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Wiring Diagnostics via
ℓ1-Regularized Least Squares
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Abstract—A new method for detecting and locating wiring
damage using time domain reflectometry with arbitrary input
interrogation signals is presented. This method employs exist-
ing ℓ1 regularization techniques from convex optimization and
compressed sensing to exploit sparsity in the distribution of
faults along the length of a wire, while further generalizing and
improving commonly used fault detection techniques based on
sliding correlation and peak detection. The method’s effectiveness
is demonstrated using a simulated example, and it is shown
how Monte Carlo techniques are used to tune it to achieve
specific detection goals, like a certain false positive error rate.
Furthermore, the method is easily implemented by adapting
readily available optimization algorithms to quickly solve large,
high resolution, versions of this estimation problem. Finally, the
technique is applied to a real data set, which reveals its impressive
ability to identify a subtle type of chaffing damage on real wire.

Index Terms—diagnostics, fault detection, inverse scattering,
lossless media, sparsity, time domain reflectometry, TDR, wiring

I. I NTRODUCTION

T HIS paper considers the specific problem of detecting
faults in wiring systems using time domain reflectometry.

Generally, this is performed by launching a known signal into
a wire, and examining the signal reflected back for potential
issues (Figure 1 below). An important aspect of this technique
is that one can detect and locate wiring problems well before
hard short or open conditions occur. With this application in
mind we are particularly concerned with the detection of small
faults such as chafing damage to shielded wire. One specific
application is to aircraft wiring systems that are hard to inspect
visually, and where it is critical to identify problems before
components start to fail.

The setup is presented in Figure 1. A Time Domain Reflec-
tometer (TDR) is connected to the transmission line we want to
check, and is used to send a signal down the wire. The reflected
signal is then measured, and checked for anomalies that might
indicate possible wiring problems along the line. For example,
consider a simple case where the original transmission lineis
perfect (and has matched source and load impedance). In this
case, we will see the incident signal pass right through the line
without receiving any reflected signal back. Now imagine that
during the course of its lifetime, the outer shielding alonga
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section of the wire is damaged, a common problem with aging
aircraft caused by decades of wires rubbing together, among
other things. This sort of damage will cause the incident
voltage wave to reflect and travel back along the line where it
will be measured by the TDR.

It is common practice for trained technicians to manually
examine the raw TDR response by eye in search of reflections
indicative of wiring faults. While this is perhaps the simplest
approach, it often does not work well for small faults with
subtle reflection signatures. Furthermore, the current state of
the art uses sequence time domain reflectometry (STDR),
or spread spectrum time domain reflectometry (SSTDR) to
detect wiring problems on live wires [1]. In essence these
technologies spread the input interrogation signal energyout
over time by using a pseudo noise sequence with a small
amplitude so that the regular data signals on the wire appear
unaffected. With this type of interrogation signal direct manual
inspection of the reflected signal is near impossible, so some
sort of processing is required to detect fault severity and
location. By far the dominant processing algorithm for all
these systems is to simply compute the correlation between
the input signal and the reflected response and then to use
a peak detection algorithm (or just a threshold) to locate the
faults [1]–[5].

Obviously, it is beneficial to process the reflected response
in order to automate the detection process, or perhaps just
to make manual inspection easier. In this paper, we de-
velop an improvement to the traditional sliding correlatorand
peak detection method, by incorporating the additional prior
information that small wiring faults are generally sparsely
populated along the line. The approach is motivated by some
recent theoretical and software developments in compressed
sensing for sparse signal recovery usingℓ1-norm regularization
[6], [7]. This method appears to be effective and new to the
field of time domain reflectometry. The presentation here is
meant to be clear, practical, and immediately applicable to
any existing TDR hardware system. It is thus critical that
improvements are both computationally efficient and effective
for arbitrary interrogation signals.

The fundamental problem presented here is to reconstruct
the properties of a transmission line from the measurement
of its response to an input interrogation signal. This problem
has been studied for at least half a century, but seldom under
the time domain reflectometry heading, which seems more
focused on hardware development. Some early work dating
back to at least 1957 appears in the geophysics community
where researchers focused on identifying systems of layered
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Fig. 1. Basic TDR Setup. The TDR interrogates the wire with input
signalVi(t), which propagates along the wire and reflects off of impedance
discontinuities caused by damage. The reflected signal,Vr(t), is measured at
the input of the wire and used to determine the location and severity of the
damage.

earth by applying the TDR principle to the ground. A survey
of this work is provided by J. Mendel in [8]. The electrical
engineering community has of course tackled the problem as
well, sometimes referring to it asinverse scatteringor layer
pealing. The literature here is extensive and many different
models have been proposed. Two representative examples
might be the lossless discrete piecewise constant impedance
model described in [9], or the more general continuous RCLG
transmission line model presented in [10].

The application of this prior research to the detection of
wiring faults usually falls into one of two categories. The
first category contains techniques that solve the transmission
line partial differential equations, using discrete or continuous
methods, and then directly inverts the solution process without
incorporating the effects of measurement noise, such as those
presented in [9], [10]. The second category consists of methods
that use simple linear models, which account for noise, and
apply various least-squares based techniques to the inversion
process, such as Kalman filtering [8]. The sliding correlation
and peak detection method, as well as the method we pursue
in this paper also fall into this category. Although these
models are not as general or precise as those falling into
the first category, they are practical to work with, lead to
robust inversion algorithms where measurement noise is a
consideration, and areeffective for the detection of small faults
on near lossless wire. In many ways they are analogous to
the small-signal models, which are used with great success
throughout electrical engineering and physics in general.

This paper is organized as follows. First we present a
linear model for the TDR setup and measurement process just
described. Next, the problem of detecting the location and
severity of wiring damage is posed as an estimation problem,
and a heuristic is introduced to find effective solutions to the
original problem, by solving a convex optimization problem.
Finally, we will show how the Fast Fourier Transform (FFT)
makes it possible to efficiently solve large-scale problems.
Numerical examples are presented along the way, and the
improved technique is verified using real TDR data.

II. A L INEAR TDR MODEL

We assume the transmission line or just wire is lossless
(and hence also distortionless), that any voltage wave traveling

through it moves at constant velocity, and that the line is
initially quiescent.

We consider the following discrete convolution model for
the TDR measurement process:

Vr(k) =

n−1
∑

j=0

µ(j)Vi(k − j) + η(k), (1)

where for k = 0, 1, 2, . . . , n − 1, Vr(k) is the measured
response,µ(k) is a series of impulse responsereflection
coefficientsthat characterize the damaged wire,Vi(k) is the
known incident wave launched into the transmission line, and
η(k) is random measurement noise. This model has a simple
interpretation: the measured signal is the sum of time shifted
and scaled replicas of the input signalVi(k), plus noise. For an
unfaulted lineµ(k) = 0, for all k (except perhaps at the source
or load end of the wire). Thus, fault severity and location
are indicated by the magnitude and position of each nonzero
reflection coefficient.

The model can represent either causal or circular (periodic)
convolution. For circular convolution we putVi(−k) = Vi(n−
k). For causal convolution, we simply defineVi(k) = 0 for
all k < 0. Obviously, for either caseVr(k) must get the same
treatment.

It is both instructive and notationally convenient to rewrite
(1) in an equivalent matrix vector form:

vr = V µ + η (2)

where,

vr = [Vr(0), . . . , Vr(n − 1)]T

µ = [µ(0), . . . , µ(n − 1)]T

η = [η(0), . . . , η(n − 1)]T

and,

V =













Vi(0) Vi(−1) . . . Vi(1 − n)

Vi(1) Vi(0)
.. .

...
...

...
.. . Vi(−1)

Vi(n − 1) Vi(n − 2) . . . Vi(0)













.

So,vr, µ, andη ∈ Rn. V is a Toeplitz matrix inRn×n entirely
determined by the input signalVi(k).

Finally, it is important to note the linear model presented
here is motivated by the lossless discrete piecewise constant
impedance transmission line model shown in figure 2. A
clear, detailed study of this model is presented in [9]. The
linear model is actually an approximation to the piecewise
constant model that follows by assuming only the primary
reflection from each impedance discontinuity is significant,
and that all additional reflections are negligible. In cases
where the impedance discontinuities are both sparse and small,
the reflection coefficientsµ(k) are approximatelyrelated to
impedances discontinuities in the traditional sense (according
to the equation shown on figure 2). See§5.10 of [11] for
more discussion. The validity of these assumptions will also
be supported by the practical examples using real TDR data
presented in§VI.
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Fig. 2. The discrete piecewise constant impedance model. Smallfaults are
modeled as impedance discontinuities, which are equivalently specified as
reflection coefficients.

III. REFLECTION COEFFICIENTESTIMATION

Nonzero values ofµ(k) indicate the location and severity
of faults along the wire. Given the prior information that
wires are typically undamaged for most of their length, except
perhaps at a few locations, the reflection coefficient vectorµ
should contain only a few nonzero values. In other words, we
expectµ to be sparse. Thus, we are interested in solving the
optimization problem:

minimize f0(µ)
subject to µ sparse,

(3)

where,

f0(µ) =
1

2σ2
‖V µ − vr‖

2 (4)

is the objective representing the negative log-likelihoodof
observing the signalVr given µ, under the assumption that
the noiseη(k) is IID N(0, σ2).

One heuristic to handle the rather vague sparsity constraint
in (3), is to add anℓ1-norm penalty to the objective. This
regularization technique is well known to produce sparse
solutions (see [6], [7], [12], [13] and [14]§6.3.2). To this end,
we consider solving the convexℓ1-regularized least squares
problem (LSP):

minimize f0(µ) + λ‖µ‖1, (5)

with ℓ1-norm defined as‖µ‖1 =
∑n−1

j=0
|µ(j)|. Intuitively, the

solution is sparse because in the process of finding an optimal
solution, the solver will routinely reduce a small coefficient
identically to zero at the cost of increasing the associated
squared errorf0(µ) by a smaller amount. The key observation
is perhaps that square error measured byf0 stays relatively
flat near a minimum, while absolute error measured by|µ(k)|
decreases to zero at a constant rate and does not level off (it
is also not differentiable atµ(k) = 0 for eachk). Please see
the references just cited for more examples and discussion.

The parameterλ ≥ 0 adjusts the trade-off between sub-
optimality in the likelihood of the measured response, and
the sparsity ofµ. Since effective values ofλ for a given
problem depend on the measurement noise varianceσ2, we
will frequently specify the productλσ2 (rather than justλ) to
highlight the interdependence between these two constants.

The fact that (5) is a convex optimization problem is an
important feature for practical applications. Primarily,it means
the optimal solution can be computedglobally, in a robust and
efficient manner [14].

A. Relation to Least-Squares, Correlation Detectors and Op-
timal Input Signals

To see that (5) is a generalization of the least-squares
problem we need only setλ = 0. In this case, the optimal
solution is well known:µ⋆ = (V T V )−1V T vr, assuming
(V T V )−1 exists. From here we will make a few observations.

The first is that ifV T V = I, then the least-squares estimate
reduces toµ⋆ = V T vr, which when written out becomes the
familiar discrete equation for the correlation between theinput
and output signals:

µ⋆(k) =

n−1
∑

j=0

Vi(j − k)Vr(j), (6)

The conditionV T V = I implies the input signal is shift
orthogonal, a condition that is met only when the frequency
spectrum given by the DFT ofVi(k) has uniform magnitude
across all frequencies. Furthermore, we can show this type
of signal minimizes the mean square error between the actual
reflection coefficient profile and its estimate under the assump-
tion that the only interference source is Gaussian noise. Thus,
shift orthogonal input signals are in this sense theoptimalinput
signals. There are at least 2 important examples. The first isof
courseVi(k) = δ(k), whereδ(k) is the well known discrete
impulse function. The second is a pseudo noise sequence with
uniform magnitude and random phase in the frequency do-
main. These signals are technically only circular-shift orthog-
onal, but are sometimes also considered shift orthogonal ina
statistical sense (e.g., E [Vi(j)Vi(j − k)] = δ(k)). From these
considerations we can see that the optimality of the sliding
correlator detection method relies heavily on the assumption
that the input interrogation signal is shift orthogonal.

However, in practice these optimal input signals are not
typically found because to avoid aliasing effects it is good
practice to sample considerably faster than the highest fre-
quency in the input signal. Thus the frequency spectrum of the
input signal is never uniform across all frequencies. Of course
one could measure the system response at a high sampling
rate, and then process (filter and subsample) the input signal
and measurements to get the desired result, but that approach
usually destroys information. For example, consider Figure 3,
which shows the measured input signal of the 3M 900AST
handheld TDR device. This signal is sampled at0.32 ns,
and would be approximately shift orthogonal for shifts of50
ns. Subsampling to obtain the desired “ideal” discrete input
would ruin the additional information in the side lobes of
the time domain signal, information that might improve fault
detectability and resolution.

Despite our best efforts, in practice all input signals are
non-ideal. In general, over sampling leads to effective zeros
in the DFT of the input signal. That reduces the effective
rank of V T V , which leads to ambiguity in the best least-
squares estimate. The method presented in this article attempts
to resolve that ambiguity with the prior information that the
faults are sparsely populated along the length of the wire. It
is in this way that an improvement over existing correlation
based TDR fault detection algorithms is obtained.
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Fig. 3. Normalized input signal and frequency spectrum from acommercially
available 3M 900AST handheld TDR unit.

B. Example

To simulate the TDR measurement process, we begin by
generating a sparse vector of reflection coefficientsµ ∈ Rn as
follows:

1) Randomly pick an integerN between0 and 10 (with
equal probability).N is the number of faults on the wire.

2) Draw N random reflection coefficients from a uniform
distribution on[−0.5, 0.5].

3) Assign the coefficients toN randomly chosen (equally
probable) locations inµ, and set all other elements to
zero.

Next, n measurements of the reflected signalVr(k), for k =
0, 1, 2, . . . , n−1, are obtained by using the TDR measurement
model (1), with some specified input signalVi(k). This method
is used to generate simulated TDR data for the rest of the
paper.

Consider an example withn = 200. The above procedure
was used to generate a sparse reflection coefficient vector
µ ∈ R200, and a measurement of the reflected signalVr(k),
from a unit pulse input signalVi(k) (a traditional TDR input
signal), and measurement noiseσ = 0.02. The ℓ1-regularized
LSP (5) was then solved for several different values ofλ
using CVX, a package for specifying and solving convex
programs [15], [16]. The input signal, reflected signal, and
detection results are plotted in Figure 4. This figure also
shows the normalized correlation signal between the input
pulse and the reflected response (i.e., V T vr/‖vi‖

2). While the
ℓ1 method successfully detects all the faults in this example,
the traditional correlation based detection method, whichlooks
for peaks in the correlation signal, would fail to detect thefirst
fault due to its close proximity to the second larger fault.

C. Polishing

The previous example shows that for larger values ofλ, the
estimated reflection coefficients appear in the correct location,
but typically have reduced amplitude (see Figure 4). This can

be viewed as an artifact of theℓ1-norm penalty function, since
it favors smaller elements inµ.

A simple technique calledpolishingalleviates this problem,
simply by solving the original problem (3) with the spar-
sity pattern obtained from the solution to theℓ1-regularized
heuristic (5). Of course, when problem (3) has a fixed sparsity
pattern, it becomes a simple least-squares problem.

Figure 5 shows the effect of polishing on the previous
example (for the second largest value ofλ considered). Note,
at least in this case, the technique almost always does the right
thing: µest(k) is brought closer to the actual value.
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Fig. 5. Polishing example. The plot shows how the polished reflection
coefficientsµest, are closer to the actual values than the original set of
estimated coefficients.

IV. SELECTING λ

Intuitively, larger values ofλ lead to sparser solutions, and
sparser solutions lead to the missed detection of small faults
(false negatives). On the other hand, a detector that trips too
easily will find faults that are not really there (false positives),
which is also impractical especially when a technician is
constantly sent to find and repair specious faults. This section
explores how the selection ofλ affects performance results in
two important ways. First, we establish a theoretical result that
determines the effective range of valuesλ can take along with
the condition under which the sensor detects no faults. Second,
we show how Monte Carlo methods are used to quantify the
trade-offs between differing values ofλ for a specific example.

A. The No-Fault Condition

This section presents how the selection ofλ determines the
no-fault condition (i.e., all estimated reflection coefficients are
zero).

We begin by defining the correlation signaly(k) as,

y(k) =

n−1
∑

j=0

Vi(j − k)Vr(j), (7)

For each value ofk, this signal measures the correlation
between the measured response, and the input signal shifted
k units in time.

Using subgradient calculus it is readily shown the optimal
solution to (5) isµ = 0, if and only if

‖∇f0(0)‖∞ = max
k=0....,n−1

{∣

∣

∣

∣

∂f0(0)

∂µk

∣

∣

∣

∣

}

≤ λ. (8)
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Fig. 4. A reflection coefficient estimation example. The estimation results for different values ofλσ2 are shown on the plot to the right. Note, that in
all cases most of the reflection coefficientsµ(k) are zero as desired. The normalized correlation between the input and output signals is also shown. Peak
detection applied to the correlation signal would clearly fail to resolve the first two faults in close proximity to each other.

For our problem this implies:
∣

∣

∣

∣

y(k)

σ2

∣

∣

∣

∣

≤ λ for all k = 0, 1, ..., n − 1. (9)

This sensitivity condition simply states that if the best case
correlationy(k) to noise ratio is less thanλ, then the optimal
solution to (5) will indicate no faults on the line (of course
in reality faults may still be present). There are two ways to
view this condition. First, given a particular reflected signal
it determines a finite maximum valueλ can take before
the sensor ceases to detect any faults. Second, and more
importantly, given a particular fixed setting forλ it determines
the signal to noise ratio needed before the sensor trips. Thus,
the condition is met each time the sensor clears a wire as
unfaulted. With these two view points in mind, the condition
might be used to selectλ to create a fault sensor that is
less prone to accidental tripping, but only if one can afford
decreased sensitivity to smaller faults. This is further explored
in the next section.

B. Estimation Performance vs.λ

In this section, Monte Carlo simulation is used to inves-
tigate how the selection ofλ is used to trade off detection
performance goals to meet application specific requirements.

To do this we will continue to build on the previous example
with n = 200. First, a set of100 random reflection coefficient
profiles, and corresponding TDR response data, were gener-
ated using the same process described earlier in§III-B (again
with fixed noise standard deviationσ = 0.02, and the same
input pulse voltage wave). For each measured response, the
estimation problem (5) was solved for a series of valuesλ. The
number of false positives and false negatives were counted.
Figure 6 shows the Receiver Operating Characteristic (ROC)
curve for these results. As one might expect, larger values of
λ lead to fewer false positives (because we are encouraging
sparsity) and as a consequence, more false negatives. The plot
also shows the true negative vs. false negative ROC curve for
a simple correlation based detector, over a range of threshold
values. Clearly, theℓ1 method significantly outperforms this
simple detector over nearly all values ofλ.
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Fig. 6. ROC performance curve. Each point on the curve corresponds to a
different value ofλσ2. For the positive (negative) ratesλσ2 increases from
right (left) to left (right). The �s corresponds toλσ2 = 0, and the♦s
corresponds toλσ2 ≃ 22, which is the value that causes the method to report
no faults along the wire (see§IV-A). The true negative vs. false negative curve
for a correlation based detection method over a range of threshold values is
shown for comparison.

Figure 6 provides us with a way to make decisions about
which value ofλ we want to use. For example, if we require a
false negative rate less than10%, we might selectλσ2 = 0.1.
With this setting now fixed, we evaluated the estimation
performance on a newtest setof 400 more random coefficient
profiles and TDR response data. For this set of80000 test
points, the false positive rate was5.93%, and the correspond-
ing false negative rate was4.84%. Furthermore, since false
negatives might be of particular concern, Figure 7 compares
the overall distribution of nonzero fault amplitudes to the
distribution of actual fault amplitudes contributing to the false
negatives in the test set. This plot clearly shows false negatives
are more likely for smaller reflection coefficients, as one might
expect, and that this particular detector was able identifyall
faults with amplitudes greater than about0.1. Finally, note that
Figure 5 already presented an example comparing the actual,
estimated, and polished reflection coefficients achieved with
this value ofλσ2.

Before moving on we wish to make clear that the results
presented here are dependent on the particular input signal
used and the system noise. This section was intended to
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highlight the potential performance achievable for this type
of detector, and more importantly to provide a clear example
demonstrating how Monte Carlo techniques are used to explore
the full trade-offs between performance goals. Ultimately, the
actual selection ofλ must lie in the hands of the end users
and the specific requirements of their applications.

V. SOLVING LARGE SCALE PROBLEMS

The ℓ1-regularized LSP (5) is readily solved for small to
medium sized problems through any one of a variety of
existing solvers (some of which are available online under
the GNU Public License):CVX [15], [16], MOSEK [17],
l1-magic [12], and LASSO [18], [19] to name a few. For
exampleCVX can handle problems with up to a few thousand
reflection coefficients.

Here we consider using yet another solver,l1_ls [7]. This
Matlab based solver uses a truncated Newton interior-point
method that computes search directions with a preconditioned
conjugate gradient algorithm [6]. Through these techniques,
l1_ls allows us to solve our particular estimation problem
for a large number of reflection coefficients (n = 100000
or more) by taking advantage of algorithms that efficiently
compute convolution.

A. Implementation

Thel1_ls algorithm solves the generalℓ1-regularized LSP
problem:

minimize ‖Ax − y‖2

2
+ λ̂‖x‖1, (10)

with variable x ∈ Rn, given the observationsy ∈ Rm, and
data matrixA ∈ Rm×n. Clearly, this handles the estimation
problem (5) we are interested in withx = µ, y = Vr, λ̂ =
2λσ2, andA = V . Note thatA is ann×n convolution matrix
entirely determined by the input interrogation signalVi(k).

Conveniently, thel1_ls routine allows one to overload
matrix multiplication by A and AT (by creating a new
Matlab object), when there is a more efficient way of
performing the calculation. This is important because the cost
of solving (10), via l1_ls, is dominated by the cost of
performing matrix vector multiplies byA and AT , which
is up to ordern2 floating point operations (flops). However,
it is often possible to achieve a substantial improvement by
exploiting the structure inA. For our estimation problem,
multiplication byA computes convolution, and multiplication

by AT computes correlation. As we will review in the next
section, both of these operations are performed efficientlywith
the FFT in ordern log(n) flops.

B. Fast Convolution

This section reviews how the FFT algorithm is used to
efficiently compute the convolution needed for our problem.

We start by defining thecirculant Toeplitzmatrix C(r) as:

C(r) =















r0 r−1 r−2 . . . r1−n

r1 r0 r−1 . . . r2−n

r2 r1 r0 . . . r3−n

...
...

...
. . .

...
rn−1 rn−2 rn−3 . . . r0















, (11)

wherer−k = rn−k. With this definition it is not hard to see
that Cx computes the circular convolution betweenr ∈ Rn

(the first column ofC) and a vectorx ∈ Rn in ordern2 flops.
We can, however, use the FFT to compute the same product

in order3n log(n) flops, which is significantly less thann2 for
any appreciable value ofn. Let F ∈ Cn×n be the matrix that
computes the discrete Fourier transform of a vector inRn, with
inverseFH , the complex conjugate transpose ofF . Using the
fact that the Fourier transform converts convolution in thetime
domain into multiplication in the frequency domain, we have:

y = Cx = FH diag(Fr)Fx. (12)

Thus, circular convolution is efficiently calculated via the
following steps:

1) Use the FFT to computeu = Fx and v = Fr (order
2n log(n)).

2) Perform an element by element multiply betweenu and
v (ordern).

3) Computey by taking the inverse FFT of the result from
step 2 (ordern log(n)).

Note that we never actually form the matricesF or diag(Fr)
in this process. Furthermore, we also get an efficient method
for computingCT x, by simply noting that from equation (12)
we haveC = FH diag(Fr)F . Thus,

CH = CT = FH diag(Fr)F. (13)

Therefore, to computeCT x, the same process enumerated
above is used, except in step 2 we multiply by the complex
conjugate ofv.

To implement the causal (rather than circular) convolution
version of our problem we simply use zero padding. Specif-
ically, we constructC(r) ∈ R2n×2n by settingr = (Vi,0),
where0 ∈ Rn is a vector with all zero elements. Thus, the
causal part of the convolution (this isAx with respect to the
l1_ls algorithm) is just the firstn elements ofCx̂, where
x̂ = (x,0). The same idea holds forCT x̂.

Finally, we note for some specific input signalsVi, it is
even possible to implement faster convolution than with the
FFT. A trivial example isVi(k) = δ(k), where δ(k) is the
discrete delta function. In this case, we do not have to perform
a convolution at all. Another example isVi(k) = u(k), where
u(k) is a discrete step function. It is not hard to see that
convolution with this function can be computed in ordern
flops.
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Fig. 8. Comparison betweenCVX and l1_ls for solving large-scale
reflection coefficient estimation problems.

C. Speed Performance Example

In this section we compare the performance betweenCVX
andl1_ls (using efficient FFT convolution). To do this we
solved our estimation problem (5) for increasing values of the
problem sizen, and clocked the time taken to find the optimal
solution (on a 1.8GHz Intel Core Duo processor under 64-bit
Linux).

The measurement data was generated by the same method
presented in§III-B. This data was then used to estimate the
reflection coefficientsµ, with λσ2 = 1/2, for the different
solvers. Figure 8 shows the dramatic improvement obtained by
thel1_ls solver for increasing values ofn. We note that the
solution time for thel1_ls solver tends to vary, depending
on Vi, and the actual number of nonzero reflection coefficients
(this behavior is not expected ofCVX). For the test cases we
tried, this variance was on the order of minutes for the larger
values ofn. However, in general, thel1_ls method always
performed much better thanCVX.

VI. REAL TDR DATA EXAMPLE

In the above development it may have seemed a large num-
ber of assumptions were made which do not strictly hold in
practice. In particular, we assumed a lossless transmission line
(and lossless faults), and that the load and source impedances
were matched. While these assumptions were needed to make
a logical derivation of the linear model, it turns out they do
not have to strictly hold in practice and that many wiring
systems, by their very nature, get close enough that the method
presented here remains effective. In this section an example
using real TDR data collected from a faulted wire is used to
demonstrate that this method can remain successful in at least
one extreme case where those assumptions are challenged in
every way.

The experiment was conducted on a one meter section
of twisted shielded pair(TSP), a common type of shielded
aircraft wire that is very lossy. To simulate one form of chafing
fault, a diamond coated abrasive rod was used to file away a
small 10 × 2 mm section of the shield as shown in Figure 9.
The cable was then connected to an Agilent 54754A digital
TDR unit with the fault located about66 cm down the line.
This particular TDR unit uses an input30 ps rise time step
voltage, which wasapplied across one of the wires inner
conductors and the shield. A measurement of the actual input

Fig. 9. Image of a chafing fault breaching the shield of a common type of
aircraft wire (twisted shielded pair). The internal twisted pair that caries the
signal is largely unaffected by this type of fault. However,methods that can
detect it enable technicians to make repairs before serious problems occur.

signal along with the reflected response for both the unfaulted
and faulted cable is shown in Figure 10. The measured data
was linearly interpolated onto a grid of1024 evenly spaced
time samples, butno other preprocessing was performed. The
reflection coefficients were computed in 2.4 seconds, and the
results are also shown in Figure 10. As noted in the figure
caption, there are now nonzero reflection coefficients caused
by an impedance mismatch between the TDR port and the
wire, the fault, and the hard reflection from the open ended
wire. Although small, the set of reflection coefficients caused
by the fault are well localized, easy to spot, and clearly singled
out from the other nonzero coefficients. Note the detection
succeeds without using any additional processing or baseline
information (e.g., like subtracting the TDR response of the
undamaged wire). That is an important result because in many
applications baseline information is inconsistent.

VII. CONCLUSION

In this paper we have described a method for detecting and
locating wiring damage using TDR measurement data. Unlike
some other methods, this one uniquely takes advantage of the
fact that faults are often sparsely located along the lengthof
the wire. We demonstrated the effectiveness of our method on
a simulated example, and showed how Monte Carlo simulation
might be used to tune it (by selectingλ) to achieve specific
detection goals (like a certain false positive error rate).In
addition, we saw that preexisting algorithms, likel1_ls, can
be adapted to efficiently solve large-scale (high resolution)
versions of our estimation problem. Finally, we applied the
method to actual TDR data and revealed its impressive ability
to identify a very subtle type of damage. It is hoped the fault
detection method presented here will serve as a straightforward
improvement to existing techniques that is readily put into
practice.
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