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Abstract—A new method for detecting and locating wiring ~ section of the wire is damaged, a common problem with aging
damage using time domain reflectometry with arbitrary input ajrcraft caused by decades of wires rubbing together, among
interrogation signals is presented. This method employs exist- other things. This sort of damage will cause the incident

ing ¢, regularization techniques from convex optimization and . .
compressed sensing to exploit sparsity in the distribution of voltage wave to reflect and travel back along the line where it

faults along the length of a wire, while further generalizing and Will be measured by the TDR.
improving commonly used fault detection techniques based on It is common practice for trained technicians to manually
sliding correlation and peak detection. The method's effectiverss  examine the raw TDR response by eye in search of reflections
is demonstrated using a simulated example, and it is shown jngicative of wiring faults. While this is perhaps the simgile
how Monte Carlo techniques are used to tune it to achieve . .
specific detection goals, like a certain false positive error rate. approach, it _often_ does not work well for small faults with
Furthermore’ the method is eas”y imp|emented by adapting subtle reflection S|gnatures. Furthermore, the currerie sth
readily available optimization algorithms to quickly solve large, the art uses sequence time domain reflectometry (STDR),
high resolution, versions of this estimation problem. Finally, the or spread spectrum time domain reflectometry (SSTDR) to
technique is applied to a real data set, which reveals its impressive yatact wiring problems on live wires [1]. In essence these
ability to identify a subtle type of chaffing damage on real wire. technologies spread the input interrogation signal enexgly
over time by using a pseudo noise sequence with a small
amplitude so that the regular data signals on the wire appear
unaffected. With this type of interrogation signal direcimual
inspection of the reflected signal is near impossible, soesom
| INTRODUCTION sort _of processing is required to dete_ct fault _severity and
location. By far the dominant processing algorithm for all

T HIS paper considers the specific problem of detectingese systems is to simply compute the correlation between
faults in wiring systems using time domain reflectometrye jnput signal and the reflected response and then to use
Generally, this is performed by launching a known signab inty peak detection algorithm (or just a threshold) to locate th
a wire, and examining the signal reflected back for potentigy s [1]-[5].
issues (Figure 1 below). An important aspect of this techiq Obviously, it is beneficial to process the reflected response
is that one can detect and locate wiring problems well befose order to automate the detection process, or perhaps just
hard short or open conditions occur. With this application ity make manual inspection easier. In this paper, we de-
mind we are particu_larly concerned Wi_th the de_tection of H;m%/elop an improvement to the traditional sliding correlaand
faults such as chafing damage to shielded wire. One specicak detection method, by incorporating the additionabrpri
application is to aircraft wiring systems that are hard ®peCt information that small wiring faults are generally spaysel
visually, and where it is critical to identify problems befo ,opylated along the line. The approach is motivated by some
components start to fail. _ _ recent theoretical and software developments in comptesse
The setup is presented in Figure 1. A Time Domain Reflegansing for sparse signal recovery usipgnorm regularization
tometer (TDR) is connected to the transmission line we want 1. [7]. This method appears to be effective and new to the
check, and is used to send a signal down the wire. The reﬂec[%id of time domain reflectometry. The presentation here is
signal is then measured, and checked for anomalies that mighbant to be clear, practical, and immediately applicable to
indicate possible wiring problems along the line. For ex®mp gy existing TDR hardware system. It is thus critical that

consider a simple case where the original transmissionisl;ineimpro\lememS are both computationally efficient and effect

perfect (and has matched source and load impedance). In ?Bisarbitrary interrogation signals.

case, we will see the incident signal pass right throughitte | - e fundamental problem presented here is to reconstruct

without receiving any reflected signal back. Now imagine thghe properties of a transmission line from the measurement

during the course of its lifetime, the outer shielding alang x jig response to an input interrogation signal. This peabl
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J\/Vﬁi) J\/ﬁi‘) through it moves at constant velocity, and that the line is

initially quiescent.

4{ wire under test }—‘ We consider the following discrete convolution model for
Zr

n—1

Vo(k) = > u(i)Vilk — j) + n(k), )

Jj=0

TDR
Vl(_t)JL the TDR measurement process:

7]

ty

where fork = 0,1,2,...,n — 1, V,.(k) is the measured
response,u(k) is a series of impulse respongeflection
o 1 Basic TOR Setun. The TR int s the wire witbun coefficientsthat characterize the damaged wifé(k) is the
silgﬁal.vi(t),avi#i:ch propagaﬂgé aloig the vil?rsr;%%arizectg c\JAlzflrce)f mg)eudanéénown incident wave launched 'n_to the t_ransm|SS|on Im@'_ an
discontinuities caused by damage. The reflected signdt), is measured at 7(k) iS random measurement noise. This model has a simple
the input of the wire and used to determine the location anériggwof the interpretation: the measured signal is the sum of time ethift
damage. and scaled replicas of the input sigia(k), plus noise. For an
unfaulted lineu(k) = 0, for all k (except perhaps at the source
earth by applying the TDR principle to the ground. A surve@' l0ad end of the wire). Thus, fault severity and location
of this work is provided by J. Mendel in [8]. The electricafre indicated by the magnitude and position of each nonzero
engineering community has of course tackled the problem &lection coefficient.
well, sometimes referring to it aisiverse scatteringr layer ~ The model can represent either causal or circular (perjodic
pealing The literature here is extensive and many differefnvolution. For circular convolution we plif(—k) = V;(n—
models have been proposed. Two representative exampgiésFor causal convolution, we simply defing(k) = 0 for
might be the lossless discrete piecewise constant impedadl k& < 0. Obviously, for either cas&’ (k) must get the same
model described in [9], or the more general continuous RCLEEatment.
transmission line model presented in [10]. It is both instructive and notationally convenient to reeri
The application of this prior research to the detection df) in an equivalent matrix vector form:
wiring faults usually falls into one of two categories. The

reflection caused by internal wire damage

first category contains techniques that solve the transoniss or=Vptn 2)
line partial differential equations, using discrete or thomous where,

methods, and then directly inverts the solution proceskowitt -
incorporating the effects of measurement noise, such aetho v = [V(0),...,Vi(n—1)]
presented in [9], [10]. The second category consists of aukth poo= [w0),...,un—1)"

that use simple linear models, which account for noise, and n = [0),....n(n—1)7

apply various least-squares based techniques to the iormers

process, such as Kalman filtering [8]. The sliding correlati and,

gnd peak detection meth_od, as.well as the method we pursue V;(0) Vi(-1) ... Vi(l—n)
in this paper also fall into this category. Although these

models are not as general or precise as those falling into y, _ Vi(1) Vi(0)

the first category, they are practical to work with, lead to : : V(-1
robust inversion algorithms where measurement noise is a Vin—1) Vin—2) ... Vi (0)

consideration, and awffective for the detection of small faults

on near lossless wireln many ways they are analogous t®&o,v,, u, andn € R™. V is a Toeplitz matrix inrR™*"™ entirely

the small-signal models, which are used with great successtermined by the input signadf; (k).

throughout electrical engineering and physics in general. Finally, it is important to note the linear model presented
This paper is organized as follows. First we present l&re is motivated by the lossless discrete piecewise aunsta

linear model for the TDR setup and measurement process jiispedance transmission line model shown in figure 2. A

described. Next, the problem of detecting the location amfkear, detailed study of this model is presented in [9]. The

severity of wiring damage is posed as an estimation problefinear model is actually an approximation to the piecewise

and a heuristic is introduced to find effective solutionshe t constant model that follows by assuming only the primary

original problem, by solving a convex optimization problemreflection from each impedance discontinuity is significant

Finally, we will show how the Fast Fourier Transform (FFThnd that all additional reflections are negligible. In cases

makes it possible to efficiently solve large-scale problemwhere the impedance discontinuities are both sparse anidl sma

Numerical examples are presented along the way, and the reflection coefficients.(k) are approximatelyrelated to

improved technique is verified using real TDR data. impedances discontinuities in the traditional sense (aicg
to the equation shown on figure 2). S§&.10 of [11] for
Il. AL INEAR TDR MODEL more discussion. The validity of these assumptions wilb als

We assume the transmission line or just wire is losslebg supported by the practical examples using real TDR data
(and hence also distortionless), that any voltage waveliray presented irgVI.



V; (k) . .
— , A. Relation to Least-Squares, Correlation Detectors and Op

timal Input Signals

Vi (k)

To see that (5) is a generalization of the least-squares
problem we need only set = 0. In this case, the optimal
solution is well known:p* = (VIV)=1vTy,, assuming
(VTV)~1! exists. From here we will make a few observations.

The first is that ifV 7V = I, then the least-squares estimate
Fig. 2. The discrete piecewise constant impedance model. Sauits are 'educes tqu* = V" v,., which when written out becomes the
modeled as impedance discontinuities, which are equivalesicified as familiar discrete equation for the correlation betweenitipait
reflection coefficients. and output signals:

o Zrt1—Zk
p(k) ~ Zpy1+Zy

i
1

n—1
I1l. REFLECTION COEFFICIENTESTIMATION w(k) = Z Vi(j — k)V,(5), (6)
Nonzero values ofi(k) indicate the location and severity 3=0

of faults along the wire. Given the prior information that].he condition VTV = I implies the input signal is shift

Wérehs are ttypu]:callyll;nd?magetﬂgogrostfc of the'fr_f.le.ngih':xtceorthogonal, a condition that is met only when the frequency
perhaps at a tew jocations, refiection coetlicient Veptor ¢ e -irym given by the DFT dF;(k) has uniform magnitude

. S
Zzogg c?gtsgﬂ s(,)n;)r/sz feTV;/]unsonvigrzr\éa:zzsrélsr:ecg?ﬁrsv(\)’giis’ ;'\élé;ross all frequencies. Furthermore, we can show this type
pecty P ' ' 9 %‘13’ signal minimizes the mean square error between the actual

optimization problem: reflection coefficient profile and its estimate under the exgsu
minimize  fo(u) 3) tion that the only interference source is Gaussian noisas,Th
subjectto  p sparse, shift orthogonal input signals are in this sensedpgmalinput
signals. There are at least 2 important examples. The ficdt is
1 courseV;(k) = d(k), whered(k) is the well known discrete
folw) = ﬁuvu — v, |)? (4) impulse function. The second is a pseudo noise sequence with
uniform magnitude and random phase in the frequency do-
is the objective representing the negative log-likelihoafd 1\5in. These signals are technically only circular-shithog-
observing the signal’. given u, under the assumption thatona|, put are sometimes also considered shift orthogonal in
the noisen(k) is 11D N(0,0?). statistical sensee(g, E [V;(j)Vi(j — k)] = §(k)). From these
One heuristic to handle the rather vague sparsity con$traiiynsiderations we can see that the optimality of the sliding
in (3), is to add an/;-norm penalty to the objective. Thiscorrelator detection method relies heavily on the asswonpti
regularization technique is well known to produce spar§gat the input interrogation signal is shift orthogonal.
solutions (see [6], [7], [12], [13] and [14]6.3.2). To this end,  yowever, in practice these optimal input signals are not

we consider solving the convek-regularized least squaresyypically found because to avoid aliasing effects it is good

problem (LSP): practice to sample considerably faster than the highest fre
(5) guency in the input signal. Thus the frequency spectrumef th
input signal is never uniform across all frequencies. Ofrseu
with ¢;-norm defined a§ju|; = Z;:Ol |(7)]- Intuitively, the one could measure the system response at a high sampling
solution is sparse because in the process of finding an olptimate, and then process (filter and subsample) the inputisigna
solution, the solver will routinely reduce a small coeffitie and measurements to get the desired result, but that approac
identically to zero at the cost of increasing the associatedually destroys information. For example, consider Fegay
squared erroffy(r) by a smaller amount. The key observationvhich shows the measured input signal of the 3M 900AST
is perhaps that square error measuredfpystays relatively handheld TDR device. This signal is sampled (a2 ns,
flat near a minimum, while absolute error measured/by:)| and would be approximately shift orthogonal for shifts5of
decreases to zero at a constant rate and does not level offi§t Subsampling to obtain the desired “ideal” discrete inpu
is also not differentiable gt(k) = 0 for eachk). Please see would ruin the additional information in the side lobes of
the references just cited for more examples and discussiorthe time domain signal, information that might improve faul
The parametern > 0 adjusts the trade-off between subdetectability and resolution.
optimality in the likelihood of the measured response, and Despite our best efforts, in practice all input signals are
the sparsity ofu. Since effective values oh for a given non-ideal. In general, over sampling leads to effectiveozer
problem depend on the measurement noise variaffgeve in the DFT of the input signal. That reduces the effective
will frequently specify the producko? (rather than just\) to  rank of VTV, which leads to ambiguity in the best least-
highlight the interdependence between these two constantsquares estimate. The method presented in this articieptse
The fact that (5) is a convex optimization problem is ato resolve that ambiguity with the prior information thatth
important feature for practical applications. Primarityneans faults are sparsely populated along the length of the wire. |
the optimal solution can be computgbbbally, in a robust and is in this way that an improvement over existing correlation
efficient manner [14]. based TDR fault detection algorithms is obtained.

where,

minimize fo(p) + Mlpl:,



3M 900AST Input Signal be viewed as an artifact of thig-norm penalty function, since
‘ ‘ ‘ it favors smaller elements ip.
A simple technique callegolishingalleviates this problem,

\;.%0.5* 1 simply by solving the original problem (3) with the spar-
sity pattern obtained from the solution to tiie-regularized
0 — heuristic (5). Of course, when problem (3) has a fixed sparsit
0 20 40 60 80 100 pattern, it becomes a simple least-squares problem.

ns

Input Signal Spectrum Figure 5 shows the effect of polishing on the previous

example (for the second largest value)otonsidered). Note,

__08f at least in this case, the technique almost always doesghe ri
= 06 thing: 1.5 (k) is brought closer to the actual value.
5041 ) ,
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Fig. 3. Normalized input signal and frequency spectrum frocommercially *:5 -0.1 T
available 3M 900AST handheld TDR unit. S L forae?=011
03 o polished p_
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B. Example ‘ ‘ ‘
. . 0 50 100 150 200
To simulate the TDR measurement process, we begin by k
generating a sparse vector of reflection coefficignts R™ as
follows: Fig. 5. Polishing example. The plot shows how the polisheckcttin

. . . coefficients pes¢, are closer to the actual values than the original set of
1) Randomly pick an integeN between0 and 10 (with  ggtimated C’éefﬁcient& 9

equal probability) N is the number of faults on the wire.
2) Draw N random reflection coefficients from a uniform
distribution on[—0.5,0.5]. V. SELECTING A

3) Assign the coefficients t&V randomly chosen (equally |ntuitively, larger values of\ lead to sparser solutions, and
probable) locations in:, and set all other elements togparser solutions lead to the missed detection of smaltsfaul
Zero. (false negatives). On the other hand, a detector that taps t

Next, n measurements of the reflected sighalk), for k = easily will find faults that are not really there (false poEs),

0,1,2,...,n—1, are obtained by using the TDR measuremenfhich is also impractical especially when a technician is
model (1), with some specified input sigria(k). This method constantly sent to find and repair specious faults. This@ect

is used to generate simulated TDR data for the rest of tR&Plores how the selection df affects performance resullts in
paper. two important ways. First, we establish a theoretical riethalt

Consider an example with = 200. The above procedure determines the effective range of valuesan take along with
was used to generate a sparse reflection coefficient vedfys condition under which the sensor detects no faults.@bco
4 € R, and a measurement of the reflected sighialk) we show how Monte Carlo methods are used to quantify the
from a unit pulse input signal; (k) (a traditional TDR input trade-offs between differing values affor a specific example.

signal), and measurement noise= 0.02. The ¢ -regularized
LSP (5) was then solved for several different valuesiof A. The No-Fault Condition

using CVX, a package for specifying and solving convex This section presents how the selectiomadetermines the
programs [15], [16]. The input signal, reflected signal, ando-fault condition ie., all estimated reflection coefficients are
detection results are plotted in Figure 4. This figure alsgero).

shows the normalized correlation signal between the inputwe begin by defining the correlation signglk) as,

pulse and the reflected responge.(V T v, /||v;]|?). While the 1

0y meth.o.d successful_ly detects all th(=T faults in this gxample, y(k) = Z Vilj — )V, (5), @)
the traditional correlation based detection method, whooks =0

for peaks in the correlation signal, would fail to detect fingt

fault due to its close proximity to the second larger fault. For each value ofk, this signal measures the correlation

between the measured response, and the input signal shifted
k units in time.

C. Polishing Using subgradient calculus it is readily shown the optimal
solution to (5) isu = 0, if and only if

IV fo(O)lloe = _max {‘01‘@)

The previous example shows that for larger values,ahe
estimated reflection coefficients appear in the correcttioca
but typically have reduced amplitude (see Figure 4). This ca

} <x®

Oty




Incident Signal Reflected Signal Reflection Coefficient Profile
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Fig. 4. A reflection coefficient estimation example. The estiomatesults for different values oko? are shown on the plot to the right. Note, that in

all cases most of the reflection coefficienték) are zero as desired. The normalized correlation betweennghé and output signals is also shown. Peak
detection applied to the correlation signal would cleadil fo resolve the first two faults in close proximity to eaclhent

For our problem this implies: I o
y(k)

o2

<A forallk=0,1,..,n—1. )

This sensitivity condition simply states that if the besse&a

correlationy (k) to noise ratio is less thah, then the optimal
solution to (5) will indicate no faults on the line (of course
in reality faults may still be present). There are two ways tc
view this condition. First, given a particular reflected reg

true pos./neg. rate

—O&— positive rates
— — — useless detector
—>— negative rates

corr./peak detector
negative rates

it determines a finite maximum valua can take before
the sensor ceases to detect any faults. Second, and m¢
importantly, given a particular fixed setting farit determines ,
the signal to noise ratio needed before the sensor tripss, Th{fd: & ROC performance curve. Each point on the curve coorutp to a

. . . . ifferent value ofAo“. For the positive (negative) ratésr“ increases from
the COnd't'on IS met eaCh t|me the sensor C|eaI’S a wire @]t (|ef‘t) to left (r|ght) The s corresponds t0\0-2 = 0, and the()s
unfaulted. With these two view points in mind, the conditiomorresponds taw? ~ 22, which is the value that causes the method to report
might be used to seleck to create a fault sensor that igho faults along the wire (segV-A). The true negative vs. false negative curve

. L. . for a correlation based detection method over a range of ibtdssalues is

less prone to accidental tripping, but only if one can afforghown for comparison.
decreased sensitivity to smaller faults. This is furthgslesed

in the next section.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

false pos./neg. rate

Figure 6 provides us with a way to make decisions about
B. Estimation Performance vs. which value of\ we want to use. For example, if we require a

In this section, Monte Carlo simulation is used to invedalse negative rate less than%, we might selecto? = 0.1.
tigate how the selection ok is used to trade off detectionWith this setting now fixed, we evaluated the estimation
performance goals to meet application specific requiresaenferformance on a netest sef 400 more random coefficient

To do this we will continue to build on the previous exampl@rofiles and TDR response data. For this set30f00 test
with n = 200. First, a set ofl00 random reflection coefficient Points, the false positive rate was)3%, and the correspond-
profiles, and corresponding TDR response data, were gerigg false negative rate was84%. Furthermore, since false
ated using the same process described earligiiB (again negatives might be of particular concern, Figure 7 compares
with fixed noise standard deviation = 0.02, and the same the overall distribution of nonzero fault amplitudes to the
input pu]se \/0|tage Wa\/e)_ For each measured response, (#@ribution of actual fault amplitudes Contributing teetfalse
estimation problem (5) was solved for a series of valueEhe negatives in the test set. This plot clearly shows false thega
number of false positives and false negatives were countéfe more likely for smaller reflection coefficients, as ongmbi
Figure 6 shows the Receiver Operating Characteristic (RO€jPect, and that this particular detector was able idertify
curve for these results. As one might expect, larger valdes fgults with amplitudes greater than about. Finally, note that
X lead to fewer false positives (because we are encouragfnigure 5 already presented an example comparing the actual,
Sparsity) and as a consequence, more false negatives_ dthe ?ﬁitimated, and pOIiShed reflection coefficients achievett wi
also shows the true negative vs. false negative ROC curve f8is value ofAc %

a simple correlation based detector, over a range of thidsho Before moving on we wish to make clear that the results
values. Clearly, the¢Z; method significantly outperforms thispresented here are dependent on the particular input signal
simple detector over nearly all values df used and the system noise. This section was intended to



Histogram of Reflection Coefficients

A by AT computes correlation. As we will review in the next
40

I = nonzero coefficients section, both of these operations are performed efficiemitly
30 ~ [ Jfaise negative coefficients the FFT in ordemlog(n) flops.
o
S 20 : .
B. Fast Convolution
10 This section reviews how the FFT algorithm is used to
o efficiently compute the convolution needed for our problem.
05 -04 -08 -~02 01 0 01 02 03 04 05 We start by defining theirculant Toeplitzmatrix C(r) as:
reflection coefficient value
. . S ) To r—1 r-2 ... Ti-n
Fig. 7. A comparison between the actual distribution of alizero reflection
coefficients, and the distribution of coefficients corrasiag to the false 1 o T-1 ... T2-n
negatives in the test set. C(r) = T2 1 ro .- T3-m | (11)
highlight the potential performance achievable for thipety "n-1 Tn-2 Tn-3 "o

of detector, and more importantly to provide a clear examp¥gherer_, = r,_x. With this definition it is not hard to see
demonstrating how Monte Carlo techniques are used to expldéhat Cz computes the circular convolution betweere R™

the full trade-offs between performance goals. Ultimatétg  (the first column ofC) and a vector: € R™ in ordern? flops.
actual selection of\ must lie in the hands of the end users We can, however, use the FFT to compute the same product
and the specific requirements of their applications. in order3n log(n) flops, which is significantly less thart for

any appreciable value of. Let F € C™*" be the matrix that
computes the discrete Fourier transform of a vectd®in with

i i i inverse ', the complex conjugate transposefof Using the

The ¢;-regularized LSP (5) is readily solved for small (0, ot 14t the Fourier transform converts convolution in tinge

m‘?d'_“m sized problems thro_ugh any one of a variety Yomain into multiplication in the frequency domain, we have
existing solvers (some of which are available online under

the GNU Public License):CvX [15], [16], MOSEK [17], y = Cx = F" diag(Fr)Fu. (12)

| 1- magi ¢ [12], and LASSO [18], [19] to name a few. ForThys, circular convolution is efficiently calculated viaeth
exampleCVX can handle problems with up to a few thousanghjiowing steps:

V. SOLVING LARGE SCALE PROBLEMS

reflection coefficients. _ 1) Use the FFT to compute = Fz andv = Fr (order
Here we consider using yet another solVet, | s [7]. This 2n log(n)).

Mat | ab based solver uses a truncated Newton interior-point 2y perform an element by element multiply betweeand

method that computes search directions with a preconeition v (ordern).

conjugate gradient algorithm [6]. Through these techrsgue 3) Computey by taking the inverse FFT of the result from
| 1_I s allows us to solve our particular estimation problem step 2 (ordem log(n)).

for a large number of reflection coefficients (= 100000
or more) by taking advantage of algorithms that efficientl
compute convolution.

Note that we never actually form the matricEsor diag(F'r)

th this process. Furthermore, we also get an efficient method
for computingC” z, by simply noting that from equation (12)
we haveC = FH diag(Fr)F. Thus,

ct =T = FH diag(Fr)F. (13)

Therefore, to compute”?z, the same process enumerated
above is used, except in step 2 we multiply by the complex
conjugate ofw.

with variablexz € R™, given the observationg € R™, and To implement the causal (rather than circular) convolution
data matrixA € R™*". Clearly, this handles the estimationversion of our problem we simply use zero padding. Specif-

A. Implementation

Thel 1_1| s algorithm solves the generél-regularized LSP
problem: R
minimize ||Az — y||3 + \||z|1, (20)

problem (5) we are interested in with= 4, y = V., A = ically, we constructC(r) € R**?" py settingr = (V;,0),
2)\c2, andA = V. Note thatA is ann x n convolution matrix where0 € R" is a vector with all zero elements. Thus, the
entirely determined by the input interrogation sighalk). causal part of the convolution (this i$x with respect to the

Conveniently, thel 1_| s routine allows one to overload| 1_| s algorithm) is just the first» elements ofC#%, where
matrix multiplication by A and AT (by creating a new i = (z,0). The same idea holds far” .
Mat | ab object), when there is a more efficient way of Finally, we note for some specific input signdl§, it is
performing the calculation. This is important because th& ¢ even possible to implement faster convolution than with the
of solving (10), vial 1_I| s, is dominated by the cost of FFT. A trivial example isV;(k) = é(k), whereé(k) is the
performing matrix vector multiplies byd and A, which discrete delta function. In this case, we do not have to perfo
is up to ordern? floating point operations (flops). However,a convolution at all. Another example ¥§(k) = u(k), where
it is often possible to achieve a substantial improvement hyk) is a discrete step function. It is not hard to see that
exploiting the structure inA. For our estimation problem, convolution with this function can be computed in order
multiplication by A computes convolution, and multiplicationflops.
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Fig. 9. Image of a chafing fault breaching the shield of a commee tf

aircraft wire (twisted shielded pair). The internal twidtpair that caries the
signal is largely unaffected by this type of fault. Howevweethods that can
detect it enable technicians to make repairs before serimisigms occur.

Fig. 8. Comparison betwee@VX and | 1_I s for solving large-scale
reflection coefficient estimation problems.

C. Speed Performance Example ) _
In this section we compare the performance betwe signal along with the reflected response for both the urddult
andl 1 | s (usin efficienFt) FFT cor?volution) To do this Weand faulted cable is shown in Figure 10. The measured data

- >Ing . " was linearly interpolated onto a grid df24 evenly spaced
solved our estimation problem (5) for increasing valueshef t .. .
. . ) . time samples, buto other preprocessing was performed. The
problem sizen, and clocked the time taken to find the optima . o )

. reflection coefficients were computed in 2.4 seconds, and the
solution (on a 1.8GHz Intel Core Duo processor under 64-hj R . .
Linux) results are also shown in Figure 10. As noted in the figure

' aption, there are now nonzero reflection coefficients chuse
The measurement data was generated by the same me . .
. . . y an impedance mismatch between the TDR port and the
presented irglll-B. This data was then used to estimate the: :
. - : 5 . Wire, the fault, and the hard reflection from the open ended
reflection coefficientsu, with A\o® = 1/2, for the different . . g
. L ; ire. Although small, the set of reflection coefficients cadis
solvers. Figure 8 shows the dramatic improvement obtaiyed : .
: : y the fault are well localized, easy to spot, and clearlglsid
thel 1_| s solver for increasing values of. We note that the . .

; . .~ out from the other nonzero coefficients. Note the detection

solution time for thel 1_| s solver tends to vary, depending . . s . X
; .. 2succeeds without using any additional processing or baseli

onV;, and the actual number of nonzero reflection coefficienis - . .

. L INformation €.g, like subtracting the TDR response of the
(this behavior is not expected @VX). For the test cases we ; : . X

: . . : undamaged wire). That is an important result because in many
tried, this variance was on the order of minutes for the large . . L L -
- applications baseline information is inconsistent.

values ofn. However, in general, thel | s method always

performed much better tha@vX.
VII. CONCLUSION

VI. REAL TDR DATA EXAMPLE In this paper we have described a method for detecting and
H{;ating wiring damage using TDR measurement data. Unlike

ber of assumptions were made which do not strictly hold | ome other methods, this one uniquely takes advantage of the
practice. In particular, we assumed a lossless transmidisie act that faults are often sparsely located along the leogth

(and lossless faults), and that the load and source impedantg'e_ erle. Vge demolnstratgd rt]he e;fehctwe'\;:ess ch:Ol:r m_ethlod_ on
were matched. While these assumptions were needed to mﬁl?é?ubate eﬁamp €, an Sb owel ow onteh. arlo 3|mL_1f_at|on
a logical derivation of the linear model, it turns out they ggnignt be used to tune it (by selecting to achieve specific

not have to strictly hold in practice and that many wiringete,(?tion goals (like a cer_tai.n false positive error rate).
systems, by their very nature, get close enough that theadet dd't';”v Wg SaW;fhé}t prleeXISItlnglalgonthn:s, I:]k'éﬁl s, can
presented here remains effective. In this section an emmgg adapted to efficiently solve large-scale (high resamtio

using real TDR data collected from a faulted wire is used rsions of our estimation prablem. Finally, we applied the

demonstrate that this method can remain successful in st Ie@ethOd to actual TDR data and revealed its impressive ybilit
i. entify a very subtle type of damage. It is hoped the fault

one extreme case where those assumptions are challengeg) \‘{1 ) . !
every way. etection method presented here will serve as a straigidfor

The experiment was conducted on a one meter Sectii(!irﬁprovement to existing techniques that is readily put into

of twisted shielded pai(TSP), a common type of shieldegPractice.
aircraft wire that is very lossy. To simulate one form of chgfi

fault, a diamond coated abrasive rod was used to file away a ACKNOWLEDGMENT
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Fig. 10. (Left) Measured input, and reflected voltage wawesbbth the faulted and unfaulted wire, recorded with a digfDR unit (Agilent 54754A).
There are three main noticeable effects: the reflectionsechby a mismatched impedance between the TDR port and wire (A)retfiection caused by
the chafe (B), and a lossy reflection caused by the open loslieagénd of the wire (C). (Right) Reflection coefficiemtk) estimation results for both the
faulted and unfaulted case, usifig-regularized least squares, with= 1024, Ao = 0.005, and At = 0.04 ns (the entire recorded signal is not shown).
The result shows the reflection coefficients caused by theipgredance mismatch (A), the chafing fault (B), and a distridsutf coefficients caused by
the lossy reflection from the end of the line (C). The faultedion is well localized and much easier to discern (withooking to the baseline signal for
comparison) in the reflection coefficient plot.
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