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ABSTRACT

In this work, a framework for the estimation of the fatigue damage propagation in
CFRP composites is proposed. Macro-scale phenomena such as stiffness and strength
degradation are predicted by connecting micro-scale and macro-scale damage mod-
els in a Bayesian filtering framework that also allows incorporating uncertainties in
the prediction. The approach is demonstrated on data collected from a run-to-failure
tension-tension fatigue experiment measuring the evolution of fatigue damage in
CRFP cross-ply laminates. Results are presented for the prediction of expected end
of life for a given panel with the associated uncertainty estimates.

INTRODUCTION

Fatigue in composite materials is a complex multi-scale damage cumulative process,
and generally perceived as macro-scale reduction in stiffness and strength as struc-
tures age. Several fatigue models for both micro and macro scale phenomena have
been proposed in literature that work reasonably well under fixed loading and material
conditions [1], however, it is important to connect micro-scale damage to macro-scale
properties to obtain reliable predictions in real engineering applications. Furthermore,
there is much physical and modeling uncertainty that is not usually taken into account
in such approaches. Hence an approach based on continuous assessment of structure
health based on Bayesian state estimation methods is proposed that is better suited
to (1) deal with different sources of uncertainty, (2) update model parameters as the
system evolves, (3) use updated models to predict damage degradation into the fu-
ture, which can be ultimately used to improve safety and reduce maintenance costs
[2]. Other Bayesian approaches for fatigue modeling are mostly focused on making
assumptions over the random variables [3] or over the relations between model and
data [4]. Recently, there has been a growing interest for Bayesian methods in fatigue
damage prognosis [5, 6] although mostly focused on crack propagation in metals. The
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application of a probabilistic prognostic model-based framework for predicting degra-
dation in composite materials is still very limited in the literature.

However, the ability to deal with uncertainties from models and data can be the
biggest advantage of Bayesian methods since the existence of uncertainty in com-
posite materials is an undeniable fact.

In this work, a novel damage prognostics framework for FRP composites under fa-
tigue loading is proposed. The key contribution is the inclusion of micro-scale damage
evolution models acting as state transition equation (Figure 1), that are hierarchically
connected to a macro-scale stiffness reduction model into a Bayesian filtering algo-
rithm [7] that sequentially updates both damage states and model parameters as time
evolves. Through stochastic embedding, these deterministic models are converted to
probabilistic models by introducing a modeling error term. This modeling error term
is controlled by a probability density function whose parameters are sequentially es-
timated in addition to the rest of model parameters.

The proposed methodology is implemented and demonstrated using experimen-
tal NDE damage data for micro-crack density and stiffness reduction from exten-
sive tension-tension fatigue experiments performed over several symmetric cross-ply
CFRP laminates [14].

METHODOLOGY

Damage models Probability models State transition equation

Micro-crack evolution model Probabilistic cracking model
% = A (AG(61,))™ + e, P(pnlpn—1;11,,601,)
Delamination evolution model Probabilistic delam. model
= Ad(DGa(62,)* + e, P(anlpn; an-1;12,,62,)

Stiffness model Probabilistic stiffness model
E = E(p,a;03,) + e3, P(Enlpn;anius,,, 03,)

Figure 1: Deriving a probability transition kernel from deterministic multi-scale damage models for
Bayesian filtering and prognostics
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Damage growth models

A Fracture Mechanics approach based on a modified Paris law is adopted to model
the rate of change of internal damage per cycle. Several authors [8] have adopted a
modified Paris law to analyze the rate of damage growth using the range of energy
release rate instead of the range in stress intensity factor. The energy release rate AG,
was calculated using a variational stress analysis approach. Other possible approaches
can be the shear-lag analysis or the COD approach [8]. In this paper, the shear-lag
approach to obtain the energy release rate is adopted, which is simpler and well-suited
for symmetric cross-ply laminates?:
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Then the modified Paris’ Law for the propagation of matrix cracks is formulated as:
dp
— = A (AGy)™ 3
2L~ A(LGY) 3

where A; and «; are fitting parameters. A(G) is the increment of energy release
evaluated for the maximum and minimum stress in the cyclic load series: A(G) =
Glomar — Glomin There is no closed-form solution for this differential equation, there-
fore we approximate the derivative by finite differences as:

A n — Mn— ot
b= B — 4 (AG(p) ©

hence
Pn = Pn-1+ At (AGt(pn71>)at (5)

For macro-scale degradation, stiffness loss is preferred over residual strength given
that (1) it can be measured non destructively, and (2) it exhibits much less statis-
tical scatter than the strength [1]. For the case of cross-ply CFRP laminates, some
authors [9] have shown that local delaminations affect relatively insignificantly to
the global stiffness reduction when the stacking sequence [0,,/90,,/0,] is such that
m/n < 4, which is the case for our laminate. Therefore, the hypothesis that only ma-
trix cracks are the dominant critical damage mode is adopted herein.

equation 6 shows the expression for relative stiffness reduction using a shear-lag
based fracture mechanics model [10]:

Eer 1 ) N2 -
B 1+ apR()’ with R(l) = gtanh(gl) (6)

Here, ¢ is defined in equation 2. The term a is a known function dependent on elastic
Etgg

properties and geometry of the sub-laminate and 90° layer, defined as a = 5,
] S

[8, 10]. Hereinafter, we refer to the relation % as D.

Stochastic embedding

Any deterministic model of a system (e.g., a finite-element model, state-space model,
or an ARMAX model) defining a relationship {u, 8} — g(u, ) between the model
input u and the model output g, given a set of uncertain parameters @, can be used
to construct a probabilistic class by stochastic embedding [11]. This can be done
by adding a model-error term v to represent the difference between the real system
output x and the model output g(u, @), as shown in equation (7a). If y are the mea-
surements of the system output X, then one can extend the stochastic embedding to
account for the measurement error w as shown in equation (7b):

x=g(u,0)+v (7a)
y=X+4+W (7b)



Applying the stochastic embedding to the above damage models yields the following
discrete-time state-space model:

Pn = Pn-1+ g1(pn-1,11,,01) +v1, (8a)
D, = g2(pn,us,,02) + vg, (8b)
Pn = pn + w1, (8c)
D, = D, + ws, (8d)

where the error terms v;, and wj, are defined® as zero mean gaussians, A (0, Oy, )
and V(0, o, ) respectively. It follows that the probabilistic expressions for the state
transition equations (8a, 8b) can be described as:

P(pnlpn-1,11,,01) = N(pp-1 + g1(pn-1,11,,601),00,,) (9a)

p<Dn‘pm uy,, 02) = N(QQ(pn*h uy,, 02)7 O'vzn) (9b)

Similarly, the expressions for measurement equations (8c, 8d) are obtained as below:
p(ﬁn|pn> :N(pn70w1n) (10a)

p(Dn|Dy) = N(Dm Uw%) (10b)

Filtering for Bayesian updating

The filtering framework consists on the sequential damage state assessment through
Bayesian updating of the last state assessment as new data become available. Sub-
sequently, the updated models at each step are run in a forward mode to predict
estimate of end of life (EOL) or remaining useful life (RUL). In this model-based
approach, the state assessment step includes estimation of the damage state = as well
as estimation of model parameters, 6. Using particle filters, the joint state-parameter
distribution p(z,, 8,,|Y;) can be approximated by a set of N discrete weighted parti-
cles, {(z,6,) ,wi}N,, as

N

P, 0,]Y;) ~ Zwié(zn —21)6(0,, — 6") (11)
i=1

It must be noted that we simultaneously consider a micro-scale damage variable

(transverse crack density, p) and a macro-scale damage variable (stiffness loss, D),

such that each particle (state sample) z! is composed as ¥, = {p!,, D! }. Hence, given

sequences of both measurements, Y, = {p,, D, }, where p,, = {po, p1,....pn} and

D, = {150, Dy, ..., ﬁn}, equation 11 can be rewritten as*

N
=1

3 A rational way to define a probability model for the error term could be to select it such that it pro-
duces the most uncertainty (largest Shannon entropy). The maximum-entropy PDF for an unbounded
variable given its mean and variance is a Gaussian distribution.

“For simpler notation the conditioning on the model input sequences u;, that are supposed to be
known in this problem, are dropped from the equation 12.



Applying Bayes’ Theorem, the importance weights w’, can be updated as:

why o< p(Dy|Dy)p(pulpn)ts_ (13)

Here we assume that the system model is Markovian of order one and that the obser-
vations are conditionally independent of the state. We use the sampling importance
resampling (SIR) particle filter, using systematic resampling. An artificial evolution
approach [12] is also introduced to deal with the sequential updating of model param-
eters 0,,. See below a pseudocode for this algorithm called Algorithm 1.

Algorithm 1 Particle Filter

1: Atn =20

2: Generate {0}, 2}~ |, sampling from the priors 7g(-) and 7, (-) respectively.

3: Assign the initial weights: {w) = 1/N}Y,

4: Atn >1

5: fori =1— N do

6:  Simulate from state equations: 8" ~ p(-|0°_,); p’. ~ p(.|p_,,0%); DI ~
p(' |piw 0;) ) . ) o

7:  Update weights: w!,  p(D,|D.,)p(pn|pk)wr 4

8: end for

9: fori=1— Ndo

10:  Normalize w? < wi/>N,

11: end for

12: {(piz’ Dfm 0;) ,w;}f\il < Resample{ (piz’ Dfm 0;) vw;}g\il

Damage prognostics

For predicting remaining useful life of a composite structure we are interested in
predicting the time when the damage grows beyond a predefined acceptable thresh-
old [13]. Using the most current knowledge of the system state at cycle n, es-
timated by equation (12), the goal now is to estimate the EOL, as probability:
p(EOL,|Y,). The damage space itself may be defined by means of a set of thresholds
C = {C},...,C.} on more than one critical parameters. In such cases, these thresh-
olds can be combined into a threshold function Tgor : Tror(x, 0, C) that maps a
given point in the joint state-parameter space to the Boolean domain {0, 1}. For in-
stance, when a given particle ¢ starting from cycle n performs a random walk and hits
any of the thresholds C, then T%,; = 1, otherwise T, = 0. The time ny > n at
which that happens defines the EOL for that particle. Mathematically:

EOL! =inf{ny € N:ny > nATho (2,6, ,Cy,) =1} (14)
Using the updated weights at the starting time, a probabilistic estimation of the EOL

is given as:
N

p(EOL,|Y,) = Y wid(EOL, — EOL}) (15)
=1

An algorithmic description of the prognostic procedure is provided as Algorithm 2.



Algorithm 2 EOL prediction
1: InputS: {(p:w D7117 0:1) 7wgz}£\;1’ Cn = {Cln7 Tt Ccn}
2: Output: {EOL! Wi,
3: fori=1— Ndo

4 Calculate: Ty, (o1, D5, 0, Cy)
5: while Tj,,, = 0do ‘ ' '
6: Simulate: 8, ., ~ p(:0,,); pp1 ~ P(|Ph: €i1); Dy ~ PC| g1 €111)
7: n<n+l A
8: (piuDiL?eZn) — (p;L—Fl?‘D;L—FlJOz’L—‘rl)
9:  end while
10 EOL! < n
11: end for
RESULTS AND DISCUSSION

The proposed framework was applied to fatigue cycling data for cross-ply graphite-
epoxy laminates. Torayca T700G uni-directional carbon-prepreg material was used
for 15.24 [cm] x 25.4 [cm] coupons with dogbone geometry. The tests, as reported
in [14], were conducted under load-controlled tension-tension fatigue loadings with
a frequency of f = 5 [Hz], a maximum stress of 80% of their ultimate stress, and a
stress ratio R = 0.14. Laminate properties are summarized in Table 1. Lamb waves
signals were periodically recorded using a PZT sensor network to estimate internal
microcrack density. The mapping between PZT raw data and microcrack density was
done following the methodology proposed in [15]. In addtion, macro-scale damage
measurements were taken using strain gauges at periodic intervals interspersed be-
tween fatigue cycling experiment. Results for sequential damage state estimation and
prognostics are presented in Figure 2. To compute EOL, a set of damage thresh-
olds C = {pmar = 0.4, Do = 0.88} was chosen. Figure 2a shows compari-
son between the crack density as estimated by the filtering algorithm and the crack
density estimated from PZT sensors. Similarly, Figure 2b shows a good agreement
between stiffness reduction as measured using strain gauge data and estimated by
the particle filter. Every time new data arrive, damage is estimated and the updated
model is further used to propagate damage into future to compute RUL, calculated
as RUL, = FOL, — n. These predictions are plotted against time in Figure 2¢c. The
two shaded cones of accuracy at 10% and 20% of true RUL help evaluate prediction
accuracy and precision. Prediction precision clearly improves with time, however, ac-
curacy seems to depart from true RUL at later stages, which indicates that the model
and its variance structure do not fully capture the damage dynamics towards the end.
Such behaviors have been reported earlier in [13] and may require further investi-
gations to evaluate the tradeoffs between model fidelity and accuracy requirements
from an application perspective. Finally, Figure 2d shows how some model param-
eters evolve through time as they get updated. Similar results were obtained when
applied to other test coupon data, not shown here.



Long. Modulus Trans. Modulus In-plane Poisson Out-of-plane Poisson Shear modulus Thickness

E, [GPa] E, [GPa] Vgy Uy, E,[GPa] ¢ [mm]
137.5 8.4 0.309 0.5 6.2 0.132
Table 1: Ply properties used in the calculations.
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Figure 2: Sequential estate estimation of (a) microcrack density, (b) stiffness loss, (c) RUL prediction
and (d) Evolution of Paris’ Law parameters { As, o }

CONCLUSIONS AND FUTURE WORK

A novel model-based filtering framework is proposed to sequentially update and pre-
dict the damage state, model parameters, and remaining useful life (RUL) of com-
posites and estimate the uncertainty associated with these predictions. This is done
by fusing the experimental information and models available at different levels of
granularity by means of the Bayes’ Theorem. Scope of future work includes (1) in-
troducing delamination models and data into the proposed prognostics framework,
(2) establishing energy-based thresholds to compute EOL for microcrack density and
delamination growth, and (3) designing a robust filtering approach by fusing proba-
bilistic information from a pool of plausible models.



Basic notation

h Laminate half-thickness €0 Applied strain

ts [0,,] Sub-laminate thickness G Ply shear modulus

too [90,,,] Sub-laminate half-thickness Ey Undamaged laminate Young’s modulus
l Half-distance between 2 cracks Eg(cgo) Undamaged [90,,,] ply Young’s modulus
dg Resin-rich thickness B Undamaged [0,,] ply Young’s modulus
l= é Dimensionless half spacing between cracks FEeg Damaged laminate Young’s modulus
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