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The estimation of remaining useful life is significant in the context of prognostics and

health monitoring, and the prediction of remaining useful life is essential for online opera-

tions and decision-making. However, it is challenging to accurately predict the remaining

useful life in practical aerospace applications due to the presence of various uncertainties

that affect prognostic calculations, and in turn, render the remaining useful life prediction

uncertain. It is challenging to identify and characterize the various sources of uncertainty

in prognosis, understand how each of these sources of uncertainty affect the uncertainty

in the remaining useful life prediction, and thereby compute the overall uncertainty in the

remaining useful life prediction. In order to achieve these goals, this paper proposes that

the task of estimating the remaining useful life must be approached as an uncertainty prop-

agation problem. In this context, uncertainty propagation methods which are available in

the literature are reviewed, and their applicability to prognostics and health monitoring

are discussed.

I. Introduction

Prognostics involves the prediction of future performance of engineering systems, and in turn, predicting
their remaining useful life. Prognostics is an important component of system health management and
condition-based monitoring; it is important to continuously monitor the performance of the system, perform
diagnosis (fault detection, isolation, and estimation), and quantify the remaining useful life in order to
aid online decision-making. Sometimes, it may be challenging to perform health monitoring on the whole
system due to its sheer complexity, and therefore, diagnosis and prognosis need to performed on individual
components which constitute the overall system. In this approach, mathematical models are developed
for individual components, and then the component models are integrated to form the overall system.
These models can be used in the health monitoring to guide in model-based diagnostics1 and prognostics.2

Alternatively, data-driven approaches3 are also available for health monitoring; here, several experiments are
performed to collect data and this data, in turn, is used to learn about system performance.

This paper focuses on the topic of estimation of remaining useful life (RUL) in prognosis, and is applicable
to both physics-based and data-driven approaches. In order to predict the RUL at any given time instant,
there are three essential steps that need to be performed. The first step is to estimate the present health of the
system at the given time instant. The second step is predict the health of the system in future (continuously
as a function of time) using a degradation model which may either be physics-based or data-driven. The
third step is to define a threshold function which defines the end of life; this threshold function is a binary
function and can be used to calculate the remaining useful life. The remaining useful life prediction is affected
by several sources of uncertainty such as modeling errors, measurement errors, future loading uncertainty,
etc., and it is important to accurately account for these sources of uncertainty while estimating the RUL.
It is important to understand that the uncertainty in RUL is simply a dependent quantity, dependent on
the aforementioned sources of uncertainty. The major goal of this paper is to establish the mathematical
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relationship between the various sources of uncertainty and the uncertainty in the RUL prediction. In the
process, this paper explains that the estimation of RUL needs to be approached as an uncertainty propagation
problem in order to accurately quantify the uncertainty in RUL prediction, and understand how each of the
different sources of uncertainty affects the uncertainty in RUL prediction.

The rest of the paper is organized as follows. Section II discusses the various sources of uncertainty in
the context of prognostics, and explains how this uncertainty must be interpreted. Section III mathemat-
ically formulates the RUL prediction problem, establishes the relationship between RUL and the different
sources of uncertainty, and illustrates how the RUL prediction problem becomes an uncertainty propagation
problem. Section IV discusses the different types of methods for uncertainty propagation, and investigates
their relevance in the context of prognostics and system health management.

II. Uncertainty in Prognostics

As mentioned earlier in the introduction, the presence of uncertainty has a significant impact on prognos-
tics and the remaining useful life prediction. When the state estimates, future loading conditions, operating
conditions, etc. are uncertain, the future states and the remaining useful life also become uncertain. While
non-probabilistic methods4 such as Fuzzy logic, possibility theory, Dempster-Shafer theory, Evidence theory,
etc. may have been used for the treatment of uncertainty, probabilistic methods have predominantly used for
uncertainty representation in prognostics.5, 6, 7 Further, probabilistic approaches are contextually meaning-
ful for uncertainty representation and quantification since they are consistent with decision-theory analysis.
Therefore, the rest of this paper focuses only on probabilistic approaches for uncertainty quantification and
propagation.

While the mathematical axioms and theorems of probability have been well-established the literature,
there is considerable disagreement among researchers on the interpretation of probability. There are two
major interpretations based on physical and subjective probabilities, respectively. Physical probabilities,8

also referred to objective or frequentist probabilities, are related to random physical systems such as rolling
dice, tossing coins, roulette wheels, etc. Each trial of the experiment leads to an event (which is a subset
of the sample space), and in the long run of repeated trials, each event tends to occur at a persistent rate,
and this rate is referred to as the relative frequency. These relative frequencies are expressed and explained
in terms of physical probabilities. Thus, physical probabilities are defined only in the context of random
experiments. On the other hand, subjective probabilities9 can be assigned to any “statement”. It is not
necessary that the concerned statement is in regard to an event which is a possible outcome of a random
experiment. In fact, subjective probabilities can be assigned even in the absence of random experiments. The
Bayesian methodology is based on subjective probabilities, which are simply considered to be degrees of belief
and quantify the extent to which the statement is supported by existing knowledge and available evidence.
Calvetti and Somersalo10 explain that “randomness” in the context of physical probabilities is equivalent to
“lack of information” in the context of subjective probabilities. In this approach, even deterministic quantities
can be represented using probability distributions which reflect the subjective degree of the analyst’s belief
regarding such quantities.

This leads to the obvious question - is one particular interpretation more suitable to prognostics? In
general, both interpretations may be suitable. However, in the particular context of condition-based mon-
itoring or online health monitoring, there is only one system which is being monitored, and hence, at any
time instant, there is no “physical randomness” associated with the system (from a frequentist point of
view). Therefore, any quantity associated with a system, even though it may be uncertain, cannot be repre-
sented using a probability distribution, following the frequentist interpretation of probability. Nevertheless,
system state estimation during health monitoring is commonly performed using particle filters and Kalman
filters, and these approaches compute probability distributions for the state variables; therefore, the only
possible explanation for such calculation is that the subjective (Bayesian) approach is being inherently used
for uncertainty quantification. Such filtering approaches are known as “Bayesian tracking” methods not
only because they make use of Bayes theorem, but also fall within the realm of subjective probability. This
implies that the uncertainty estimated through the aforementioned filtering algorithms are simply reflec-
tive of the analyst’s degree of belief, and not related to actual physical probabilities. Having reviewed the
physical meaning of uncertainty in the context of health monitoring, the commonly encountered sources of
uncertainty in prognostics are listed below:

1. Measurement Errors: In the context of health monitoring or condition-based monitoring, measure-
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ments from the system are continuously available. These measurements may be uncertain due to the
presence of sensor bias and sensor noise.

2. Model uncertainty errors: The models used for representing the system behavior have different
types of uncertainty associated with them. First, the model parameters may be uncertain, and second,
the model form may not capture the true underlying behavior. This is sometimes expressed through
the use of process noise, but this is not an accurate representation of the true model form error.

3. Present State Estimate: As stated earlier, state estimation is commonly performed through Bayesian
tracking methods such Kalman filter, particle filter, etc. These approaches account for the uncertainty
in the model and measurements, and estimate the state of the system as a random variable, and
therefore impart additional uncertainty to prognostic calculations.

4. Future loading and operating conditions: One important challenge in prognostics is to antici-
pate the future loading on the system, and predict the future operating conditions. It is practically
impossible to be certain about such predictions, and there is always an element of subjectivity while
assessing the uncertainty regarding such variables.

At this juncture, it must be acknowledged11 that accurate quantification of the various sources of uncer-
tainty is very challenging in practical applications. Sometimes, the resultant uncertainty may be high and
it may be desirable to reduce some of these uncertainties. While some of these uncertainties can be reduced
by improving measurement techniques or modeling techniques, it is practically impossible to eliminate them
altogether. However, representing them and accounting for them in prognostic calculations is extremely
important, because it directly affects decision-making. In fact, there are several PHM approaches quantify
risk based on uncertainty quantification in an algorithm’s output and incorporate it into a corresponding
cost-benefit equation through monetary concepts.12 Therefore, the next section focuses on how these sources
of uncertainty affect prognostic calculations and RUL estimation.

III. Remaining Useful Life Estimation in Prognosis

This section discusses uncertainty quantification in prognostics, with a focus on computing the RUL pre-
diction. In prognostics, the remaining useful life at a generic time-instant tP is a condition-based estimation
of the usage time left until failure, using measurements of key variables and past usage information up to
time tP . This process typically consists of forecasting the future state of health beyond tP and identifying
when the state of health will cross a failure threshold representative of a functional failure. In addition,
RUL in prognostics considers future usage (loading and operating) conditions. As a result, the probability
distribution of the states and the RUL prediction will continuously vary as a function of time (the time at
which prediction is performed).

Typically, the procedure for RUL computation (at any generic time tP ) consists of three steps:

1. Present State Estimation

2. Future State Prediction

3. RUL computation

The first step involves estimating the state at the given time-instant tP . Conventionally this is performed
using a filtering algorithm; while the Kalman filter can be used for linear models where the state variables
are assumed to follow Gaussian (normal) distributions, particle filter is used when the state variables are
assumed to follow non-normal distributions. For details of filtering approaches, refer to Kalman13 and Doucet
et al.14 At the end of the first step, the state estimate is available in form of a probability distribution whose
density function (PDF) is given by fX(x). If there is more than one state, then this density function is the
joint density function (denoted by fX(x)) of all the states at the time instant tP . If Kalman filter is used,
then this PDF is Gaussian, and if a particle filter is used, the distribution is typically non-parametric and
expressed in terms of samples drawn from the probability distribution.

The second step is to forecast the future states using the health degradation model; this model is repre-
sented in terms of the state space equations, as follows:

ẋ(t) = h(x(t),u(t),w(t)) (1)
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In the above equation, u(t) and w(t) denote the loading and model error (process noise) at any generic time
instant t, and h is the functional model that represents the state evolution. This model may be developed
using first-principle physics or using data-driven approaches. Note that scalar state variables have been
shown, only for the purpose of illustration; the prediction methodology can be extended to consider a vector
of state variables. Using Eq. 1, it is possible to forecast the state value from the given time instant tP until
any generic later time instant tl (tl ≥ tP ). The forecast value obviously depends on the loading values and
model errors from time tP until time tl. As stated earlier in Section II, these loading values and model errors
are also uncertain quantities, and are assumed to have been characterized before RUL computation.

The third and final step of RUL computation is complicated from an analytical point of view. It is first
necessary to define the end of life using a threshold function. This threshold function is evaluated at a any
generic time t; its output at any time instant is binary, indicating whether failure has occured or not. For the
sake of illustration, assume that there are no uncertainties, and all quantities (initial state xp, and loading
and model errors at all times) are deterministically known. Starting with the state value of xp, the state
value can be continuously forecasted until the first time instant when the end of life (as determined using
the threshold function) is attained; this time instant corresponds to the end of life, and is denoted as tEOL.
It can be easily seen that tEOL, when calculated at time tP , is a function of:

1. State value at the time at which prediction needs to be made, i.e., at tP . These state values are denoted
by x(tP ).

2. Loading values continuously from time tP until tEOL; the operating conditions, if known, may also be
included. Let u denote this vector.

3. Model error values from time tP until tEOL; let w denote this vector.

Compute x(t + 1)

Discretize Eq. 1

x(tP )

Present State

u

Future Loading

w

Future Model Errors

TEOL

Using
x(t)

t = tP

Assign t = t+ 1

if TEOL = 1

if TEOL = 0

EOL(tP ) = t

EOL(tP ) = Ψ(xp,u,w)

Figure 1: Definition of Ψ

The evaluation of end-of-life can be graphically represented as shown in Fig. 1, and expressed mathemat-
ically as:

EOL(tP ) = Ψ(x(tP ),u,w) (2)

Then, the RUL at time tP is calculated as:

RUL(tP ) = EOL(tP )− tP (3)

Note that tP is deterministic, since the time at which prediction needs to be performed is known. In fact,
the above two equations can be combined, and the RUL can be directly expressed mathematically as:

RUL(tP ) = G(x(tP ),u,w) (4)
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Thus, using Eq. 4, for every value of x(tP ), u, and w, the value of RUL can be computed. However, the
values of these variables are uncertain, and only probability distributions may be available for them. Since
these variables are uncertain, RUL is also uncertain, and hence, the goal would be to compute the probability
distribution of RUL. This probability distribution of RUL can be computed by “propagating” the uncertainty
in x(tP ), u, and w through G in Eq. 4. Hence, the estimation of RUL in prognosis is simply an uncertainty
propagation problem, and well-established statistical tools for uncertainty propagation may be investigated
for this purpose. The following section is devoted to this topic, and discusses the relevance of well-known
uncertainty propagation methods in prognostics and health monitoring.

IV. Uncertainty Propagation Methods for RUL Estimation

Researchers in the areas of non-deterministic methods and uncertainty quantification techniques have
developed different types of statistical methods for uncertainty propagation during the past 30 years. The
most general case of uncertainty propagation considers the mathematical function given by:

Y = G(X1, X2...Xn) (5)

It is clear that the above equation is very similar to Eq. 4 in Section III. Here, there are n inputs given by Xi

(i = 1 to n), and the uncertainty in each input is given by the probability density function (PDF) fXi
(xi)

or the cumulative distribution function (CDF) FXi
(xi). The joint PDF of all inputs is denoted as fX(x).

The goal in uncertainty propagation is to compute the uncertainty in Y , either in terms of the PDF fY (y)
or CDF FY (y). The entire CDF fY (y) can be calculated as:

FY (y) =

∫
g(X)<y

fX(x)dx (6)

It is harder to write a similar expression for PDF calculation, although the following equation attempts to.

fY (y) =

∫
fY (y|x)fX(x)dx (7)

In Eq. 7, the domain of integration is such that fX(x) 6= 0. Note that Eq. 7 is not very meaningful because
y is single-valued given x, and hence fY (y|x) is nothing but a Dirac delta function. Alternatively, the PDF
can be calculated by differentiating the CDF, as:

fY (y) =
dFY (y)

dy
(8)

The different methods which have been used by researchers for uncertainty quantification aim at solving
the above equations in mathematically intelligent ways. These methods can be classified into two types –
sampling-based and analytical methods; while some may calculate the PDF of Y , other methods calculate
the CDF.

A. Sampling-based Methods

The most intuitive method for uncertainty propagation is to make use of Monte Carlo simulation (MCS).
The basic underlying concept of Monte Carlo simulation is to a generate pseudo-random number which is
uniformly distributed on the interval [0, 1]; then the CDF of X is inverted to generate the corresponding
realization of X. Following this procedure, several random realizations of X are generated, and the cor-
responding random realizations of Y are computed. Then the CDF FY (y) is calculated as the proportion
of the number of realizations where the output realization is less than a particular yc. The generation of
each realization requires one evaluation/simulation of G. Several thousands of realizations may often be
needed to calculate the entire CDF, especially for very high/low values of y. Error estimates for the CDF,
in terms of the number of simulations, are available in the literature.15 Alternatively, the entire PDF fY (y)
can be computed by constructing a histogram based on the available samples of Y , using kernel density
estimation.16

There are several variations of the basic Monte Carlo algorithm which are used by several researchers.17, 18

Some of these approaches are listed below:
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1. Importance Sampling: This algorithm does not generate random realizations of X from the original
distribution. Instead, random realizations are generated from a proposal density function, statistics of
Y are estimated and then corrected based on the original density values and proposal density values.

2. Stratified Sampling: In this sampling approach, the overall domain of X is divided into multiple
sub-domains and samples are drawn from each sub-domain independently. The process of dividing the
overall domain into multiple sub-domains is referred to as stratification. This method is applicable
when subpopulations within the overall population are significantly different.

3. Latin Hypercube Sampling: This is a sampling method commonly used in design of computer
experiments. When sampling a function of N variables, the range of each variable is divided into M

equally probable intervals, thereby forming a rectangular grid. Then, sample positions are chosen such
that there is exactly one sample in each row and exactly one sample in each column of this grid. Each
resultant sample is then used to compute a corresponding realization of Y , and thereby the PDF fY (y)
can be calculated.

4. Unscented Transform Sampling: Unscented transform sampling19 is a sampling approach which
focuses on estimating the mean and variance of Y accurately, instead of the entire probability distribu-
tion of Y . Certain pre-determined sigma points are selected in the X — space and these sigma points
are used to generate corresponding realizations of Y . Using weighted averaging principles, the mean
and variance of Y are calculated.

B. Analytical Methods

A new class of methods was developed by reliability engineers in order to facilitate efficient, quick but
approximate calculation of the CDF FY (y); the focus is not on the calculation of the entire CDF function
but only to evaluate the CDF at a particular value (yc) of the output, i.e. FY (Y = yc).

The basic concept is to “linearize” the model G so that the the output Y can be expressed as a linear
combination of the random variables. Further, the random variables are transformed into uncorrelated
standard normal space and hence, the output Y is also a normal variable (since the linear combination of
normal variables is normal). Therefore, the CDF value FY (Y = yc) can be computed using the standard
normal distribution function. The transformation of random variables X into uncorrelated standard normal
space (U ) is denoted by U = T (X), and the details of the transformation can be found in Haldar and
Mahadevan.17

Since the model G is non-linear, the calculated CDF value depends on the location of “linearization”.
This linearization is done at the so-called most probable point (MPP) which is the shortest distance from
origin to the limit state, calculated in the U — space. Then, the CDF is calculated as FY (yc) = Φ(−β),
where Φ denotes the standard normal CDF function, and β denotes the aforementioned shortest distance.
The MPP and the shortest distance are estimated through a gradient-based optimization procedure. This
optimization is solved using the well-known Rackwitz-Fiessler algorithm,20 which is in turn based on repeated
linear approximation of the non-linear constraint G(x) − yc = 0. This method is popularly known as the
first-order reliability method (FORM). There are also several second order reliability methods (SORM) based
on the quadratic approximation of the limit state.17, 21, 22, 23

The entire CDF can be calculated using repeated FORM analyses by considering different values of yc;
for example, if FORM is performed at 10 different values of yc, the corresponding CDF values are calculated,
and an interpolation scheme can be used to calculate the entire CDF, which can be differentiated to obtain
the PDF. This approach is difficult because it is almost impossible to choose such multiple values of yc,
because the range (i.e. extent of uncertainty) of Y is unknown. This difficulty is overcome by the use of an
inverse FORM method24, 25 where multiple CDF values are chosen and the corresponding values of yc are
calculated. This approach is simpler because it is easier to choose multiple CDF values since the range of
CDF is known to be [0, 1].

C. Discussion

Since sampling-based methods may require several thousands of “samples” or “particles” in order to accu-
rately calculate the PDF or CDF, they are time consuming and hence, may not be suitable in the context
of online prognostics and decision-making. Further, in general, sampling-based methods (other than the
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Y = yc

MPP

u1

u2

β

U — space

Region 1

Region 2

Y < yc

Y > yc

Linear
Approximation

Figure 2: Most Probable Point Concept

unscented transform sampling approach) are not “deterministic methods”; in other words, every time a
sampling-based algorithm is executed, it may result in a slight different PDF or CDF. The ability to pro-
duce a deterministic solution is sometimes an important criterion for existing verification, validation, and
certification protocols in the aerospace domain.

On the other hand, analytical methods are not only computationally cheaper but also usually determin-
istic; in other words, they produce the same PDF or CDF every time the algorithm is executed. However,
these analytical methods are still based on approximations, and not readily suitable to account for all types
of uncertainty in prognosis. For example, consider the FORM method, which is solved using gradient-based
optimization equations. If tEOL >> tp, then the number of elements in u and w may be of the order of a few
hundreds or thousands, and hence, it is necessary to compute hundreds or thousands of derivatives of Eq. 5.
In that case, the computational efficiency of the analytical approach is as good (or as bad) as sampling-
based approaches. It is clear from the above discussion that, though uncertainty propagation methods may
be available in the literature, it is challenging to make direct use of them for prognostics.

In addition to the above described methods, researchers have also advocated the use of surrogate models
for uncertainty propagation. These surrogate models approximate the function G(x) using different types
of basis functions such as radial basis, Gaussian basis, Hermite polynomials, etc. These surrogate models
are inexpensive to evaluate and therefore, facilitate efficient uncertainty propagation. Future research will
investigate the use of such surrogate models for uncertainty quantification in prognostics.

V. Conclusion

It is important to accurately estimate the remaining useful life (RUL) prediction in the context of prog-
nostics and condition-based monitoring. This is a challenging problem since prognostics deals with future
prediction which is affected by several sources of uncertainty. Therefore, a meaningful prognostics algorithm
must be able to account for these sources of uncertainty and predict the uncertainty in future behavior
as well as the remaining useful life prediction. Estimating the uncertainty in prognostics is important for
decision-making as it can guide several activities such as fault mitigation, fault recovery, mission re-planning,
etc.

This paper discussed the various issues related to uncertainty quantification in prognostics and explained
that it is useful to view the problem of estimating the uncertainty in prognostics as an uncertainty propagation
problem. The uncertainty in present conditions and estimates of future conditions can be propagated through
prediction model to quantify the uncertainty in the remaining useful life prediction. Certain fundamental
principles of uncertainty propagation were explained and mathematical techniques were discussed. Different
types of sampling methods and analytical approaches were outlined. Future research needs to delve deeper
into these approaches and investigate their applicability to prognostics and system health management.
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