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This paper presents the development of a control system design to keep the spacecraft
attitude at a prescribed sun vector. A bounded controller is proposed which utilizes the
measured sun vector and spacecraft spin rates, and the control gains are model indepen-
dent and can be tuned for individual axis. An adaptive control scheme is developed for
control parameters to ensure closed-loop performance. To demonstrate the effectiveness of
proposed controller, a spacecraft engaging the sun safe-hold is simulated.

I. Introduction

An essential part of a spacecraft’s attitude determination and control systems (ADCS) is a simple and
reliable safe-hold mode controller that the ADCS can fall back on if the spacecraft experiences problems.
The purpose of sun safe-hold is to ensure that the spacecraft is power positive; for instance by directing
the solar panels toward sun, thermally safe, and instrument safe if needed. Many safe-hold modes for larger
missions feature a fully redundant set of sensors, such as those implemented on Hubble1 and the Solar
Dynamics Observatory (SDO).2 In addition, solar panels are appended via a gimbaled mechanism so that
the panels can be rotated toward the sun independent of spacecraft attitude. For small spacecraft or low
budget missions, complete redundancy is neither required nor affordable, and in order to save mass and for
simplicity, solar panels can be rigidly attached to the spacecraft, see GRAIL.4 Therefore, in these applications
it is critical to implement reliable and robust control system designs by utilizing the basic ADCS hardware
such as coarse sun sensors, rate gyros, and reaction wheels.

Since reaction wheels in practice can only deliver limited control torque, the total spacecraft control
authority is bounded. However, the linear state-feedback controllers which were commonly used in most
spacecraft attitude control literatures are in fact not bounded. The spacecraft attitude determination and
control problem has been studied quite extensively, especially with quaternion feedback, see for example,5,6

and the references therein. The controllers presented in these works tend to be either model dependent
or utilizing scalar gains, which may not be desirable in actual implementation, since the mass and inertia
properties of the spacecraft are such that each axis may demand a different control gain for specific mission
requirements. Therefore, in this paper we propose a bounded nonlinear PD-type controller, in which the
control gains are model independent and can be chosen for individual axis. Finally, we demonstrate the use
of the results by developing an adaptive scheme for control parameters to ensure closed-loop performance.

II. Spacecraft Dynamics

The angular momentum of the rigid body spacecraft in the inertial frame is given by

IHsp = J Iωb , (1)

where J is the mass moment of inertia of the spacecraft, excluding the reaction wheels, and Iωb = [ωx ωy ωz]
t

is the angular velocity of spacecraft relative to the inertial frame. The total reaction wheel angular momentum
relative to the inertial frame is described by

IHrw = TIrwT
t Iωb + TIrw

bωrw , (2)

where T is the conversion matrix that transforms the reaction wheel spin axis to the spacecraft body fixed
frame, Irw a matrix containing the reaction wheel’s axial moment of inertia along its diagonal, and bωrw
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a vector containing reation wheel’s spin rate relative to the body fixed frame. Therefore, the total angular
momentum for the spacecraft system is the summation of the the spacecraft angular momentum given in
Eq. (1) and reaction wheel angular momentum given in Eq. (2), and is described by

IHss = IHsp + IHrw

= J Iωb + TIrwT
t Iωb + TIrw

bωrw

= Ja
Iωb + TIrw

bωrw
(3)

where Ja = J + TIrwT
t. Note that in general the reaction wheel inertia is negligible compared to the

spacecraft inertia, so in practice Ja ≈ J .
Let τext denote the total external disturbance torque, and by setting the time derivative of Eq. (3) equal

to the external disturbance torque, we obtain

τext = dI IHss

dt

= db IHss

dt + Iωb × IHss .
(4)

Substituting Eq. (3) into above yields,

τext = (JI ω̇b + TIrw
bω̇rw) + Iωb × (JIωb + TIrw

bωrw)

= (JI ω̇b + Iωb × JIωb)︸ ︷︷ ︸
Spacecraft

+ (TIrw
bω̇rw + Iωb × TIrwbωrw)︸ ︷︷ ︸
Reaction Wheels

.
(5)

Let u = [τx τy τz]
t

be the internal control torque generated by the reaction wheels, then the equal and
opposite torque will be applied to the spacecraft. Therefore, Eq. (5) can be rewritten as follows,

J I ω̇b = J Iωb × Iωb + u+ τext (6)

where the control torque u is defined by

u = −
(
TIrw

bω̇rw + Iωb × TIrwbωrw
)

= −
(
Tτrw + Iωb × Thrw

) (7)

where τrw and hrw denote respectively the reaction wheel torque and angular momentum along its spin
axis. Eq. (6) represents the dynamics of the spacecraft subject to the control and disturbance inputs. This
equation along with the sun vector dynamics, which will be discussed in the sequel, form a complete equation
of motion for spacecraft attitude control for the sun safe mode. The control torque u can be designed by
following many available references, and once it is determined, we can solve Eq. (7) for both τrw and hrw,
which then become the commanded input to the reaction wheels. The development of reaction wheel model
is not covered in this paper.

Let S(t) be the measured unit sun vector relative to the body fixed frame at time t, i.e. ‖S(t)‖ = 1.

Then, the time derivative of S(t) relative to the inertial frame, denoted as
IdS
dt , can be described by

IdS

dt
=

bdS

dt
+I ωb × S , (8)

where
bdS
dt denotes the time rate change of the sun vector S relative to the body fixed frame. Since the

sun vector stays almost stationary in inertial frame, we deduce that
IdS
dt ≈ 0. Therefore, Eq. (8) can be

simplified to
bdS

dt
= −Iωb × S , (9)

which describes the sun vector dynamics relative to the body fixed frame. Note that the sun vector S is
determined by processing the on-board sun sensor data and the spacecraft rotational rate Iωb is obtained
by processing the rate gyro data. As mentioned earlier, Eqs. (6) and (9) together completely describe the
spacecraft attitude dynamics, and they are given as follows,

Σ :

{
Jω̇ = J ω × ω + u

Ṡ = −ω × S
(10)
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For sake of control development, we neglect the external disturbance τext, and use ω instead of Iωb for
brevity.

III. Design of Bounded Controllers

In actual control applications, the control effort is always limited. In the case of reaction wheels, de-
pending on how they are configured, the generated reactional control torques may differ from one axis to
another, but they are limited. In this paper, we propose a bounded PD-type nonlinear controller with an
inner velocity loop which is commanded from an outer sun vector loop.

Let the measured sun vector S and the target sun vector Sd be denoted as

S =

 Sx

Sy

Sz

 , Sd =

 Sdx

Sdy

Sdz

 , (11)

and both S and Sd are unit vectors. The sun vector error Se is calculated as the cross product of S and Sd,
i.e. Se = S × Sd. If the spacecraft rotates about the error vector Se, then the sun vector S will be driven
toward the target sun vector Sd, hence the attitude error Se will be diminished. We propose the following
bounded controller,

u = −Kp (S − Sd)× S −Kd Tanh(āω) , (12)

where Kp = diag(Kpx,Kpy,Kpz) and Kd = diag(Kdx,Kdy,Kdz) are positive definite matrices respectively
denoting the attitude and rate control gains, and they are determined in the sequel. Tanh(·) is a vector of
Sigmoid functions defined by

Tanh(āω) =

 tanh(axωx)

tanh(ayωy)

tanh(azωz)

 , (13)

where (ax, ay, az) are positive scalars and represent the slopes of Sigmoid functions at the origin. Further-
more, they can be tuned to improve performance, if needed. Note that tanh(·) is hyperbolic function bounded
by 1. Utilizing Eqs. (11) and (13), we can rewrite (12) as ux

uy

uz

 =

 −KpySz(Sy − Sdy) +KpzSy(Sz − Sdz)−Kdxtanh(axωx)

−KpzSx(Sz − Sdz) +KpxSz(Sx − Sdx)−Kdytanh(ayωy)

−KpxSy(Sx − Sdx) +KpySx(Sy − Sdy)−Kdztanh(azωz)

 . (14)

Figure 1. Block diagram for Sun Safe-Hold Control

Based on the maximum torque of each reaction wheel and the number of reaction wheels and their
placement onboard the spacecraft, the control torque authority at each axis in the body fixed frame can be
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pre-determined. We let (ūx, ūy, ūz) to denote the control torque limits. Therefore, the control u in (12) is
constrained by

u2x
ū2x

+
u2y
ū2y

+
u2z
ū2z
≤ 1 , (15)

or in compact form,

utRu ≤ 1 ; R = diag

(
1

ū2x
,

1

ū2y
,

1

ū2z

)
.

In other words, the control vector u is always within the ellipsoid defined by (15), see Figure 2.

0 

zu

yu
xu

Figure 2. An ellipsoid formed by control torque limits.

By substituting (14) into above and noting that both S and Sd are unit vectors, we can derive that the
control gains Kp > 0 and Kd > 0 must satisfy

K2
y +K2

z +K2
dx

ū2x
+
K2
x +K2

z +K2
dy

ū2y
+
K2
x +K2

y +K2
dz

ū2z
≤ 1 . (16)

It is left to show that the proposed bounded nonlinear controller (12) globally asymptotically stabilizes (10).
To prove this, we first substitute (12) into (10) to form a closed-loop system representation described by

Σc :

{
Jω̇ = J ω × ω −Kp (S − Sd)× S −Kd Tanh(āω)

Ṡ = −ω × S
(17)

In what follows, we prove that Σc is globally asymptotically stable. Let

V (ω, S) =
1

2
ωtJω +

1

2
(S − Sd)tKp(S − Sd) (18)

be a candidate Lyapunov function for Σc, where Kp > 0 is given in (12). Note that the function V ≥ 0
for all ω and S, and that V = 0 only at the equilibrium, ω = 0 and S = Sd. If Kp is a scalar, then
V = 1

2ω
tJω +Kp (1− Std S), and the prove for global stability in this case is relatively straightforward.

The time derivative of V (ω, S) is given by

V̇ = ωtJω̇ + (S − Sd)tKpṠ .
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Now, substitute (17) into above, we obtain

V̇ (ω, S) = ωt(J ω × ω)− ωt[Kp (S − Sd)× S]− ωtKdTanh(āω) + (S − Sd)tKp(−ω × S)

= −ωtKdTanh(āω)− ωt[Kp (S − Sd)× S] + (S − Sd)tKp(S × ω)

= −ωtKdTanh(āω)− ωt[Kp (S − Sd)× S] + ωt[Kp (S − Sd)× S]

= −ωtKdTanh(āω)

= −ωxKdxtanh(axωx)− ωyKdytanh(ayωy)− ωzKdztanh(azωz)

≤ 0

(19)

for all ω and S. In attaining the above, we have applied the vector triple product identity and the fact
that Kd is a positive definite matrix and tanh(X) ≥ 0 if X ≥ 0 or tanh(X) < 0 if X < 0. To prove global
asymptotic stability, we need to show that V̇ = 0 only at the equilibrium, ω = 0 and S = Sd. From (19), we
note that V̇ = 0 for all t ≥ 0 implies ω = 0 for all t ≥ 0, hence ω̇ = 0 for all t ≥ 0. Thus, from the second
equation of (17), we note that Ṡ = 0 for all t ≥ 0, which implies that S is a constant. Now, substituting
ω̇ = 0 and ω = 0 into the first equation of (17) yields

Kp (S − Sd)× S = 0 , (20)

which implies that the vector Kp(S − Sd) and the measured sun vector S are in parallel. Hence, we can
deduce that

Kp(S − Sd) = c S , (21)

where c is some constant. Since Kp is invertible, we can rewrite the above as

Sd = AS ; A = I − cK−1
p , (22)

where I is the 3× 3 identity matrix. Since both Sd and S are unit vectors, pre-multiplying (22) by Std yields

1 = StdSd = StdAS = StA2S . (23)

Since (23) holds for all ‖S‖ = 1, we conclude that

A2 = I ,

hence A can be either I or −I. In other words, there are two equilibria, namely, S = Sd and S = −Sd. In
what follows, we will show that S = −Sd is not a stable equilibrium.

Consider S = −Sd, and at steady state the Lyapunov function converges to Vss(ω, S) = 2StdKpSd. Let
Sε to denote a small perturbation of S from −Sd, that is

Sε = −(1− 2ε)Sd ,

where ε < 1 is a small positive number. Then,

Vε = 1
2 (Sε − Sd)tKp(Sε − Sd)

= (1− ε)22StdKpSd

= (1− ε)2Vss
< Vss

for ε > 0. This implies that when S is perturbed from −Sd, Vε will continue to decrease. Hence, S = −Sd
is an unstable equilibrium. In space operations, since spacecraft is exposed to a number of environmental
disturbance torques, spacecraft attitude will eventually converge to S = Sd. Therefore, the function V given
in (18) is indeed a Lyapunov function for Σc. This completes the proof.

It should be noted that the selection of (ax, ay, az) depends on the desired spacecraft performance for
specific mission scenario. In the next, we present the adaptive control scheme for parameter ā.
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Figure 3. Inner velocity loop with adaptive parameters

IV. Adaptive Velocity Feedback Control

In practical two loop control design, the inner velocity feedback loop has wider bandwidth than the outer
attitude/position loop, hence in comparison the velocity response is much faster. In particular, in the case
of bounded controller proposed in (12), we can consider it running at two different time scales; slow and
fast. The closed-loop stability has already been shown for both time scales, here we will focus on fast inner
velocity loop and introduce an adaptive control scheme for improving performance; see Figure 3.

For inner velocity loop, we examine the spacecraft dynamics at a short time duration, hence the velocity
Sigmoid term in (12) can be approximated by a linear function. Let ā = (ax, ay, az) be a function of time t
and given by

ā(t) = a0 + ã(t) , (24)

where a0 = (a1, a2, a3) and ai > 0 are some arbitrarily small numbers and ã(t) = (ãx(t), ãy(t), ãz(t)) are
adaptive parameters. Considering only the velocity feedback and very short time duration, the closed-loop
system resulted from closing only the inner loop becomes

Jω̇(τ) = J ω(τ)× ω(τ)− K̃d(τ)ω(τ) , (25)

where τ is scaled from t indicating the ’fast’ time scale and K̃d(τ) is a diagonal matrix defined by

K̃d(τ) = diag {Kdx(a1 + ãx(τ)),Kdy(a2 + ãy(τ)),Kdz(a3 + ãz(τ))} .

Consider the following candidate Lyapunov function for (25),

V =
1

2
ωtJω +

1

2
ã2xγ

−1
1 +

1

2
ã2yγ

−1
2 +

1

2
ã2zγ

−1
3 ,

where γi are arbitrary positive numbers. Then, the time derivative of V along any solution of (25) is given
by

V̇ = ωt(J ω × ω)− ωtK̃dω + ãx ˙̃axγ
−1
1 + ãy ˙̃ayγ

−1
2 + ãz ˙̃azγ

−1
3

= −ω2
xa1Kdx − ω2

ya2Kdy − ω2
za3Kdz + (ãx ˙̃axγ

−1
1 − ω2

xKdxãx) + (ãy ˙̃ayγ
−1
2 − ω2

yKdyãy)

+(ãz ˙̃azγ
−1
3 − ω2

zKdzãz)

and if we choose the adaptive parameters as

˙̃ax = γ1ω
2
xKdx ,

˙̃ay = γ2ω
2
yKdy ,

˙̃az = γ3ω
2
zKdz ,

(26)

then we will have V < 0 for all ω 6= 0, and hence V is a Lyapunov function for (25). Therefore, the adaptive
scheme for parameters (ãx, ãy, ãz) are given by (26).

6 of 10

American Institute of Aeronautics and Astronautics



V. An Illustrative Example

The proposed sun safe-hold bounded controllers developed in the previous section is applied to a small
spacecraft. The control objective is to align the solar panels with the sun vector in order to maximize the
power. The moments of inertia (kg-m2) of the spacecraft are chosen to be: Ixx = 50, Iyy = 70, and Izz = 100.
The maximum reaction wheel torque is 30 mN-m, and there are four reaction wheels onboard the spacecraft
and they are placed in a pyramid configuration with 45◦ base angle. The initial spacecraft body rates are
assumed to be ω(0) = [0, 0, 0.01]deg/sec, and the initial sun vector is chosen to be S(0) = [0.7071, 0.7071, 0];
a unit vector on the XY -plane. In this simulation, the target sun vector Sd is set to be a unit vector pointing
along the Z-axis, i.e. Sd = [0, 0, 1]. The maximum control torque limits (with 50% margins) in body axis
are: (ūx, ūy, ūz) = (0.022, 0.022, 0.044)N-m.

Figures 4 and 5 show the simulation results with adaptive slope function ā(t), and Figures 6 to 7 the time
history of adaptive parameters (ãx, ãy, ãz). As can be seen that the adaptive parameters reach the steady
state values, and these values seem to be appropriate for the inner velocity loop response.

VI. Summary

This paper presents the sun safe-hold control system design by taking into account of the limited control
torque. A PD-type bounded nonlinear controller is proposed by utilizing matrix gains, instead of scalar
gains. The global asymptotic stability for feedback-controlled system is proved by applying Lyapunov’s 2nd
method. By applying the time scale seperation between the sun vector attitude loop and velocity loop, an
adaptive control scheme is proposed and the simulation results show the effectiveness of the design.
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Figure 4. Measured sun vector relative to spacecraft body axis

Figure 5. Control torques in body axis
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Figure 6. Adaptive parameter ãx

Figure 7. Adaptive parameter ãy
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Figure 8. Adaptive parameter ãz
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