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This paper presents a model-reference adaptive control approach for systems with unstructured uncer-
tainty based on two least-squares parameter estimation methods: gradient-based method and recursive least-
squares method. The unstructured uncertainty is approximated by Chebyshev orthogonal polynomial basis
functions. The use of orthogonal basis functions improves the function approximation significantly and en-
ables better convergence of parameter estimates. The adaptation of least-squares adaptive control is driven by
the plant modeling error which manifestes itself as the tracking error, but not vice versa. A predictor model is
introduced to estimate the plant modeling error without the need for differentiation of the state signals which
can introduce noise. The least-squares gradient adaptive control achieves superior parameter convergence
as compared to the standard model-reference adaptive control. Flight control simulations were conducted
with four adaptive controllers: least-squares gradient adaptive control, recursive least-squares adaptive con-
trol, standard model-reference adaptive control, and neural-network adaptive control. The results show that
the recursive least-squares adaptive control achieves better robustness as measured by a time-delay margin
while the least-squares gradient adaptive control achieves better tracking performance than both the standard
model-reference adaptive control and neural-network adaptive control.

I. Introduction

In many physical applications, there is no clear certainty about the structure between the input and output of
a process. This uncertainty is called unstructured. In systems with unstructured uncertainty, the transfer function
between the input and output is usually not known. Let y(t) ∈ R be the output with an unknown transfer function,
expressed as

y = f (x) (1)

where x(t) ∈D ⊂ Rp and f (x) ∈ R is an unknown function but assumed to be bounded function in x.
When the structure of the uncertainty is unknown, function approximation is usually employed to estimate the

unknown function. In recent years, neural networks have gained a lot of attention in function approximation theory
in connection with adaptive control. Multi-layer neural networks have the capability of approximating an unknown
function to within an arbitrary value of the approximation error. The universal approximation theorems for sigmoidal
neural networks by Cybenko1 and for radial basis functions by Micchelli2 provide a theoretical justification of function
approximation using neural networks. The use of multi-layer neural networks can create an additional complexity in
the back propagation gradient-based training rules.

Polynomial approximation is a well-known regression technique for function approximation. In theory, as the de-
gree of an approximating polynomial increases, the approximation error is expected to decrease. However, increasing
the degree of the approximating polynomial beyond a theoretical limit could lead to oscillations in the approximating
polynomial due to over-parametrization. Regularization techniques to constrain parameters have been developed to
prevent over-parametrization.3

In this paper, we explore the use of a special class of polynomials, known as Chebyshev orthogonal polynomials,
as basis functions for function approximation in an adaptive control setting. The Chebyshev orthogonal polynomials
have been shown to provide the “best” approximation of a function over any other types of polynomials.4 The use of
the Chebyshev orthogonal polynomials in the context of adaptive control with unstructured uncertainty is developed
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in this paper. The adaptive control approach is based on a least-squares gradient method and a recursive least-squares
(RLS) method. Least-squares adaptive control has been well-studied by numerous authors.5–7, 9–15 Lai and Wei estab-
lished consistency of recursive extended least-squares and proposed simple modifications of the Åström-Wittenmark
self-tuning regulator.5 Artificial neural network based adaptive control using least-squares methods is presented by
Suykens et al.6 Guo studied a recursive least-squares algorithm with slowly decreasing weights for linear stochastic
systems which is found to have self-convergence property.7 Nguyen presented a hybrid adaptive control approach
which combines a direct model-reference adaptive control to reduce the tracking error and an indirect recursive least-
squares parameter estimation to reduce the modeling error simultaneously.9–11 Zou et al. studied model-reference
adaptive control using the Chebyshev orthogonal polynomials for attitude control of spacecraft.12 Chowdhary and
Johnson developed a least squares modification to adaptive control problems where the uncertainty can be linearly
parametrized and the modified weight training law uses an estimate of the ideal weights formed online by solving a
least squares problem using recorded and current data concurrently.13–15

A different approach is taken as compared to these prior study whereby adaptation is driven by the plant modeling
error associated with the least-squares approach. In systems with uncertainty, the plant modeling error manifests itself
as the tracking error, but not vice versa. Thus, least-squares adaptive control addressing the plant modeling error
can be more effective than conventional model-reference adaptive control which is designed to reduced the tracking
error. In the context of adaptive control, least-squares adaptive control using Chebyshev orthogonal polynomials as
basis functions represents a novel approach that can be considered as an alternative design to the conventional model-
reference adaptive control.

A previous study demonstrates the effectiveness of least-squares model-reference adaptive control.8 One of the
drawbacks of least-squares adaptive control is that the adaptive laws in general require the time derivatives of the state
signals. Differentiation of any time signals can introduce a significant noise source which could affect the closed-loop
stability of a control system. This paper addresses this drawback by introducing a predictor model to estimate the
plant modeling error without the need for differentiation of the state signals. Simulations demonstrates that using
the predictor-model-based plant modeling error for adaptation as opposed to the true plant modeling error is highly
effective.

II. Polynomial Approximation

Any sufficiently smooth function f (x) ∈ C can be expanded as a Taylor’s series about some x = x0

f (x) = f (x0)+∇ fx (x0)(x− x0)+
1
2
(x− x0)

>
∇

2 fx (x0)(x− x0)+ · · · (2)

Then f (x) can be represented as

f (x) = Θ
∗>

Φ(x)+ ε (x) (3)

where Θ∗ ∈ Rm×Rn is a matrix of constant but unknown coefficients, Φ(x) ∈ Rq is a vector of regressors in terms of
monomials of x

Φ(x) =
[

1 x1 x2 . . . xp x2
1 x1x2 . . . x2

p . . . xq
1 x1xq−1

2 . . . xq
p

]
(4)

and ε (x) is a function approximation error or truncation error which depends on x.
f (x) is then approximated by a polynomial of qth degree

f̂ (x) = pq (x) = Θ
>

Φ(x) (5)

where Θ ∈ Rm×Rn is the estimate of Θ∗.
The coefficients Θ can be computed using various least-squares methods such as the batch least-squares, least-

squares gradient method, or recursive least-squares (RLS) method. Note that since Θ>Φ(x) is an approximation of an
unknown function f (x), the approximation error will not be asymptotic regardless whether or not Φ(x) is a persistently
exciting (PE) signal.

The Weierstrass theorem4 states that given any sufficiently smooth function f (x) ∈ C [a,b] and ε0 > 0, there exist
a polynomial pq(x) for some sufficiently large q such that

∥∥ f (x)− pq (x)
∥∥

∞
< ε0. This means that any sufficiently

smooth function can be approximated by a polynomial of qth degree. Then the function approximation error could be
made sufficiently small on a compact domain of x such that supx∈D ‖ε (x)‖ ≤ ε0 for all x ∈D ⊂ Rn.
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There are several types of polynomial approximation of a function. The regular polynomial regression using
monomials as basis functions is frequently used for function approximation. Orthogonality is a property of a function
that belongs to a metric space endowed with an inner product. Given two functions g(x) and h(x), then g(x) and h(x)
are orthogonal to each other if their inner product is zero. That is

〈g(x) ,h(x)〉= 0 (6)

where 〈., .〉 is an inner product operator that takes on two real-valued functions and returns a constant. The inner
product has a concrete mathematical definition depending on the class of functions and the type of metric space.

A regular polynomial does not possess this orthogonality property. In contrast, certain classes of polynomials
such as Chebyshev polynomials and Legendre polynomials are known as orthogonal polynomials. One advantage of
an orthogonal polynomial over a regular polynomial is that an orthogonal polynomial can provide a better function
approximation than a regular polynomial of the same degree. Because the Chebyshev orthogonal polynomials are
considered as being nearly optimal polynomials4 that can accurately approximate functions, neural networks based on
the Chebyshev orthogonal polynomials have been developed.16

The Chebyshev orthogonal polynomials are special polynomial functions that are associated with the solution of a
class of Sturm-Liouville differential equations

(
1− x2) d2y

dx2 − x
dy
dx

+n2y = 0 (7)

for x ∈ [−1,1].
This differential equation is known as the Chebyshev differential equation of the first kind. The Chebyshev differ-

ential equation of the second kind is of the form

(
1− x2) d2y

dx2 −3x
dy
dx

+n(n+2)y = 0 (8)

The Chebyshev orthogonal polynomials of the first kind are given by a generating function

Tn+1 (x) = 2xTn (x)−Tn−1 (x) (9)

where T0 (x) = 1 and T1 (x) = x.
The first several terms of the Chebyshev orthogonal polynomials are given as follows:

T0 (x) = 1
T1 (x) = x

T2 (x) = 2x2−1
T3 (x) = 4x3−3x

T4 (x) = 8x4−8x2 +1
...

(10)

A solution of a Sturm-Liouville differential equation constitutes an orthogonal basis that spans any Hilbert space
which is a complete, inner product space with a weighted inner product definition

〈g(x) ,h(x)〉=
ˆ b

a
w(x)g(x)h(x)dx (11)

The Chebyshev polynomials are orthogonal with respect to a weighting function

w(x) =
1√

1− x2
(12)

such that

〈Tn (x) ,Tm (x)〉=
ˆ 1

−1

Tn (x)Tm (x)√
1− x2

dx =


0 n 6= m

π n = m = 0
π

2 n = m

(13)
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Any subspace S in an inner product space C has an orthogonal complement S ⊥ such that their bases completely
span the inner product space C . Therefore

C = S ⊕S ⊥ (14)

Since the Chebyshev polynomials are orthogonal, they form a complete basis for an real-valued function. This
implies that any unknown, non-singular function f (x) can be approximated by a Chebyshev polynomial of degree n.

f̂ (x) = θ0T0 (x)+θ1T1 (x)+ · · ·+θnTn (x) =
n

∑
i=1

θiTi (x) = Θ
>

Φ(x) (15)

where the polynomial coefficients are approximated by

θi =

ˆ 1

−1

f (x)Ti (x)√
1− x2

dx
(ˆ 1

−1

T 2
i (x)√
1− x2

dx
)−1

(16)

for x ∈ [−1,1].
For higher dimensions when x ∈ Rn, multi-dimensional Chebyshev orthogonal polynomials can be obtained.16

III. Least-Squares Estimation

A. Least-Squares Gradient Method

The input-output transfer function of a system between x(t) and y(t) can be linearly parametrized as

y = Θ
∗>

Φ(x) (17)

where Θ∗ ∈Rm×Rn is a matrix of constant but unknown coefficients and Φ(x) ∈Rm is a bounded regressor (or basis
function) vector and is assumed to be known.

Let ŷ(t) be an estimate of y(t) such that
ŷ = Θ

>
Φ(x) (18)

where Θ is an estimation of Θ∗.
Formulating an approximation error ε (t) as

ε = ŷ− y = Θ
>

Φ(x)− y (19)

Consider the following cost function

J (Θ) =
1
2

ε
>

ε (20)

The gradient of the cost function with respect to Θ is given by

∂J
∂Θ

= ∇JΘ (Θ) =

(
∂ε

∂Θ>

)
ε
> = Φ(x)ε

> (21)

Now consider the minimization of J (Θ). Θ∗ is said to be a global minimum of J if

J (Θ∗)≤ J (Θ) (22)

This implies that ∇JΘ (Θ∗) = 0 and ∇2JΘ (Θ∗)≥ 0 since J (Θ) is twice-differentiable with respect to Θ.
Utilizing Taylor’s series expansion, one writes

∇JΘ (Θ∗) = ∇JΘ (Θ∗+∆Θ)+∇
2JΘ (Θ∗+∆Θ)∆Θ+O

(
∆Θ
>

∆Θ

)
︸ ︷︷ ︸

≈0

(23)

Since ∇JΘ (Θ∗) = 0, ∇JΘ (Θ∗+∆Θ) = ∇JΘ (Θ), and ∇2JΘ (Θ∗+∆Θ) = ∇2JΘ (Θ), then

∆Θ =−
[
∇

2JΘ (Θ)
]−1

∇JΘ (Θ) (24)
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Equation (24) can be written in discrete-time form as

Θi+1 = Θi−
[
∇

2JΘ (Θi)
]−1

∇JΘ (Θi) (25)

This is known as a second-order gradient or Newton’s method for convex optimization. It is noted that the inverse
of the Hessian matrix is generally numerically intensive. So a first-order approximation can be made by recognizing
that ∇2JΘ (Θ)≈ ∇2JΘ (Θ∗) = ε ≥ 0, where ε is a small positive parameter, when Θ is in the neighborhood of Θ∗. In
continuous time, the least-squares gradient method is expressed as

Θ̇ =−Γ∇JΘ (Θ) (26)

where Γ = Γ> > 0 ∈ Rm×Rm is a positive definite adaptation rate matrix.
Returning to the minimization of J (Θ) to estimate Θ∗, the differential form of the least-squares estimation of Θ

can be expressed using the gradient method as

Θ̇ =−Γ∇JΘ (Θ) =−ΓΦ(x)ε
> (27)

B. Persistent Excitation and Parameter Convergence

Let Θ̃(t) = Θ(t)−Θ∗ be the estimation error, then

ε = Θ
>

Φ(x)Θ− y = Θ̃
>

Φ(x) (28)

The least-squares gradient method can be written as

˙̃
Θ = Θ̇ =−ΓΦ(x)Φ

> (x)Θ̃ (29)

Now, choose a Lyapunov candidate function

V
(
Θ̃
)
= trace

(
Θ̃
>

Γ
−1

Θ̃

)
(30)

Then

V̇
(
Θ̃
)
= 2trace

(
Θ̃
>

Γ
−1 ˙̃

Θ

)
=−2trace

(
Θ̃
>

Φ(x)Φ
> (x)Θ̃

)
=−2Φ

> (x)Θ̃Θ̃
>

Φ(x) =−2ε
>

ε =−2‖ε‖2 ≤ 0 (31)

Note that V̇
(
Θ̃
)

can only be negative semi-definite because V̇
(
Θ̃
)

can be zero when Φ(x) = 0 independent of Θ̃.
One can establish that V

(
Θ̃
)

has a finite limit as t→ ∞ since

V (t→ ∞) =V (t0)−2
ˆ

∞

t0
‖ε‖2 dt < ∞ (32)

which implies

2
ˆ

∞

t0
‖ε‖2 dt =V (t0)−V (t→ ∞)< ∞ (33)

Therefore, ε (t) ∈L2∩L∞. Moreover, since Φ(x) ∈L∞ by the problem statement, then Θ̃(t) ∈L∞, but there is
no assurance that Θ̃(t)→ 0 as t→ ∞ which implies parameter convergence.

One cannot conclude that V̇
(
Θ̃
)

is uniformly continuous since

V̈
(
Θ̃
)
=−4ε

>
ε̇ =−4ε

>
[
Θ̇
>

Φ(x)+Θ
>

Φ̇(x)− ẏ
]

(34)

is not necessarily bounded because there is no other condition placed on Φ(x) except for Φ(x) ∈L∞. For V̇
(
Θ̃
)

to be
uniformly continuous, an additional condition that Φ̇(x) ∈L∞ is required. Then, using the Barbalat’s lemma, one can
conclude that V̇

(
Θ̃
)
→ 0 or ε (t)→ 0 which also implies that Θ̇(t)→ 0 as t→ ∞. Note that from Eq. (29) Θ̇(t)→ 0

does not necessarily imply that Θ̃(t)→ 0 since Φ(x)Φ> (x) can also tend to zero instead of Θ̃(t).
So, one can only show that the approximation error ε (t) can tend to zero if Φ̇(x) ∈L∞, but not necessarily the

estimation error Θ̃(t) since Φ(x) can be a zero signal at some time interval. To examine the issue of parameter
convergence, suppose Φ(x) satisfies the following condition:

1
T

ˆ t+T

t
Φ(x)Φ

> (x)dτ ≥ αI (35)
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for all t ≥ t0, T > t0, and α > 0.
Then, Eq. (29) has a solution

Θ̃(t) = Θ̃(t0)e−Γα(t−t0) (36)

Equation (35 is the well-known persistent excitation (PE) condition which essentially requires an input signal to be
persistently exciting (PE), that is, a signal that does not go to zero after some finite time when parameter convergence
has not been reached. Another interpretation of the persistent excitation condition is that for parameter identification
to converge exponentially, an input signal must be sufficiently rich to excite all system modes associated with the
parameters to be identified. It should be noted that while persistent excitation is needed for parameter convergence, in
practice, input signals that are persistently exciting can lead to unwanted consequences such as exciting unknown or
unmodeled dynamics that can exacerbate stability of a dynamical system.

Another observation to be made is that if x(t) is a state variable of a closed-loop system, one cannot assume that
the persistent excitation condition can be satisfied. Suppose x(t) is not determined by a feedback process, then the
estimation error is exponentially stable and bounded by∥∥Θ̃(t)

∥∥≤ ∥∥Θ̃(t0)
∥∥e−γα(t−t0), ∀t ∈ [t1, t1 +T ] , t1 > t0 (37)

where γ = λmin (Γ) is the smallest eigenvalue of Γ. Thus, Θ̃(t) is exponentially stable with Θ̃(t)→ 0 as t→∞. Hence,
the parameter convergence is established. It follows that the approximation error is also asymptotically stable with
ε (t)→ 0 as t→ ∞.

C. Recursive Least-Squares

Consider the following cost function

J (Θ) =
1
2

ˆ t

t0
ε
>

εdτ (38)

which is the continuous-time version of the cost function for batch least-squares.
The necessary condition is

∇JΘ (Θ) =
∂J>

∂Θ>
=

ˆ t

t0
Φ(x)

[
Φ
> (x)Θ− y>

]
dτ = 0 (39)

from which Θ(t) is obtained as

Θ =

[ˆ t

t0
Φ(x)Φ

> (x)dτ

]−1ˆ t

t0
Φ(x)y>dτ (40)

assuming the inverse of
´ t

t0
Φ(x)Φ> (x)dτ exists. Note that the matrix Φ(x)Φ> (x) is always singular and is not

invertible. However, if the PE condition is satisfied, then
´ t

t0
Φ(x)Φ> (x)dτ is invertible.

Introducing a matrix R(t) = R> (t)> 0 ∈ Rm×Rm where

R =

[ˆ t

t0
Φ(x)Φ

> (x)dτ

]−1

(41)

Then

R−1
Θ =

ˆ t

t0
Φ(x)y>dτ (42)

Upon differentiation, this yields

R−1
Θ̇+

dR−1

dt
Θ = Φ(x)y> (43)

From Eq. (41)
dR−1

dt
= Φ(x)Φ

> (x) (44)

Therefore
Θ̇ =−RΦ(x)

[
Φ
> (x)Θ− y>

]
=−RΦ(x)ε

> (45)

6 of 24

American Institute of Aeronautics and Astronautics



Now since RR−1 = I, then

ṘR−1 +R
dR−1

dt
= 0 (46)

Thus
Ṙ =−RΦ(x)Φ

> (x)R (47)

Both Eqs. (48) and (47) constitute the well-known recursive least-squares (RLS) parameter identification method.17

The matrix R(t) is called the covariance matrix and the RLS formula is similar to the Kalman filter where Eq. (47) is
a differential Riccati equation for a zero-order plant model. Comparing Eq. (27) with Eq. (48), R(t) plays a role of
Γ as a time-varying adaptation rate matrix and Eq. (47) is effectively an adaptive law for the time-varying adaptation
rate matrix.

Let Θ̃(t) = Θ(t)−Θ∗ be the estimation error. Since ε = Θ̃>Φ(x), then

˙̃
Θ =−RΦ(x)Φ

> (x)Θ̃ (48)

Choose a Lyapunov candidate function

V
(
Θ̃
)
= trace

(
Θ̃
>R−1

Θ̃

)
(49)

Then

V̇
(
Θ̃
)
= trace

(
2Θ̃
>R−1 ˙̃

Θ+ Θ̃
> dR−1

dt
Θ̃

)
= trace

(
−2Θ̃

>
Φ(x)Φ

> (x)Θ̃+ Θ̃
>

Φ(x)Φ
> (x)Θ̃

)
=−trace

(
Θ̃
>

Φ(x)Φ
> (x)Θ̃

)
=−ε

>
ε =−‖ε‖2 ≤ 0 (50)

One can establish that V
(
Θ̃
)

has a finite limit as t→ ∞ since

V (t→ ∞) =V (t0)−
ˆ

∞

t0
‖ε‖2 dt < ∞ (51)

Therefore, ε (t)∈L2∩L∞. Since Φ(x)∈L∞ by the problem statement, then Θ̃(t)∈L∞, but there is no guarantee
that Θ̃(t)→ 0 as t→ ∞ which implies parameter convergence, unless Φ(x) is PE.

Note that V̇
(
Θ̃
)

is not necessarily uniformly continuous since this would require that V̈
(
Θ̃
)

is bounded. Evaluating
V̈
(
Θ̃
)

as

V̈
(
Θ̃
)
=−2ε

>
ε̇ =−2ε

>
[

˙̃
Θ
>

Φ(x)+ Θ̃
>

Φ̇(x)
]
=−2ε

>
[
−Θ̃

>
Φ(x)Φ

> (x)RΦ(x)+ Θ̃
>

Φ̇(x)
]

=−2ε
>

{
−Θ̃

>
Φ(x)Φ

> (x)
[ˆ t

t0
Φ(x)Φ

> (x)dτ

]−1

Φ(x)+ Θ̃
>

Φ̇(x)

}
(52)

Therefore, V̈
(
Θ̃
)

is bounded if the following conditions are imposed:

• Φ̇(x) ∈L∞

•
[´ t

t0
Φ(x)Φ> (x)dτ

]−1
is invertible which implies Φ(x) is PE

If these conditions are satisfied, then using the Barbalat’s lemma, it can be shown that ε (t)→ 0 as t→ ∞. In addition,
Θ̃(t)→ 0 as t→ ∞ and the parameter convergence is achieved.

Comparing the RLS method with the least-squares gradient method, the former seeks to minimize an integral
quadratic cost function of the approximation error, whereas the latter minimizes an instantaneous cost function. If
an instantaneous cost function is minimized, then its integral cost function is also minimized, but the converse is not
necessarily true. Therefore, the least-squares gradient method generally performs better than the RLS method for
function approximation.
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IV. Least-Squares Model-Reference Adaptive Control with Unstructured Uncertainty

Consider a nonlinear system with match unstructured uncertainty

ẋ = Ax+B [u+ f (x)] (53)

where x(t) ∈ Rn is a state vector, u(t) ∈ Rp is a control vector with p ≥ n, A ∈ Rn×n is unknown and B ∈ Rn×p is
known and the pair (A,B) is assumed to be controllable, and f (x) ∈ Rp is a matched unstructured uncertainty which
can be approximated as

f (x) = Θ
∗>

Φ(x)+δ (x) (54)

where Θ∗ ∈ Rq×p is a constant unknown weight matrix, Φ(x) ∈ Rq is a vector of orthogonal basis functions, and
δ (x) is a truncation error which, according to the Weierstrass Theorem can be made small on a compact domain of
x such that supx∈D ‖δ (x)‖ ≤ δ0 for all x ∈ D ⊂ Rn by increasing the number of orthogonal basis functions. Note
that, in general, Φ(x) can be any bounded regressor function. However, with the choice of Chebyshev orthogonal
polynomials, these regressor functions are also true basis functions with their endowed orthogonality properties. Basis
functions provide a better approximation of an unstructured uncertainty than non-basis regressor functions.

Alternatively, an unstructured uncertainty can also be approximated by a neural network

f (x) = Θ
∗>

Φ

(
W ∗>x̄

)
+δ (x) (55)

where Θ∗ ∈Rq+1×p and W ∗ ∈Rn+1 are unknown constant ideal weight matrices, x̄ =
[

1 x
]>
∈Rn+1, Φ

(
W ∗>x̄

)
∈

Rq+1.
A reference model is specified by

ẋm = Amxm +Bmr (56)

where xm (t) ∈ Rn is a reference state vector, Am is Hurwitz, and r (t) ∈L∞ is a bounded command vector.
Note that since p≥ n, then B is invertible and is defined by a right pseudo-inverse.

B−1 = B>
(

BB>
)−1

(57)

To accommodate the uncertainty, an adaptive controller is designed as

u = Kx (t)x+Krr−Θ
> (t)Φ(x) (58)

Assuming that there exist K∗x and Kr that satisfy the following model matching conditions:

Am = A+BK∗x (59)
Bm = BKr (60)

If Â(t) is an estimate of A, then
Kx (t) = B−1 [Am− Â(t)

]
(61)

Then the closed-loop plant model is given by

ẋ =
(
A+Am− Â

)
x+Bmr+Bū+B

(
Θ
∗>−Θ

>
)

Φ(x) (62)

where
ū = Kxx+Krr (63)

If Â(t)→ A, and Θ(t)→Θ∗, then ẋ(t) converges to

ẋd = Amx+Bmr = Âx+Bū (64)

which follows the reference model if x(t)→ xm (t).
Let Ã = Â−A, K̃x = K∗x −Kx, and Θ̃(t) = Θ(t)−Θ∗ be the estimation errors. The tracking error equation is

defined as
ė = ẋm− ẋ = Ame−BK̃xx+BΘ̃

>
Φ(x)−Bδ (x) (65)
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Formulating a plant modeling error as

ε = ẋd− ẋ = Ãx+BΘ̃
>

Φ(x)−Bδ (x) (66)

then the tracking error equation can be expressed in terms of the plant modeling error as

ė = ẋm− ẋ = ẋm− ẋd + ẋd− ẋ = Ame+ ε (67)

Thus, we see that the tracking error is a manifestation of the modeling error since the tracking error dynamics are
influenced by the modeling error. The converse, however, is not true.

The weight update laws for Â(t) and Θ(t) can be established by the least-squares gradient adaptive law

Θ̇ =−ΓΘΦ(x)ε
>B (68)

˙̂A> =−ΓAxε
> (69)

or alternatively by the RLS adaptive laws

Θ̇ =−RAΦ(x)ε
>B (70)

˙̂A> =−RAxε
> (71)

ṘΘ =−ηRΘΦ(x)Φ
> (x)RΘ (72)

ṘA =−ηRAxx>RA (73)

Note that the signal ẋ(t) is required in the computation of the modeling error. In many applications, this signal
is not necessarily available. Therefore, in these situations, the signal ẋ(t) needs to be estimated. One method of
estimating ẋ(t) is to use a backward finite-difference method9, 10

˙̂x(t) =
x(t)− x(t−∆t)

∆t
(74)

to estimate ẋ(t) at a current time step using the current and past state information.
Another approach is to sample data sufficiently and then use them to construct an at least C1 smooth time function

using a cubic or B-spline method. This curve is then differentiated at the spline knots to find the estimated derivative
values. This derivative estimate would tend to result in lower noise than the backward finite-difference method.9, 10

In either case, the derivative computation will introduce a noise source. Least-squares is generally robust to noise,
especially if the noise source is a normal Gaussian distribution. Therefore, least-squares adaptive control should be
generally more effective than model-reference adaptive control in the presence of noisy measurements. A possibility to
suppress noise source is to use a low-pass filter to smooth out the reconstructed signal from numerical differentiation.

An alternative approach of estimating the signal ẋ without numerical differentiation is via a prediction method.
Consider a predictor model of the plant as

˙̂x = Amx̂+
(
Â−Am

)
x+B

[
u+Θ

>
Φ(x)

]
(75)

If Θ(t) → Θ∗, then ˙̂x(t) → ẋ(t). Thus, ˙̂x(t) is an estimate of ẋ(t). The estimate ˙̂x(t) only depends on the
information of the current state, control, and adaptive parameter. The predictor model thus can be used to provide the
estimate of the signal ẋ(t) without differentiation.

As the adaptation proceeds with sufficiently rich signals, the predictor model will converge to the plant model with
x̂(t)→ x(t)+ ep (t) as t→ ∞, where ep (t) = x̂(t)− x(t) is the predictor error whose dynamics are described by

ėp = ˙̂x− ẋ = Amep + ε (76)

The plant modeling error based on the predictor model is established by

εp = ẋd− ˙̂x = ẋd− ẋ− ėp =−Amep (77)

If the plant modeling error based on the predictor model converges to zero; i.e., εp (t)→ 0, then the predictor error
also converges to zero, ep (t)→ 0. This immediately leads to the convergence of the true plant modeling error to zero;
ε (t)→ 0 as t→ ∞. Therefore, in lieu of the true plant modeling error, the plant modeling error based on the predictor
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model can be used in the least-squares adaptive laws. Thus, the predictor-model-based least-squares gradient adaptive
laws are given by

Θ̇ =−ΓΘΦ(x)ε
>
p B (78)

˙̂A> =−ΓAxε
>
p (79)

and the predictor-model-based RLS adaptive laws are given by

Θ̇ =−RAΦ(x)ε
>
p B (80)

˙̂A> =−RAxε
>
p (81)

ṘΘ =−ηRΘΦ(x)Φ
> (x)RΘ (82)

ṘA =−ηRAxx>RA (83)

The least-squares adaptive control can be shown to be stable and result in bounded tracking error for 0 ≤ η < 2.
Toward this end, the estimation error equation for the RLS adaptive laws is expressed as

˙̃
Ω =−RΨ(x)

[
Ψ
> (x)Ω̃−δ

>B>
]

(84)

where R = diag(RΘ,RA), Ω̃> =
[

Ã BΘ̃>
]
, and Ψ(x) =

[
x> Φ> (x)

]>
.

Choose a Lyapunov candidate function

V
(
e,Ω̃

)
= e>Pe+ trace

(
Ω̃
>R−1

Ω̃

)
(85)

Then V̇
(
e,Θ̃
)

is evaluated as

V̇
(
e,Ω̃

)
=−e>Qe+2e>Pε + trace

(
2Ω̃
>R−1 ˙̃

Ω+ Ω̃
> dR−1

dt
Ω̃

)
=−e>Qe+2e>Pε + trace

(
−2Ω̃

>
Ψ(x)

[
Ψ
> (x)Ω̃−δ

>B>
]
+ηΩ̃

>
Ψ(x)Ψ

> (x)Ω̃

)
=−e>Qe+2e>PB

[
Ω̃
>

Ψ(x)−Bδ

]
−Ψ

> (x)Ω̃(2−η)Ω̃
>

Φ(x)+2δ
>B>Ω̃

>
Ψ(x)

≤−λmin (Q)‖e‖2 +2‖e‖‖PB‖δ0 +2‖e‖‖PB‖‖Ψ(x)‖
∥∥Ω̃
∥∥− (2−η)‖Ψ(x)‖2∥∥Ω̃

∥∥2

+2‖Ψ(x)‖
∥∥Ω̃
∥∥‖B‖δ0 (86)

Let c1 = λmin (Q), c2 =
‖PB‖(δ0+‖Ψ(x)‖‖Ω̃‖)

c1
, c3 = 2−η , and c4 =

‖B‖δ0
c3

. Then, completing the squares yields

V̇
(
e,Ω̃

)
≤−c1 (‖e‖− c2)

2 + c1c2
2− c3

[
‖Ψ(x)‖

∥∥Ω̃
∥∥− c4

]2
+ c3c2

4 (87)

Therefore, V̇
(
e,Θ̃
)
≤ 0 implies

‖e‖ ≥ c2 +

√
c2 +

c3c2
4

c1
= σ (88)

or

‖Ψ(x)‖
∥∥Ω̃
∥∥≥ c4 +

√
c4 +

c1c2
2

c3
= κ (89)

where c2 is redefined as c2 =
‖PB‖(δ0+κ)

c1
.

Then, ‖e‖ is bounded. This implies ‖x‖ ≤ ‖xm‖+‖e‖ is also bounded. Therefore, ‖Ψ(x)‖ ≤Ψ0 is bounded. Then
the system is uniformly ultimately bounded with the following ultimate bounds

‖e‖ ≤

√
λmax (P)σ2Ψ2

0 +λmax (Γ−1)κ2

λmin (P)Ψ2
0

(90)
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∥∥Ψ̃
∥∥≤√λmax (P)σ2Ψ2

0 +λmax (Γ−1)κ2

λmin (Γ−1)Ψ2
0

(91)

Example: Consider a first-order scalar system with unstructured uncertainty

ẋ = ax+b [u+ f (x)] (92)

where a and f (x) are unknown, but b = 2. For simulation purpose, a = 1 and f (x) = 0.2
(

sin2x+ cos4x+ e−x2
)

.
The reference model is given by

ẋm = amxm +bmr (93)

where am =−1, bm = 1, and r (t) = sin t.
Since f (x) is unknown, a regular polynomial of qth degree is used to approximate f (x) as

f (x) = a0 +a1x+ · · ·+aqxq +δ (x) (94)

where ai, i = 0,1, . . . ,q are constant unknown coefficients.
The controller is designed as

u = kx (t)x+ krr−Θ
> (t)Φ(x) (95)

where kx (t) and Θ(t) are computed by the least-squares gradient adaptive laws as

k̇x = γxεb (96)

Θ̇ =−ΓΦ(x)εb (97)

with kx (0) = 0, Θ(0) = 0, γ = 1, and Γ = I, where

ε = âx+bū− ẋ (98)

â = am−bkx (99)

ū = kxx+ krr (100)

The tracking error and parameter convergence for q = 1,2,3,4 are shown in Figs. 1 and 2. Note that the tracking
error improves for q≥ 2. Even the tracking error improves, the function f (x) does not seem to be well approximated
as shown in Fig. 3. This is also due to the poor convergence of kx and Θ.
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Fig. 1 - Tracking Error due to Least-Squares Gradient Method with Regular Polynomial Approximation
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Fig. 2 - kx and Θ due to Least-Squares Gradient Method with Regular Polynomial Approximation
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Fig. 3 - Function Approximation at t = 100 due to Least-Squares Gradient Method with Regular Polynomial
Approximation

Now suppose the Chebyshev orthogonal polynomials are used instead. Then

f (x) = a0 +a1T1 (x)+ · · ·+aqTq (x)+δ (x) (101)

The simulation results are as shown in Figs. 4, 5, and 6. For q = 1, the result is the same as the regular polyno-
mial. However, it can be seen that the tracking error significantly reduces for q = 2 with the Chebyshev orthogonal
polynomial and is even smaller than that for q = 4 with the regular polynomial. For q = 4, the Chebyshev orthogonal
polynomial approximation results in a very small tracking error, as shown in Fig. 4. The unknown function is very
well approximated by a 4th-degree Chebyshev orthogonal polynomial, as shown in Fig. 6.
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Fig. 4 - Tracking Error due to Least-Squares Gradient Method with Chebyshev Orthogonal Polynomial
Approximation
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Fig. 6 - Function Approximation at t = 100 due to Least-Squares Gradient Method with Chebyshev Orthogonal
Polynomial Approximation

In contrast, let us compare the least-squares gradient adaptive control with the standard MRAC using the Cheby-
shev orthogonal polynomial basis functions. The MRAC update laws are given by

k̇x = γxeb (102)

Θ̇ =−ΓΦ(x)eb (103)

where e = xm− x.
Even though the Chebyshev orthogonal polynomial basis functions are used, the tracking error with the standard

MRAC is poorer than that with the least-squares gradient adaptive control, as shown in Fig. 7. Figure 8 illustrates
parameter convergence of MRAC. The parameters k (t) and Θ(t) are more oscillatory. The function approximation
by the standard MRAC is less accurate than that by the least-squares gradient adaptive control, as shown in Fig.
9. Furthermore, for systems with unstructured uncertainty, MRAC is known to be non-robust since the parameter
estimation error is not necessarily bounded.17 Therefore, robust modification or a projection method must be used to
ensure that the parameter estimation error is bounded.17

0 50 100
−1

−0.5

0

0.5

1

t

e

0 50 100
−1

−0.5

0

0.5

1

t

e

0 50 100
−1

−0.5

0

0.5

1

t

e

0 50 100
−1

−0.5

0

0.5

1

t

e

q=1 q=2

q=3 q=4

Fig. 7 - Tracking Error due to MRAC with Chebyshev Polynomial Approximation
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Fig. 8 - kx and Θ due to MRAC with Chebyshev Polynomial Approximation
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Fig. 9 - Function Approximation at t = 100 due to MRAC with Chebyshev Polynomial Approximation

V. Flight Control Application

To demonstrate the effectiveness of the least-squares adaptive control, an adaptive flight control design for pitch
attitude command is developed for the NASA Generic Transport Model (GTM), which is a notional medium-range,
twin-engine transport aircraft originally developed by NASA Langley Research Center.21

Consider the short-period dynamics of an aircraft with unstructured uncertainty f (α) as a function of the angle of
attack due to nonlinear aerodynamics α̇

θ̇

q̇

=

 Zα

ū 0 1
0 0 1

Mα + Mα̇ Zα

ū 0 Mq +Mα̇


 α

θ

q

+


Zδe
ū
0

Mδe +
Mα̇ Zδe

ū

 [δe + f (α)] (104)

where Zα , Zδe , Mα , Mα̇ , Mq, and Mδe are stability and control derivatives; and ū is the trim airspeed.
A pitch attitude controller is designed to track a desired second-order pitch attitude dynamics according to

θ̈m +2ζ ωnθ̇m +ω
2
n θm = ω

2
n θc (105)

where ωn = 1.5 rad/sec and ζ = 0.85 are the desired natural frequency and damping ratio of the pitch attitude response,
and θc is the pitch attitude command..

The pitch rate equation is written as

θ̈ −
(

Mα +
Mα̇ Zα

ū

)
α− (Mq +Mα̇) θ̇ =

(
Mδe +

Mα̇ Zδe

ū

)
[δe + f (α)] (106)

The elevator input is designed with the following proportional-derivative (PD) control law

δe =−kα α− kθ (θ −θc)− kqq−Θ
>

Φ(α) =−Kxx+ kθ θc−Θ
>

Φ(α) (107)

where x =
[

α θ q
]>

, Kx =
[

kα kθ kq

]>
, and

kα =
Mα + Mα̇ Zα

ū

Mδe +
Mα̇ Zδe

ū

(108)

kθ =
ω2

n

Mδe +
Mα̇ Zδe

ū

(109)

kq =
2ζ ωn +Mq +Mα̇

Mδe +
Mα̇ Zδe

ū

(110)
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The numerical model of the short-period dynamics for the GTM at Mach 0.8 and 30,000 ft is given by α̇

θ̇

q̇


︸ ︷︷ ︸

ẋ

=

 −0.7018 0 0.9761
0 0 1

−2.6923 0 −0.7322


︸ ︷︷ ︸

A

 α

θ

q


︸ ︷︷ ︸

x

+

 −0.0573
0

−3.5352


︸ ︷︷ ︸

B

 δe︸︷︷︸
u

+ f (α)



For simulation purpose, the unstructured uncertainty that represents nonlinear aerodynamics is described by

f (α) = 0.1cosα
3−0.2sin10α−0.05e−α2

(111)

The feedback gain is computed to be Kx =
[

0.7616 −0.6365 −0.5142
]>

. The nominal closed-loop plant is
then chosen to be the reference model as α̇m

θ̇m

q̇m


︸ ︷︷ ︸

ẋm

=

 −0.6582 −0.0365 0.9466
0 0 1
0 −2.2500 −2.5500


︸ ︷︷ ︸

Am

 αm

θm

qm


︸ ︷︷ ︸

xm

+

 0.0365
0

2.2500


︸ ︷︷ ︸

Bm

r

The plant modeling error is computed as ε = ẋd − ẋ = Amx+Bmr− ẋ where ẋ is estimated by a backward finite-
difference method. The uncertainty is modeled with the first four terms of the Chebyshev orthogonal polynomials

Θ
>

Φ(α) = θ0 +θ1α +θ2
(
2α

2−1
)
+θ3

(
4α

3−3α
)

(112)

The least-squares gradient adaptive control and RLS adaptive control are implemented with η = 0.2 and Γ =
R(0) = 10I. The aircraft longitudinal responses with the nominal controller and with the least-squares gradient and
RLS adaptive controllers are as shown in Figs. 10, 11, and 12.
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Fig. 10 - Aircraft Response with Nominal Controller
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Fig. 11 - Aircraft Response with Least-Squares Gradient Adaptive Control
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Fig. 12 - Aircraft Response with RLS Adaptive Control (η = 0.2)

The aircraft response with the nominal controller is seen to be extremely poor with the maximum angle of attack
of almost 14o which is well into stall. The benefit of the least-squares gradient adaptive control is clearly demonstrated
by the results which show a very good tracking performance. However, the RLS adaptive control does not perform as
well. On the other hand, the slow parameter convergence of the RLS adaptive control can improve stability robustness
of adaptive control in the presence of time delay or unmodeled dynamics, as will be shown later.

Figures 13 and 14 illustrate the use of the predictor-model-based plant modeling error εp (t) in the least-squares
gradient and RLS adaptive control as opposed to the true plant modeling error ε (t). Both the predictormodel–based
least-squares gradient adaptive control and the RLS adaptive control provide very good tracking performance as com-
pared to their counterparts using the true plant modeling error. The responses exhibit some initial transients, but these
transients subside rapidly. In particular, the predictor-based RLS adaptive control is observed to provide better track-
ing than the original RLS adaptive control. Thus, the results indicate that the predictor model can be a viable method
for estimating the signal ẋ(t) without differentiation which can introduce noise.
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Fig. 13 - Aircraft Response with Least-Squares Gradient Adaptive Control Based on Predictor Model
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Fig. 14 - Aircraft Response with RLS Adaptive Control (η = 0.2) Based on Predictor Model

For comparison, the least-squares adaptive control is replaced by the standard MRAC using the same Chebyshev
orthogonal polynomials according to

Θ̇ =−ΓΦ(α)e>PB (113)

where e = xm− x.
In addition, instead of using the Chebyshev orthogonal polynomials, a two-layer neural network with a sigmoidal

activation function is used to approximate the unstructured uncertainty as

f (α) = Θ
>

σ

(
W>ᾱ

)
− ε (α) (114)

where ᾱ =
[

1 α

]>
and Φ is the sigmoidal activation function.

The neural network adaptive control is specified by the following adaptive laws

Θ̇ =−ΓΘΦ

(
W>ᾱ

)
e>PB (115)

Ẇ =−ΓW ᾱe>PBV>σ
′
(

W>ᾱ

)
(116)

where Θ> =
[

V0 V>
]
.

The aircraft responses with MRAC (Γ = ΓΘ = ΓW = 10I) using the Chebyshev orthogonal polynomial and the
neural network are as shown in Figures 15, 16, and 17.
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Fig. 15 - Aircraft Response with MRAC
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Fig. 16 - Aircraft Response with Neural Network MRAC without Control Saturation
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Fig. 17 - Aircraft Response with Neural Network MRAC with Control Saturation

The responses in Figs. 15 and 16 both exhibit initial high frequency oscillations which are indicative of incipient
instability, even though the subsequent tracking performance is very good. The neural network MRAC has much
more pronounced high frequency oscillations which are due to the weights initialization with random numbers. As
a result, a saturation of the elevator is encountered. The aircraft responses due to the neural network MRAC with
and without control saturation are as shown in Figures 16 and 17. It is observed that, in the presence of control
saturation, the neural network MRAC produces a large angle of attack that exceeds its typical stall limit beyond which
the aerodynamic effects can be highly nonlinear and unsteady.

The elevator commands for all four adaptive controllers are shown in Figures 18.
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Fig. 18 - Elevator Commands

To illustrate the issue of robustness and show that the RLS adaptive control is actually better able to handle time
delay or unmodeled dynamics than the least-squares gradient adaptive control or MRAC, a numerical evidence of the
time delay margin is computed for each of the four adaptive controllers. The results are shown in the following table:

Adaptive Law Numerical Evidence of Time Delay Margin

Least-Squares Gradient 60 ms
RLS with η = 0.2 260 ms

MRAC 10 ms
Neural Network MRAC (no Saturation) 60 ms

Table 1 - Estimated Time Delay Margins

The RLS adaptive control has the best time delay margin than the other three adaptive controllers. The standard
MRAC has very poor robustness which is a well-known fact.19 Generally, the standard MRAC has to be modified
to improve robustness using the projection method or various modification techniques, such as the σ -modification,22

e-modification,23 optimal control modification,24, 25 and adaptive loop recovery.26

The aircraft responses due to a 60-ms time delay for the least-squares gradient, RLS, and neural network MRAC
adaptive control are illustrated in Figures 19, 20, and 21. The aircraft response due to a 10-ms time delay for the
MRAC is plotted in Figure 22. As can be seen, the least-squares gradient adaptive control maintains a very good
tracking performance even with a 60-ms time delay, but high frequency transients begin to appear. Both the MRAC
and neural network MRAC exhibit high frequency oscillations. The RLS adaptive control exhibits low frequency
transients as it is much more robust than the other three adaptive controllers. Thus, if the time delay is not too large,
the least-squares gradient adaptive control seems to perform the best among all of the adaptive controllers.
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Fig. 19 - Aircraft Response with Least-Squares Gradient with 60-ms Time Delay
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Fig. 20 - Aircraft Response with RLS with 60-ms Time Delay
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Fig. 21 - Aircraft Response with Neural Network MRAC with 60-ms Time Delay without Control Saturation
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Fig. 22 - Aircraft Response with MRAC with 10-ms Time Delay

VI. Discussion

Modeling error in dynamical systems usually arises from the presence of system uncertainty. In model-reference
adaptive control, tracking error is exclusively used as a control signal to drive the adaptation so as to cancel out
undesired effects of system uncertainty on closed-loop systems. Philosophically, tracking error is a manifestation of
modeling error which in turn is a direct consequence of system uncertainty. Thus, tracking error is a direct consequence
of modeling error, but not vice versa. One can separate control and system identification or learning as two related
dynamical actions. A control action is generally designed to target the tracking error to ensure that a closed-loop
system follows a reference model as closely as possible. The objective of adaptive control is not so much to estimate
the uncertainty itself but rather to achieve a desired reference model, regardless whether or not parameter convergence
is achieved. The example in Section 4 clearly demonstrates that model-reference adaptive control does a rather poor job
on parameter convergence even though the basis functions are Chebyshev polynomials. On the other hand, a learning
action or system identification uses the modeling error as a learning signal to estimate the uncertainty directly by
least-squares estimation method. The goal of a learning action is first and foremost to achieve parameter convergence,
regardless whether or not a desired reference model is achieved.

System identification is usually performed in an open-loop process without directly influencing a control action by
feeding the parameter estimates back into a control law. In this study and others, a learning action and control can be
combined to provide a very effective adaptation strategy. The learning action can achieve better parameter convergence
than model-reference adaptive control by using the modeling error as a learning signal. Using the parameter estimates
from learning, least-squares adaptive control can be formulated to cancel out effects of system uncertainty by feedback
of the parameter estimates into the control law. Thus, in some way, least-squares adaptive control resembles the
separation principle of estimation and control in control theory.

The standard model-reference adaptive control is well-known to be non-robust in the presence of time delay,
unmodeled dynamics, and disturbances.19 Least-squares adaptive control, by the virtue of optimal estimation, is
inherently more robust than the standard model-reference adaptive control because of the damping mechanism in the
adaptive parameter that naturally arises from the optimal control formulation. To elucidate this point, we can express
the least-squares gradient adaptive law (61) as

Θ̇ =−ΓΦ(x)
[
Φ
> (x)Θ− f> (x)

]
B>B (117)

One sees that the first term effectively provides a damping mechanism to bound the adaptive parameter Θ(t). This
is very much similar to many robust modification techniques in adaptive control. One such modification, the optimal
control modification,24, 25 has a similar damping term as follows:

Θ̇ =−ΓΦ(x)
[
−νΦ

> (x)ΘB>PA−1
m B+ e>PB

]
(118)

where ν > 0 and PA−1
m < 0.

Thus, this observation provides a plausible explanation of the improved robustness of least squares adaptive control
over the standard model reference adaptive control.
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VII. Conclusions

This paper presents an adaptive control method for systems with unstructured uncertainty based on a least-squares
gradient method and recursive least-squares method. The adaptive control uses Chebyshev orthogonal polynomials
as basis functions to approximate the unstructured uncertainty. The Chebyshev orthogonal polynomials have many
desirable features in function approximation and can be shown to be the “best” polynomial function approximation.
The least-squares adaptation is driven by a plant modeling error as opposed to the standard tracking error in model-
reference adaptive control. Simulations demonstrate the superior performance of Chebyshev orthogonal polynomials
in the adaptive control setting over regular polynomials and perhaps even neural networks. The least-squares gradient
adaptive control demonstrates to outperform both the recursive least-squares adaptive control and the standard model-
reference adaptive control. On the other hand, recursive least-squares adaptive control is shown to be much more
robust to time delay and unmodeled dynamics than all the other adaptive control methods being studied. However,
this robustness comes at an expense of tracking performance. Thus, in practice, the least-squares gradient method may
strive a better balance between tracking performance and robustness.
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