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application of a probabilistic prognostic model-based framework for predicting degra-
dation in composite materials is still very limited in the literature.
However, the ability to deal with uncertainties from models and data can be the
biggest advantage of Bayesian methods since the existence of uncertainty in com-
posite materials is an undeniable fact.
In this work, a novel damage prognostics framework for FRP composites under fa-
tigue loading is proposed. The key contribution is the inclusion of micro-scale damage
evolution models acting as state transition equation (Figure 1), that are hierarchically
connected to a macro-scale stiffness reduction model into a Bayesian filtering algo-
rithm [7] that sequentially updates both damage states and model parameters as time
evolves. Through stochastic embedding, these deterministic models are converted to
probabilistic models by introducing a modeling error term. This modeling error term
is controlled by a probability density function whose parameters are sequentially es-
timated in addition to the rest of model parameters.
The proposed methodology is implemented and demonstrated using experimen-
tal NDE damage data for micro-crack density and stiffness reduction from exten-
sive tension-tension fatigue experiments performed over several symmetric cross-ply
CFRP laminates [14].

METHODOLOGY
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Figure 1: Deriving a probability transition kernel from deterministic multi-scale damage models for
Bayesian filtering and prognostics

Damage growth models
A Fracture Mechanics approach based on a modified Paris law is adopted to model
the rate of change of internal damage per cycle. Several authors [8] have adopted a
modified Paris law to analyze the rate of damage growth using the range of energy
release rate instead of the range in stress intensity factor. The energy release rate �Gt

was calculated using a variational stress analysis approach. Other possible approaches
can be the shear-lag analysis or the COD approach [8]. In this paper, the shear-lag
approach to obtain the energy release rate is adopted, which is simpler and well-suited
for symmetric cross-ply laminates2:
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2See last page for basic notation and relations
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Then the modified Paris’ Law for the propagation of matrix cracks is formulated as:

d⇢
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↵
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where At and ↵t are fitting parameters. 4(G) is the increment of energy release
evaluated for the maximum and minimum stress in the cyclic load series: 4(G) =
G|�

max

�G|�
min

There is no closed-form solution for this differential equation, there-
fore we approximate the derivative by finite differences as:

�⇢
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hence
⇢n = ⇢n�1 + At (�Gt(⇢n�1))

↵
t (5)

For macro-scale degradation, stiffness loss is preferred over residual strength given
that (1) it can be measured non destructively, and (2) it exhibits much less statis-
tical scatter than the strength [1]. For the case of cross-ply CFRP laminates, some
authors [9] have shown that local delaminations affect relatively insignificantly to
the global stiffness reduction when the stacking sequence [0n/90m/0n] is such that
m/n 6 4 , which is the case for our laminate. Therefore, the hypothesis that only ma-
trix cracks are the dominant critical damage mode is adopted herein.
equation 6 shows the expression for relative stiffness reduction using a shear-lag
based fracture mechanics model [10]:

Eeff
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=

1

1 + a⇢R(l̄)
, with R(l̄) =

2

⇠
tanh(⇠ l̄) (6)

Here, ⇠ is defined in equation 2. The term a is a known function dependent on elastic
properties and geometry of the sub-laminate and 900 layer, defined as a = E

(S)
x

t90

E
(90)
x

t
S

[8, 10]. Hereinafter, we refer to the relation Eeff
E0

as D.

Stochastic embedding

Any deterministic model of a system (e.g., a finite-element model, state-space model,
or an ARMAX model) defining a relationship {u,✓} ! g(u,✓) between the model
input u and the model output g, given a set of uncertain parameters ✓, can be used
to construct a probabilistic class by stochastic embedding [11]. This can be done
by adding a model-error term v to represent the difference between the real system
output x and the model output g(u,✓), as shown in equation (7a). If y are the mea-
surements of the system output x, then one can extend the stochastic embedding to
account for the measurement error w as shown in equation (7b):

x = g(u,✓) + v (7a)
y = x+w (7b)



Applying the stochastic embedding to the above damage models yields the following
discrete-time state-space model:
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)
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) respectively. It follows that the probabilistic expressions for the state
transition equations (8a, 8b) can be described as:
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Similarly, the expressions for measurement equations (8c, 8d) are obtained as below:
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Filtering for Bayesian updating

The filtering framework consists on the sequential damage state assessment through
Bayesian updating of the last state assessment as new data become available. Sub-
sequently, the updated models at each step are run in a forward mode to predict
estimate of end of life (EOL) or remaining useful life (RUL). In this model-based
approach, the state assessment step includes estimation of the damage state x as well
as estimation of model parameters, ✓. Using particle filters, the joint state-parameter
distribution p(xn,✓n|Ŷn) can be approximated by a set of N discrete weighted parti-

cles, {
�
xi
n,✓

i
n

�
,!i

n}Ni=1, as
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n) (11)

It must be noted that we simultaneously consider a micro-scale damage variable
(transverse crack density, ⇢) and a macro-scale damage variable (stiffness loss, D),
such that each particle (state sample) xi

n is composed as xi
n = {⇢in, Di

n}. Hence, given
sequences of both measurements, Ŷn = {⇢̂n, D̂n}, where ⇢̂n = {⇢̂0, ⇢̂1, . . . , ⇢̂n} and
D̂n = {D̂0, D̂1, . . . , D̂n}, equation 11 can be rewritten as4
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3A rational way to define a probability model for the error term could be to select it such that it pro-
duces the most uncertainty (largest Shannon entropy). The maximum-entropy PDF for an unbounded
variable given its mean and variance is a Gaussian distribution.

4For simpler notation the conditioning on the model input sequences u
in , that are supposed to be

known in this problem, are dropped from the equation 12.



Applying Bayes’ Theorem, the importance weights !i
n can be updated as:

!i
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n�1 (13)

Here we assume that the system model is Markovian of order one and that the obser-
vations are conditionally independent of the state. We use the sampling importance
resampling (SIR) particle filter, using systematic resampling. An artificial evolution
approach [12] is also introduced to deal with the sequential updating of model param-
eters ✓n. See below a pseudocode for this algorithm called Algorithm 1.

Algorithm 1 Particle Filter
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Damage prognostics

For predicting remaining useful life of a composite structure we are interested in
predicting the time when the damage grows beyond a predefined acceptable thresh-
old [13]. Using the most current knowledge of the system state at cycle n, es-
timated by equation (12), the goal now is to estimate the EOL, as probability:
p(EOLn|Ŷn). The damage space itself may be defined by means of a set of thresholds
C = {C1, . . . , Cc} on more than one critical parameters. In such cases, these thresh-
olds can be combined into a threshold function TEOL : TEOL(x,✓,C) that maps a
given point in the joint state-parameter space to the Boolean domain {0, 1}. For in-
stance, when a given particle i starting from cycle n performs a random walk and hits
any of the thresholds C, then T i

EOL = 1, otherwise T i
EOL = 0. The time nT > n at

which that happens defines the EOL for that particle. Mathematically:
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Using the updated weights at the starting time, a probabilistic estimation of the EOL
is given as:

p(EOLn|Ŷn) ⇡
NX

i=1

!i
n�(EOLn � EOLi

n) (15)

An algorithmic description of the prognostic procedure is provided as Algorithm 2.



Algorithm 2 EOL prediction
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9: end while
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n  n
11: end for

RESULTS AND DISCUSSION
The proposed framework was applied to fatigue cycling data for cross-ply graphite-
epoxy laminates. Torayca T700G uni-directional carbon-prepreg material was used
for 15.24 [cm] x 25.4 [cm] coupons with dogbone geometry. The tests, as reported
in [14], were conducted under load-controlled tension-tension fatigue loadings with
a frequency of f = 5 [Hz], a maximum stress of 80% of their ultimate stress, and a
stress ratio R = 0.14. Laminate properties are summarized in Table 1. Lamb waves
signals were periodically recorded using a PZT sensor network to estimate internal
microcrack density. The mapping between PZT raw data and microcrack density was
done following the methodology proposed in [15]. In addtion, macro-scale damage
measurements were taken using strain gauges at periodic intervals interspersed be-
tween fatigue cycling experiment. Results for sequential damage state estimation and
prognostics are presented in Figure 2. To compute EOL, a set of damage thresh-
olds C = {⇢max = 0.4, Dmax = 0.88} was chosen. Figure 2a shows compari-
son between the crack density as estimated by the filtering algorithm and the crack
density estimated from PZT sensors. Similarly, Figure 2b shows a good agreement
between stiffness reduction as measured using strain gauge data and estimated by
the particle filter. Every time new data arrive, damage is estimated and the updated
model is further used to propagate damage into future to compute RUL, calculated
as RULn = EOLn � n. These predictions are plotted against time in Figure 2c. The
two shaded cones of accuracy at 10% and 20% of true RUL help evaluate prediction
accuracy and precision. Prediction precision clearly improves with time, however, ac-
curacy seems to depart from true RUL at later stages, which indicates that the model
and its variance structure do not fully capture the damage dynamics towards the end.
Such behaviors have been reported earlier in [13] and may require further investi-
gations to evaluate the tradeoffs between model fidelity and accuracy requirements
from an application perspective. Finally, Figure 2d shows how some model param-
eters evolve through time as they get updated. Similar results were obtained when
applied to other test coupon data, not shown here.



Long. Modulus Trans. Modulus In-plane Poisson Out-of-plane Poisson Shear modulus Thickness
Ex [GPa] Ey [GPa] ⌫xy ⌫yz Es [GPa] t [mm]

137.5 8.4 0.309 0.5 6.2 0.132

Table 1: Ply properties used in the calculations.
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Figure 2: Sequential estate estimation of (a) microcrack density, (b) stiffness loss, (c) RUL prediction
and (d) Evolution of Paris’ Law parameters {A
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CONCLUSIONS AND FUTURE WORK
A novel model-based filtering framework is proposed to sequentially update and pre-
dict the damage state, model parameters, and remaining useful life (RUL) of com-
posites and estimate the uncertainty associated with these predictions. This is done
by fusing the experimental information and models available at different levels of
granularity by means of the Bayes’ Theorem. Scope of future work includes (1) in-
troducing delamination models and data into the proposed prognostics framework,
(2) establishing energy-based thresholds to compute EOL for microcrack density and
delamination growth, and (3) designing a robust filtering approach by fusing proba-
bilistic information from a pool of plausible models.



Basic notation
h Laminate half-thickness ✏0 Applied strain
t

S

[0
n

] Sub-laminate thickness G Ply shear modulus
t90 [90

m

] Sub-laminate half-thickness E0 Undamaged laminate Young’s modulus
l Half-distance between 2 cracks E

(90)
x

Undamaged [90
m

] ply Young’s modulus
d0 Resin-rich thickness E

(S)
x

Undamaged [0
n

] ply Young’s modulus
l̄ = l

t90
Dimensionless half spacing between cracks Eeff Damaged laminate Young’s modulus

Acknowledgements
The two first authors would like to thank the Ministry of Education of Spain for the
FPU grants AP2009-4641, AP2009-2390, to Junta de Andalucia (Spain) for projects
P11-CTS-8089 and GGI3000IDIB and to the Prognostics Center of Excellence at
NASA Ames, which kindly hosted them during the course of this work. Authors
would also like to thank Structures and Composites lab at Stanford University for
experimental data and NASA ARMD/AvSafe project SSAT, which provided partial
support for this work.

References

[1] J. Degrieck, W. Van Paepegem, Fatigue damage modeling of fibre-reinforced composite materi-
als: Review, Applied Mechanics Reviews 54 (4) (2001) 279.

[2] T. Peng, Y. Liu, A. Saxena, J. Celaya, K. Goebel, Integrated fatigue damage diagnosis and prog-
nosis under uncertainties, in: Annual Conference of the PHM Society, 2012.

[3] D. An, J.-H. Choi, N. H. Kim, S. Pattabhiraman, Fatigue life prediction based on Bayesian ap-
proach to incorporate field data into probability model, Engineering 37 (4) (2011) 427–442.

[4] M. Guida, F. Penta, A Bayesian analysis of fatigue data, Structural Safety 32 (1) (2010) 64–76.
[5] X. Guan, Y. Liu,R. Jha, A. Saxena,J. Celaya,K. Goebel, Comparison of Two Probabilistic Fatigue

Damage Assessment Approaches Using Prognostic Performance Metrics, International Journal
of the PHM Society 2 (005) (2011) 11.

[6] S. Sankararaman, Y. Ling, S. Mahadevan, Uncertainty quantification and model validation of
fatigue crack growth prediction, Engineering Fracture Mechanics 78 (7) (2011) 1487–1504.

[7] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for on-
line nonlinear/non-Gaussian Bayesian tracking, Signal Processing, IEEE Transactions on 50 (2)
(2002) 174–188.

[8] R. Talreja, C. V.Singh, Damage and failure of composite materials, Cambridge Univ. Press, 2012.
[9] N. Takeda, S. Ogihara, Initiation and growth of delamination from the tips of transverse cracks

in CFRP cross-ply laminates, Composites science and technology 52 (3) (1994) 309–318.
[10] R. Joffe, J. Varna, Analytical modeling of stiffness reduction in symmetric and balanced lami-

nates due to cracks in 90 layers, Composites Science and Technology 59 (11) (1999) 1641–1652.
[11] J. Beck, Bayesian system identification based on probability logic, Structural Control and Health

Monitoring 17 (7) (2010) 825–847.
[12] M. Daigle, K. Goebel, A Model-based Prognostics Approach Applied to Pneumatic Valves, in:

International Journal of the PHM Society, 2 (008) (2010) 16.
[13] A. Saxena, J. Celaya, B. Saha, S. Saha, K. Goebel, Metrics for Offline Evaluation of Prognostic

Performance, in: International Journal of the PHM Society, 1 (001) (2010) 20.
[14] A. Saxena, K. Goebel, C. Larrosa, V. Janapati, S. Roy, F. Chang, Accelerated aging experiments

for prognostics of damage growth in composites materials, in: The 8th International Workshop
on Structural Health Monitoring, F.-K. Chang, Editor., Stanford, CA, 2011.

[15] C. Larrosa, FK. Chang, Real time in-situ damage classification, quantification and diagnosis for
composite structures, in: Proc. of the 19th International Congress on Sound and Vibration, 2012.


	Main Menu
	Author Index
	How to Use This CD-ROM
	Search
	Print

	Table of Contents
	VOLUME 1
	PROGNOSTICS AND DATA MINING FOR HEALTH MANAGEMENT
	A Notional Framework and Model to Improve Monitoring of Structural Health Systems
	Non-Destructive Detection of Crack Initiation Using Acoustic Emission
	Bayesian Updating of Detection Capability with Frequency Response Function Related Structural Health Monitoring Features
	Modular Signal-Based Condition Monitoring of a Hydraulic Servo-System
	Fatigue Damage Prognosis in FRP Composites by Combining Multi-Scale Degradation Fault Modes in an Uncertainty Bayesian Framework
	Triboluminescent Optical Nerves for Smart Concrete Structures






