the former,
and for some data types this can be done in a reasonably
sound manner, as interpolation or regression. Some Bayesian
models will permit marginalizing over the attribute’s proba-
bility distribution conditioned on the other known attributes,
but the potential algorithmic costs are high, and may preclude
this approach. Even if allowable, the instance informationis
degraded, and severely so if several attributes have missing
values.

With probabilistic models any missing values can be ex-
plicitly modeled, by adding a “missing” value for discrete
attributes and making real attribute densities conditional on
a “known / unknown” added binary. This works well when
attributes are modeled independently [23], as in Naive Bayes.
But it increases the parameter space somewhat for inde-
pendently modeled values, and significantly so for covariant
models. Additionally, where missing values are common they
may dominate the resulting statistics, and a more sophisticated
approach may be needed in order to concentrate on those
values that are known.

Covariance:Most probability distributions are univariate.
Any such can be multiplied to form a joint distribution,
under the assumption that the corresponding observations are
independent. The several distance based inference approaches
make similar assumptions regarding attribute independence or
homogeneity. However there is often much to be learned from
analysis of attribute covariance. In particular, observations that
are strongly influenced by a common causal factor tend to
be correlated to some degree. Thus loss of expected sensor
correlation may be evidence for loss of function somewhere
in the sensing system. Covariance is used in just this manner
in the System Invariant Estimator (SIE) of JPL’s Beacon-based
Exception Analysis for Multimissions (BEAM) system [24].
Since quite different sensor outputs can become correlated
via the processes they monitor, correlation monitoring can
potentially provide a degree of sensor redundancy without
requiring redundant sensors.

The only well known covariant probability distributions are
the multivariate multinomial for discrete attributes and the

multivariate Gaussian for reals. SIE uses direct computation
of pairwise covariance without considering the location aspect
provided by the multivariate Gaussian. Special distance mea-
sures for correlations have also been devised [25]. The Fisher-
Bingham or Kent distribution for covariant directions on the
3D sphereS2 extends the Gaussian to directional distributions
[26].

D. Domain Considerations

The aircraft operations and maintenance domain involves a
number of considerations not often encountered in the stan-
dard databases commonly used to exercise and test academic
inference systems. Size alone is one factor, far from the most
significant. These considerations are not wholly unique. Some
are shared with most real world operations domains. Emphasis
differs between domains, but the necessity of adapting models
to suit domain considerations remains.

Transients: In time series data, transient responses to
transitions between normal operational modes can be a prob-
lem. Transients are almost inevitable in electrical systems,
where inductances generate large voltage excursions when
circuits are switched on or off. Inertia in mechanical systems
can also induce transient responses. Such transients can easily
exceed the limits bounding normal steady state modes, so can
fall outside of any steady state model, and are potentially
identified as anomalies. Thus transients need to be explicitly
dealt with, either by preprocessing or by explicit modeling.

Wide band prefiltering of time series will smooth down
short duration transients, but only at the expense of length-
ening the inter-mode transition time to the order of the filter
width. This may leave transition time vectors hanging between
normal modes, in an anomalous state. However such smoothed
inter-mode transitions might be identified as normal modes
themselves, if they are common enough in training data that
is deemed normal.

Presence of transients argues for a state inference method
that explicitly allows for and accounts for them, and thus
one that explicitly models some degree of time wise system
evolution, in contrast to simple mode switching. This precludes
approaches that treat observation vectors as being independent,
conditioned only on the system operating mode, as simple
classifiers tend to do. The full system history should not be
necessary, but some knowledge of the state estimates over
some range of previous observations may be desirable. This
suggests a Markovian approach to modeling mode transitions,
but we are not aware of any such data-centric approaches.

Sensor Failure:Aerospace engineering lore suggests that
in highly engineered systems the sensors are often more likely
to fail than the system sensed. So a diagnostic system needs
to be able to identify sensor failures, and to distinguish such
failures from faults in the underlying system. Furthermore,
sensors can fail while continuing to report values that are
within their normal range for the current operating mode,
so sensor failure diagnosis is more than simply out of range
detection.

This implies that no sensor value can be taken as truth.
Any sensor value must be verified, presumably by comparing
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against some other system attributes that tend to confirm or
discomfirm correct sensor operation. The classical approach is
3+-fold sensor redundancy, with direct inter comparison, and
choice of a non-extreme value. This is expensive, primarily
in terms of the extra sensors, communication links, and
maintenance added to the system being sensed. However the
modeling and decision analysis can be fairly straightforward.
An alternate approach is to look for correlations between
multiple sensors. Strong correlations can be assumed to result
from common causes, particularly if a degree of a correlation
persists over operating modes. Thus incorporating correlations
into data centric models is of potentially great value for
identifying faulty sensors, despite the consequent increases in
model complexity.

The probability that sensor faults are more frequent than
system faults obliges the diagnostician to differentiate between
the two types, and to handle them appropriately. Sensor faults
do need to be reported, but they are not in themselves so
critical as system faults usually are. The difficulty lies infirst
distinguishing sensor from system faults, and second, finding
some way to accommodate sensor faults in system normal
mode models. Even with binary sensors, the combinatorial
explosion of alternate sensor failure patterns precludes trying
to identify each combination of sensor failures as a normal
mode. A semi-naive Bayesian approach might work, consid-
ering only independent failures, but even this involves an
enormous expansion of possibilities for each normal mode.
Nevertheless, a resilient diagnostic system needs to be able to
reliably estimate system state in the presence of sensor failures,
so this problem must somehow be overcome.

Fleet Variation: As diagnosticians, we would prefer to
deal with fleets of nominally identical aircraft as if individuals
were largely interchangeable. This would greatly simplifydata
collection and somewhat simplify modeling, fault detection,
and diagnosis. Such an approach may be possible for many
subsystems, but less likely so for full aircraft and the more
complex and/or highly stressed subsystems like engines and
landing gear. There are fundamental and unavoidable reasons
for this.

• The more complex a system, the more likely that any two
“identical” copies differ in significant ways, even prior to
first use.

• Transportation systems operate in a highly variable envi-
ronment, so can quickly develop quite individual histo-
ries, particularly w.r.t. the extreme events that can initiate
faults.

• Flight crew operational activities may vary considerably,
particularly in stressed situations, despite efforts to stan-
dardize operation.

• Maintenance inspection and repair practices may diverge
from standards, potentially introducing new faults or
altering the signature of normal operating modes.

All of the above imply that complex “identical” transporta-
tion systems, and their major components, will have divergent
histories, which induce differences in our observations of
both normal and faulty operating modes. The degree of such
differences remains to be evaluated, and their significance
will depend on how the systems and its operating modes are

modeled. Thus if we train a subspace localizing algorithm
on both individual system and fleet data, alternately for the
same operating mode, we expect to find that no individual
system distribution quite matches the fleet distribution, while
fleet variances are larger and fleet correlations are smallerthan
those for individual systems. Depending on our goals, this
could be sufficient to require that we use individual system
instance models for fault analysis. The lesson here is that the
degree of fleet variation needs to be either proven negligible
or specifically accounted for, before attempting to use a fleet
wide analysis approach.

Mode Drift: Any complex systems, particularly those
involved with large scale generation and application of power,
can be subject to drift in the values of observables associated
with any single operating mode. For aircraft, the most obvious
causal chains are based on the gradual consumption of fuel,
and affect a variety of flight parameters. Any diagnostic system
for aircraft flight operations needs to account for mode drifts,
either allowing for it by incorporating sufficient leeway in
a static mode description, or by updating dynamic mode
descriptions. Either way we must deal with the potential
problem that fault modes may fall within the extent of such
extended normal mode descriptions, and thus not be detected.

Multiplicity of Modes: Multiple operating modes are
expected in any non-trivial system, and will be a problem for
analytic methods that presuppose binary decision problems.
With multi-modal approaches there is always the question of
how many modes are to be allowed, or can be allowed without
overfitting the estimated model to the training data. This is
where Bayesian posterior probability estimation is particularly
useful, since the cost in prior probability of the additional pa-
rameters required to extend a model will eventually dominate
the increased likelihood gained by better fitting the model to
the data [23].

Multiple modes with significant mode drift will blur the
difference between the two concepts. This will influence how
we define both modes and mode drift, possibly on a application
specific basis.

V. DATA CENTRIC DIAGNOSIS

Chandola [18] et al. have made a comprehensive survey
of data driven techniques for anomalydetection, and we
follow their organization here. However diagnosis differsfrom
detection in significant ways, so our emphasis differs, with
some additions and deletions. The requirement that a diagnosis
algorithm shall detect, localizeand identifymost anomalies,
preferably with probability estimates for alternative identi-
fications, requires considerable extension of some standard
detection techniques and may preclude others.

Fault identification is the key difference distinguishing data
centric diagnosis from traditional data centric fault detection.
Identification requires knowledge of faults, which will nor-
mally be obtained from labeled fault instances. Note that fault
labels are not necessarily exclusive: In one set of annotated
ASRS reports, we found an average2.7 fault type labels per
instance, with the maximum exceeding 10. This complicates
adapting those probabilistic techniques that implicitly assume
“mutually exclusive and exhaustive” alternatives .
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A. Classification Techniques

Classification based diagnosis attempts to learn a classifica-
tion model from a set of labeled training data instances, and
then to classify test data instances w.r.t. the learned model.
The basic assumption is that classes occupy distinct regions in
the data space, or some projection thereof. Mutually exclusive
classes are normally assumed, but real world labeling may
be non-exclusive. Labeled class instances are assumed, both
normal modes and anomalies for diagnosis. But there must
also be some provision for detecting previously unseen anoma-
lies. Data as instance vectors is traditional, and traditionally
classified independently, but machine classification is an old
field with many variations, of wide application.

Classification is very often cast as adecision process, with
logical and normally exclusive outputs. Such classification is
of little interest for decision theoretic diagnosis, and then only
to the extent that variations can generate class probabilities.
Decision process classifiers will not be discussed here, except
where they can be upgraded to generate probabilities. .

1) Neural Networks (NN):These have a long history of use
for classification, having been generally applied to mutually
exclusive classes. Training a neural network as a probabilistic
classifier for non-exclusive classes requires some variation of
traditional techniques. It is likely that this would degrade
the NN’s ability to distinguish classes. An NN classifier
normally has one output per class, and generates a set of
output weights for each instance tested. These weights can
be treated as likelihoods and normalized into probabilities,
when mutual exclusivity is assumed. Outliers are detected as
instances that have very low weights at all outputs. Explicitly
Bayesian variants are available [27], but Gaussian Processes
have preempted these in several ways.

2) Gaussian Processes:Gaussian Process Regression
(GPR) assumes a regression functiony(x) that is a weighted
sum of many, perhaps infinitely many, basis functions:y(x) =
∑I

i wiφi(x). The resultingy(x) is linear in thewi, and assum-
ing thewi each have a zero mean Gaussian prior probability
distribution, y(x) is also zero mean Gaussian w.r.t. theN
training instances. Then, so far as prediction is concerned,
the only effect of the basis function set is through theN
by N covariance matrix. Conversely, any valid covariance
matrix corresponds tosomeset of basis functions, admitting
their implicit use. GPR modeling is then largely a matter
of specifying the covariance matrix, optimizing w.r.t. any
hyperparameters, and then inverting the covariance for usein
prediction.

GPR provides an effective approach to binary classifiers,
and has been extended via Monte Carlo or variational methods
to multi-class problems [28]. It may also be possible to do
multi-classification by applying GPR to the simplex categori-
cal expansion of the class symbol, as described in section IV-C,
via multi-dimensional regression. If so, this could provide a
direct approach to representing and predicting non-exclusive
categories, as points on or within a categorical simplex. How-
ever GPR does its separation in the kernel space of the implicit
basis functions, which is not directly represented, and so is not
accessible for localizing the source of unknown anomalies.

Thus GPR is better adapted to detection than diagnosis.
3) Bayesian Classification:This can take a variety of forms

depending on the type of data and how class models are
mathematically defined. Classes are described by probability
distributions over the native data space or some projective
space. Most forms are thus vector based, assume indepen-
dent instances, and mutually exclusive and exhaustive classes.
These assumptions can be relaxed at the expense of additional
complication.

Naive Bayesian classifiers commonly assume categorical
data, with each attribute in each class modeled by an in-
dependent multinomial distribution. Classes are learned by
accumulating attribute statistics from a set of labeled training
instances. Uninformative Dirichlet priors prevent zero prob-
abilities in the distributions. A class’s likelihood for a test
instance is then the product of the instance’s attribute values’
probabilities for that class. The class likelihoods are multiplied
by the class probability and then L1 normalized to get the class
probabilities conditioned on the current mutually exclusive
multi-class model. However the class likelihoods can also be
informative, either for detecting anomalous instances that do
not match well with any class [22], or for detecting concept
drift in temporal data [21].

Numerical data is usually incorporated into Naive Bayes by
binning each attribute to a categorical replacement. Whilethis
shoehorns numericals into the categorical based multinomial
model, it loses much of the detail inherent in numerical
ordering and differences. Binning usually involves a prepro-
cessing step, but there are techniques for dynamic single
pass binning, practical because the classes’ corresponding
independent attribute statistics can simultaneously be updated
as bins are added or merged, without referring to the original
data.

Naive Bayes for categoricals can be extended to covari-
ant multinomial Bayes by considering the joint categorical
attribute space. Done naively this involves a combinatorial
explosion, the per class parameter count going from the
sum of attribute value counts to their product. The product
space’s size can easily exceed the number of training instances
available per class, but a class instance count is usually much
larger than the number of product cells actually occupied, so
sparse parameter representations may allow efficient covariant
modeling. An implicit uninformative prior eliminates zero
valued probabilities. When this approach is possible, one gains
access to inter-class differences that are completely invisible
to standard Naive Bayes.

With numerical data, suitable probability distributions,dis-
crete for integers and continuous for reals, are substituted for
the multinomial. Naive models retain the independent attribute
approach, while covariant models can group attributes that
use the same mathematical model, usually the multivariate
Gaussian or similar exponentials. The fulln attribute co-
variant Gaussian requiresO(n2) parameters per class, but
unlike the covariant multinomial, all values are instantiated.
An independentn attribute Gaussian model needs only2n
parameters per class. A full covariant Gaussian model applies
the corresponding Mahalanobis distance measure, and so is
an exact representation for any distribution corresponding to
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an affine transformed spherical Gaussian. Thus they make an
excellent model for classes that can be described as noisy
distorted point distributions. They are less appropriate for more
complex distributions, where multiple spherical Gaussians
have been used for single class models.

While the Gaussian is the traditional basis of statistical
analysis, there are a wide variety of other continuous distribu-
tions applicable to numerical data modeling. The von Mises
distribution may be considered to represent a Gaussian like
distribution over a circular basis, parameterized by a direction
and variance. The von Mises-Fisher distribution extends that
concept to theSn hyper sphere with uniform variance, while
the Fisher-Bingham allows for covariance onS2 [26]. The
log-normal distribution gives a single bounded Gaussian equiv-
alent, and the log odds normal a double bounded one. Both
behave very like a standard normal distribution when the mean
is several standard deviations or more away from the bounds,
both achieve very large densities as the mean approaches a
bound, and both are zero at and beyond their bounds. The
potential advantages of using such distributions that match
one’s meta-knowledge of a data set should be obvious, yet they
seem to have been largely ignored in the anomaly detection
field. This may be a matter of excessive choice. Wikipedia’s
continuous probability distributions page [20] currentlylists
95 alternatives and is not up to date. Most are extremely
specialized, but it will worth one’s effort to investigate which
best fit reasonable expectations about specific data.

Similar considerations apply to discrete numerical data,
such as counts or ordinals, where continuous distributions
like the Gaussian are generally inappropriate, and castingto
categoricals to suit a multinomial model can destroy much
information. The Poisson is the canonical distribution for
counts and should always be considered for such attributes,
but there are other alternatives.

4) Support Vector Machines:For fault detectionone can
use semi-supervised one-class SVMs, trained on presumed
normal data. With suitable kernels these can learn a complex
boundary around the normal region, and any test cases falling
outside are declared faults. For faultdiagnosisa supervised
approach is needed, for training standard SVMs on labeled
fault classes. Here the binary separation that is fundamental
to standard SVMs becomes a problem. One can either train an
SVM for each class, in a one against the rest mode, or train
on every pair of classes. In both cases the classassignment
is usually decidedon a winner take all basis, the first by
maximum class weight and the second by majority voting.

There are a number of procedures advocated for converting
the results of SVMs and similarbinary decision classifiers
into class probabilities. See the survey by Gebel & Weihs
[29] for an introduction. They have since adopted a Dirichlet
distribution based approach [30]. A problem with this is the
need forO(n2) binary classifiers, where n is the number of
known normal and fault classes to be identified.

Relevance Vector Machines are an SVM inspired variant de-
signed specifically to return probabilities. To achieve this they
forego the standard SVMs’ guarantee of optimality modulo the
choice of kernel function, while remaining binary classifiers
trained on labeled data. The probabilities resulting from aset

of one against the rest classifiers could reasonably be taken
as likelihoods, and normalized to get an overall distribution.
Deployed as binary classifiers, the methods of [30] could be
used to derive class probabilities. Detecting unknown classes
might be problematic.

5) Rule Based Classification:Supervised rule based clas-
sification, as decision trees, classification trees or regression
trees, has a long and successful history [31], [32]. The basic
idea is to recursively partition labeled data into sub-spaces in a
way that maximizes the difference between the two part’s label
statistics. This normally builds a binary tree that terminates
in leaves that hold only a single label. Each partitioning is
usually done on a single attribute, rarely in the same order on
parallel branches. Overfitting is a common problem, and most
methods apply a post-partitioning pruning step which removes
sparsely populated partitions at the expense of having leaves
with mixed labels.

The chief advantage of decision tree classifiers is the straight
forward interpretation of the resulting rules. As with most
parametric methods, construction is slow while application
is quite fast. There is the usual range of variations among
implementations, primarily on how to choose which attribute
to split upon, and where, for each non-terminal branch. Recent
work on minimal trees [33] confirms that often only a fraction
of attributes need be considered.

The downside of standard decision trees is that they make
a decision at each partitioning, and so provide no measure of
how strongly any result should be believed, nor any probabili-
ties for alternative results. Without these, any further inference
is conditional on a correct decision, and so is necessarily
suspect. However there are variants that do return probabilities,
while simultaneously minimizing the overfitting problem [34],
which eliminate the principle caveats.

6) k-Nearest Neighbor:K-nearest neighbor is a supervised
classification technique that attempts to finesse the representa-
tional limitations of the simple mathematical density models
by substituting a large labeled set of training instances asa de
facto density model. Each subset sharing a label thus definesa
non-parametric distribution. For each instance to be classified,
the k nearest neighbors are determined, and their labels used
to determine the test instance’s class, usually by majorityvote.

The naive computation time isO(ntnc), wherent andnc

are training and classification data set sizes. Much effort has
gone into minimizing this. There is the expected variation in
methods for choosingk, measuring distance, and combining
distance and labels to determine a class. Independent of simple
noise, distance measures are degraded by the presence of
irrelevant attributes or attribute scales that are inconsistent
with their relevance. Thus both feature selection and rescaling
may be an important preliminary aspect of k-Nearest Neighbor
classification.

B. Nearest Neighbor Detection Techniques

Nearest Neighbor based anomalydetection techniques
are non-parametric in the sense of not needing additional
parameters to specify a model. The training data provides the
model, as an implicit density distribution over the parameter
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space, and thus is the parameterization. The assumption is that
Normal data instances occur in dense neighborhoods, while
anomalies occur far from their closest neighbors.There are
two general techniques:

• Use the distance to thekth nearest neighbor.
• Compute the relative density near an instance.

Conceptually these are roughly equivalent: the distance to
thekth nearest neighbor defines a local hypersphere containing
only k training instances, and thus maps directly to a local
hyper-density. Implementations differ considerably, in how
to specify k, how distances or densities are computed, how
distances or densities are used to score an anomaly, and how
the naive necessity for comparing each test instance against
all training instances can be finessed [18]. A standard mode
for using nearest neighbor is to seek anomalies by comparing
a data set against itself. This is anO(N2) operation, hence
the emphasis on efficient techniques [35].

For anomalydiagnosisin a supervised mode, the obvious
extension is to combine a k nearest neighbor classifier for nor-
mal modes and known anomalies, with akth nearest neighbor
distance or density based outlier detector to catch unknown
anomalies. As the operating mode shifts from supervised
through semi-supervised to unsupervised, the classifier aspect
takes on increasing importance. But since diagnosis requires,
at the very least, knowledge of a mapping from symptoms to
labels, the objective of unknown anomaly detection will be to
locate anomalies for identification by domain experts.

C. Clustering

Clustering is normally done in an unsupervised mode to
group instances that are collocated in the native or a projected
data space. Thus it seeks to find natural classes, w.r.t. the
instance descriptions and a similarity measure. This is an old
field, with a wide variety of clustering techniques developed
for many application areas. Berkhin’s survey [36] of clustering
for machine learning lists about 50 named programs. Popular
variations are Self-Organizing Maps (SOM), K-Means Cluster-
ing, and Probabilistic Clustering via Expectation Maximization
(EM) optimization. For unsupervised anomalydetectiondata
is first clustered and then instances are examined for eitherlow
degree of cluster membership in any cluster or high member-
ship in small or sparse clusters. In a semi-supervised mode
only normal mode data is clustered, then suspect instances
are tested, those not falling within a cluster being considered
anomalies.

Unsupervised clustering generates clusters that are optimal
w.r.t. the clustering algorithm and the data used. Unless both
algorithm and data are carefully matched, the clusters may
have little correspondence to any properties of interest. Su-
pervised clustering can make use of instance labels in training
data to identify an attribute subset, or perhaps a projection, that
is optimal to a particular task, modulo the clustering algorithm.
This can be done via cross-validation or application of the
Bayesian Information Criteria on training data. Supervised
clustering on data so selected has given excellent results [37].

Clustering for diagnosismust either take note of mode
labels in the clustering, thus acquiring a flavor of classification,

or must later learn a mapping from clusters to mode labels.
The former might be achieved by partitioning data w.r.t. to
mode and clustering within each mode to get “pure” clusters.
This is akin to classification with extended classes represented
by a sum of distributions. The latter might be achieved using
a probabilistic clustering, and associating a distribution over
mode labels with each cluster. A new instance’s mode proba-
bilities are then computed as the cluster probability weighted
sum over the mode distributions. In essence, this defines
a multivariate mode probability distribution over the data
space that is similar to that implicit in a k-nearest neighbors
algorithm.

For data space location based clustering, a common model
defines clusters as noisy points in a possibly extended data
space, and assigns instances to the nearest cluster, modulo
some distance measure. The distance need not be isotropic,
and variants on the Mahanalobus are popular:dM (x, µ, Σ) =
√

((x−µ)Σ−1(x−µ)), whereµ is the cluster center andΣ is
the cluster covariance matrix. The Mahanalobus degenerates to
the Euclidean distance asΣ → I, allows for simple indepen-
dent attribute scaling whenΣ = diag(σ)2, or for covariant
scaling whenΣ = diag(σ)Cdiag(σ) for correlation matrix
C. The Gaussian radial basis function is a popular variation,
with dG(x, µ,Σ) = exp(−dM (x, µ,Σ)/2). Normalized to
unit mass, these give the Multivariate Gaussian probability
model:P (x|µ, Σ) = (2π)−n/2 det(Σ)−1/2dG(x, µ, Σ), and a
probabilistic interpretation of class membership [23].

D. Classical Statistical Techniques

Classical frequentist statistics suffers from the assumption
that randomness is a property of nature that afflicts numerical
description of nature, and that the concept of probability is
only relevant to such random variables. Conceptually, a ran-
dom variable is an abstraction of a measurement process, and
any set of observed values are a sample from a conceptually in-
finite population. Thus probabilities are deemed to be long-run
relative frequencies representing results of a sampling process
that generates random variables. Sampling processes are tobe
described by sampling distributions, mathematical functions
that model the process by defining relative frequencies w.r.t.
to some parameters.

Given a sampling distribution with known parameters we
can compute likelihoods for any set of observations. Lacking
knowledge of one or more parameter values, they are to
be estimated from a statistic, e.g. sample mean or variance,
computed as a function of the sample values. All such statistics
are themselves random variables, but a useful statistic must
have its own known sampling distribution, typically a function
of the degree of freedom remaining in the sample. Only in such
cases is it possible to interpret the significance of a measured
sample’s statistic. This is expressed in terms of confidence
intervals, as the frequency, over many repeats of the data
collection process, that the computed intervals would include
the true value. In strict formality, nothing can be said regarding
the probability of correctness for any particular value, oreven
that the true value lies within the confidence interval computed
from any given sample, although confidence intervals are often
informally interpreted so.
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The object of inference is generally to determine the degree
of support that a set of observations provides to alternate
hypothesis, logical statements regarding the nature of the
system observed. In this, classical statistics is crippledby
the assumption that probabilities are solely a property of
random variables. Hypothesis being either true or false, they
cannot be random variables. The classical approach is then to
consider each hypothesis in turn, choosing a statistic thatcan
be computed from both the observations and from a reference
distribution representing many repeats of the data collection
process, assuming the hypothesis is true. If the observed
statistic falls in a sufficiently unlikely spot on the distribution,
the hypothesis is rejected at some degree of confidence. The
degree of confidence is essentially the frequency with which
repeated experiments would generate more likely values of
the statistic. The numerical degree deemed to justify rejection
varies considerably between different fields, giving it a certain
arbitariness. Failure to reject a hypothesis does not implyit
acceptance, merely that the current data is not incompatible
at the stated degree of confidence, and says little if anything
about its standing w.r.t. other hypothesis.

Given the above, and a viable alternative in Bayesian infer-
ence techniques, there seems little point in pursuing the formal
methods of classical statistics as a basis for applied inference.
The reader who finds this judgment too harsh should study E.T.
Jaynes’ development of probability as the extension of logic to
uncertain situations [38]. Jaynes’ earlier paper on “Confidence
Intervals vs Bayesian Intervals”, reproduced in Rosenkrantz
[39], provides a deep analysis of the problems inherent in the
classical approach to parameter estimation. For a reasonably
balanced exposition of the motivation and application of both
approaches to inference in scientific applications, see Gregory
[40].

Despite rejecting the methods of classical statistics, it will
not do to reject the body of its work. A great many very
capable people devoted their careers to wringing useful results
out of the only method available to them, and there is much
of value in what they achieved. In particular, the classical
development of sampling distributions provides the likelihoods
that are the hart of Bayesian inference. See Chandola’s survey
[18], section 7, for an overview and references to the Classical
Statistics based anomaly detection literature.

E. Dimension Reduction

This encompasses a variety of techniques that attempt to
project high dimension data to a low dimension space, while
preserving most of the data’s variation, in order to facilitate
application of other techniques. Thus these are basically pre-
processing techniques. Principal Component Analysis (PCA)
is the canonical example, with a number of variations, and
very suitable for location based techniques. Non-negative
Matrix Factorization (NMF) is another approach, producing
non-negative basis and weights interpretable as an additive
representation. With a large set of ASRS incident narratives,
NMF applied to reducing a bag-of-words parsing has gener-
ated reduced basis vectors that clearly and consistently group
words into reasonable domain concepts. A simple supervised

classifier, applied to the resulting basis and instance weights,
does a good job of matching expert fault assignments for
intermediate size fault types, but less so for very common
or rare types [41].

Generating the projection usually has high computational
cost. Applying a fixed projection to new instances is com-
paratively quick. But some information is inevitably lost in
reducing the data dimension. Standard dimension reduction
techniques concentrate on identifying and retaining the domi-
nant component’s variations. This can pose problems for fault
detection and diagnosis in well engineered systems. Low fault
probabilities mean low fault frequencies and data variations
dominated by the normal operating modes. Thus there is a
danger that evidence for faults will be discarded with the
noise. A fault pattern will need to be both distinctly different
from nearby normal modes, and present in significant quantity
to remain separable in the reduced dimension representation.
So these approaches currently seem inappropriate for fault
detection and diagnosis in the aircraft operations domain.

VI. PROPOSEDDIRECTIONS

In taking a strongly data-centric approach we avoid the
necessity of expressing a deep and inevitably specific under-
standing of the system under study, while foregoing the ability
to diagnose at that level. We are in some senses reduced to the
role of medical diagnosticians of two centuries ago, who could
put names to many common problems, and provide effective
treatment, without having a fundamental understanding of
those problems’ causes. But we have the advantages of often
extensive sensor sets, diverse sensor types returning quantified
results, potentially long term records tracking problem devel-
opment, machines able to record and organize such data, and
algorithms able to monitor and correlate details across entire
data sets. Given efficient use of these, a data-centric diagnostic
system could be quite sensitive to developing problems, andto
identifying known anomaly patterns, even if it knows nothing
of the diagnosed system’s internals.

However the key element to achieving this will be efficient
use of expert knowledge to help organize our understanding of,
and provide diagnostic labels for, the fault patterns discovered
in our data. Operational data of the sort that we envision using,
such as FOQA records, cannot provide either. Annotated oper-
ational data sets, identifying fault types to a degree suitable for
diagnosis, will be relatively rare since their generation is costly
in terms of annotation effort. Thus efficient use of annotation
effort dictates that it be concentrated on previously detected
fault suspects. So we will seek anomaly detection methods that
identify candidate sets for expert analysis. Where annotated
data sets already exist, they should inform our evaluation of
detection techniques, keeping in mind that they only identify
some possible fault types. This stage is a focused knowledge
capture effort to obtain the annotated fault instances needed to
build operational fault classifiers. Once such data is available
we have a variety of techniques for detecting and diagnosing
known fault types, and potentially identifying new unknown
fault candidates, in both archived and runtime operations data.

Probabilistic classification will be fundamental to applying
data-centric diagnosis in operations. An important factorin
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improving on current approaches will lie in making maximum
use of available meta-data regarding data generation, collec-
tion, recording and prior processing. The idea is to model the
effects of the data creation process, in a fairly generic waythat
will be easily adaptable to specific data sets, so as to extract
maximum information for our diagnostic inference.
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